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The book for the course will be Stochastic Calculus for Finance II - Continuous-Time
models by Steven E. Shreve.

Section 1
Binomial Asset Pricing Model

Any process that can be modeled as a diffusion, that is the evolution over time of financial
assets or returns in the case which is of interest to us. In this section, we consider a simple
model, named binomial asset pricing. Before describing it, we begin with some terminology.

Options (which we call contracts) are derivative securities, derivative in the sense that
there is an underlying asset (bond, stock, etc.) The evolution of options is random, and
so difficult to forecast. We consider hedging strategies, that is investment positions taken
as to reduce loss incurred in financial or money markets.

Suppose for simplicity a two periods model, with period 0 and 1. At time zero, denote the
price of the asset by S0. At period 1, one of two things can happen: in one of these, the
price increases, which we denote S(H) or the price go down S(T ) for H,T denoting head
and tail. We can go from one to the other, with some probabilities associated with this
random walk. These probabilities do not have any impact on the pricing of the derivatives,
based on the principle of no arbitrage. An arbitrage is defined as being a strategy for
which there is a positive probability of a gain, and no probability of loss. The market would
be drawn back to equilibrium if there was positive gain to be made. Here, we are assuming
that the markets are at equilibrium to begin with, there is no arbitrage.1

A portfolio is a collection of assets owned by an individual. There are two underlying
assets considered in our settings, a risky asset, denoted S, and a risk-free asset, which we
could think of as money. The number of units of the risky asset (the number of shares), will
form the portfolio.

We will consider the European call options, an option which gives the owner the possi-
bility to buy one share at t1, time one, for a strike price K; this is what you pay to get one
unit of the underlying asset if you exercise the option. Thus, in an European call option,
one can exercise the option in period 1 if the result is H and pay K in exchange of the
price of the stock S1(H).2

We speak about the exercise, that is do what the options is, i.e. if call, then buy. We base
our decision on and choose to exercise at expiration (maturity) sometimes denoted T .

1There is no problem for an horizon in a discrete model.
2Here, call is defined for buy, put for sell. This implies that exercising an option (in an European call

option) yields profit (S1 −K)+, while in an European put option, we can sell the option at t0 to get profit
(K − S1)+.
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S0

S(H) = uS0

S(T ) = dS0

V (H) = S(H)−K

V (T ) = 0

Let S(H) = uS0 and S(T ) = dS0. If S1 −K > 0, we exercise the option. The value thus is
(S1 −K)+ = max{0, S1 −K}.

The other parameter needed in this model, apart from the parameters u, d and K is the
interest rate on money, denoted r. Obviously, we are interested in strike prices within the
range (dS0, uS0). Can we duplicate the effect of the option; that is can we get the same
payoff, by building a portfolio by making things in all states of the world, getting the same
payoff with risky asset and risk-free assets? 3

We would have arbitrage if the models did not have equal values.

We have the inequality d < 1 + r < u where r is the return from time t0 to t1.

To constitute a hedging portfolio, we need to check availability and get what the portfolio
looks like. Set V (H) = S(H) − K and V (T ) = 0. Assume the portfolio contains ∆0 of
the risky asset and M0 units of the risk free asset. We can then say that X0 is the cost of
acquiring this portfolio, given by

X0 = M0 + S0∆0

X1(H) = ∆0S(H) +M0(1 + r)

X1(T ) = ∆0S(T ) +M0(1 + r)

with conditions X1(H) = V1(H) and X1(T ) = V1(T ). The equations we have to solve are
thus simply

V1(H) = ∆0S(H) +M0(1 + r)

V1(T ) = ∆0S(T ) +M0(1 + r)

∆0 andM0 tells us the quantity we have to buy and X0 tells us the value to get no arbitrage.
We then get the simple equation, equating the above, is

∆0 = V1(H)− V1(T )
S1(H)− S1(T )

referred to as the delta-hedging rule.
3This is not always possible, for example with the trinomial model.
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Once we have this, further simplification gives

M0 = 1
1 + r

(
V1(H)− V1(G)− V1(T )

S1(H)− S1(T )S1(H)
)

= 1
1 + r

(
V1(H)S1(H)− V1(H)S1(T )

S1(H)− S1(T ) − V1(H)S1(H) + V1(T )S1(H)
)

= 1
1 + r

(
V1(T )S1(H)− V1(H)S1(T )

S1(H)− S1(T )

)
and the denominator must be positive, although the numerator needs not be. We need thus
to introduce long and short sales, and we will assume that one can borrow money or lend
money at the same interest rate r. If ∆0 is negative, you sell short, i.e. you sell something
you don’t have.

The quantity that we are really interest in is X0, which is the value of the option.

X0 = 1
1 + r

(
V1(T )S1(H)− V1(H)S1(T )

S1(H)− S1(T )

)
+ S0(V1(H)− V1(T ))

S1(H)− S1(T )

= V1(T )S1(H)− V1(H)S1(T ) + (1 + r)S0(V1(H)− V1(T ))
(1 + r)(S1(H)− S1(T ))

since the denominators are common and thus joining the terms together

= 1
(1 + r)(S1(H)− S1(T ))

[
{(1 + r)S0 − S1(T )}V1(H) + {S1(H)− (1 + r)S0}V1(T )

]
we will see shortly that both ∆0 and V0 cannot be both simultaneously negative, otherwise
X0 would be negative – this case is ruled out. If V1(T ) = V1(H), then the above reduces to
(1 + r)−1. If we consider S1(H) = uS0 and S1(T ) = dS0, then

S1(H)− S1(T ) = S0(u− d)

(1 + r)S0 − S1(T ) = S0(1 + r − d)

S1(H)− (1 + r)S0 = S0(u− (1 + r))

We have then

X0 = 1
1 + r

(
u− (1 + r)
u− d

V1(T ) + 1 + r − d
u− d

V1(H)
)

(1.1)

and p̃ ≡ u−(1+r)
u−d , q̃ = 1+r−d

u−d means that p̃ and q̃ satisfies the requirements probabilities,
they are both positive and sum to one, i.e. q̃ + p̃ = 1. They are what are called risk-
neutral probabilities, which are fundamental to the pricing of derivative security. X0

is the convex combination of the two options and the current value, in the usual sense of
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S0

S1(H)

S1(T )

S2(TH) = udS0

S2(TT ) = d2S0

S2(HT ) = udS0

S2(HH) = u2S0 V2(HH) = (u2S0 −K)+

V2(HH) = (udS0 −K)+

V2(HH) = (udS0 −K)+

V2(TT ) = (d2 −K)+

present discounted values.4

The states of the world, which is the collection of states at a given period in our graph, in
our case is two period and two possible outcomes. We can however very easily extend this
to more periods. The graph for the state space is thus again very simple, but now the state
in period t+ 1 depends on the previous period t. where now

X1(H) = 1
1 + r

(p̃V2(HH) + q̃V2(HT ))

X1(T ) = 1
1 + r

(p̃V2(TH) + q̃V2(TT ))

X0 = 1
1 + r

(p̃X1(H) + q̃X1(T ))

where we ascribe the risk neutral probability, ascribe and discount in order to get what we
need to form the portfolio S0. Since these are risk-neutral probabilities, we have a “pseudo-
independence” structure and we can use the the delta-hedging rule to determine what S1(H)
and S1(T ) are. We abstract of transaction costs in this framework.

In more periods, with n time period, a possible outcome would be e.g. HTTHHHTHHTTT
where the cardinality is 2n for the set of possible outcomes. If nH is the number of H, nT
corresponding and nH + nT = n, then

P (nH , nT ) = p̃nH q̃nT

We can still ascribe the risk-neutral probabilities to the model with associated risk neutral
probabilities here p̃1, q̃2, q̃3, p̃4, p̃5. In the limit, any outcome is probability zero, as n→∞.
This is one example of discontinuity of what one gets, as now every event has mass zero.

4This discounting is perfectly normal.
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Section 2
General Probability Theory

An outcome space could be more general, either discrete or continuous. We done the
outcome space Ω and corresponding outcome (events) ω ∈ Ω.

We need to impose a structure on this space, namely that of a σ-algebra, denoted F the set
of subsets of Ω. The set of all powers, is 2Ω is the power set, that is the set of all subsets of
Ω and in general F ⊆ 2Ω. In order for it to be σ-algebra, we require the following to hold:

1. ∅ ∈ F and Ω ∈ F
2. A ∈ F ⇒ A{ ∈ F
3. If Ai ∈ F , for i = 1, 2, . . . , then

⋃∞
i=1Ai ∈ F

Suppose we consider this in the context of a three period binomial model. We can enumerate
in this simple case Ω as

Ω = {HHH,HHT,HTH,HTT, THH, THT, TTH, TTT}

and all collections of the above, the triples correspond to Ω. Suppose we want to consider
the set of outcomes where the first two periods, are known. The proper subsets of Ω would
then be the collection

{{HHH,HHT}, {HTH,HTT}, {THH,THT}, {TTH, TTT}}

This gives thus a notion of available information. Denote the pair (Ω,F), the measurable
space. We will be interested mostly in probability measures P, where P : F → [0, 1] is the
underlying mapping. We will have the usual constraints, the Kolmogorov axioms, with

1. P (∅) = 0,P (Ω) = 1
2. If A1, . . . , Ai disjoint (Ai ∩Aj = ∅), whenever i 6= j, then

P
( ∞⊔
i=1

Ai

)
=

n∑
i=1

P (Ai)

This implies that A ∈ F , then A{ ∈ F and as such P (A) = 1− P
(
A{
)
as A ∪A{ = Ω.

The triple (Ω,F ,P) is termed probability space.

Denote by X a random variable. X is a measurable mapping X : Ω→ (S,S), where usually
S = R or an appropriate space for vectors, say Rn+. We need to be able to define a a
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σ-algebra on it. If X : (Ω,F)→ (S,S), then if B ∈ S ⇒ X−1(B) ∈ F . The set

X−1(B) = {ω ∈ Ω | X(ω) ∈ B}

We have µX(B) = P
(
X−1(B)

)
where µX is the measure induced on S.

The canonical σ-algebra on R is the Borel σ-algebra, denoted by B that is the smallest
σ-algebra that contains [a, b]. We generate this way (a, b) open intervals, or rays (a,∞), etc.
Indeed, if we consider [

a+ 1
n
, b+ 1

n

]
= Bn ∀ n ∈ N

the points a, b are not in the interval. One can construct non-measurable sets, using the
axiom of choice and construct a set that is not Borel set. We will be typically be interested
in the pair (R,B).

In general, we are interested in CDFs of the real valued random variables, the so-called
cumulative distribution function, which we denote FX . This FX is a function mapping
R→ [0, 1], and FX(x) = P (X ≤ x) = µX(X ≤ x) = µX((−∞, x]).

Example 2.1
If Ω = {1, 2, 3, . . . , N} is the sample space corresponding to the number of people in class-
room, then F = 2Ω, X(i) = i and P (A) = n

N if A = {n points} and P (i) = 1
N and

X(i) = i.

Definition 2.1 (Expectation)
We define the expectation of a random variable to be

E (X) =
N∑
i=1

P (i)X(i) =
∑
ω∈Ω

X(ω)P (ω)

in the discrete setting. More generally, we want

E (X) =
∫

Ω
X(ω) dP (ω)

If Ω = R and X has a density, we could write∫ ∞
−∞

X(x)fX(x) dx =
∫ ∞
−∞

X(x) dFXx

the Stieltjes integral. Here X(x) is as usual the integrand and dFX(x)the integrator.
Provided the derivative exist, fX(x) = F ′X(x). We can add another condition, that of
bounded variation. Since FX(x) is bounded, we can always use this as a candidate integrator.
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Consider the simple case where X(x) ∼ U(0, 1). Then, the Riemann integral is defined as
follow,

∫ 1
0 X(x) dx is defined as follows. Let 0 = t0 < t1 < · · · < tn−1 < tn = 1, a partition

of the unit interval where ti = i/n with Ii = [ti−1, ti]

The corresponding lower Riemann sum is 1
n

∑n
i=1 infx∈Ii X(x) → limn→∞

1
n

∑n
i=1X(x)

provided it exist and the corresponding upper Riemann sum where inf is replaced with sup .
If both exist and the limit coincide, then the limit is the Riemann sum.

We now construct a lower sum
∑n
i=1 infx∈Ii X(x)(FX(ti) − FX(ti−1)) and analogous to

the Riemann sum, this defines in the limit with both lower and upper Riemann-Stieltjes
sums. Then, if x1, . . . , xN is a set of values for a discrete random variable with associated
probability p1, . . . , pN the the corresponding FX(x) =

∑
Xi≤x pi =

∑N
i=1 I (Xi ≤ x)pi where

I (·) is the indicator function. If Xi = X(xi), what we want to get is
∑
iXipi.

For an interval a < xi < b, ∀ i, then FX is a step function and notice that FX is continuous at
the points of discontinuity ofX. If ε, η > 0 arbitrarily small, then F (Xi+ε)−F (Xi−η) = pi.

Recall that we wanted to define expectation by
∫

ΩX(ω) dP (ω). We can answer two problems
in one step. Consider the function g(x) for x ∈ [0, 1], which is defined as

g(x) =

1 if x is rational

0 otherwise

and recall that the rationals are countable and are dense in the interval [0, 1]. This function
is not Riemann integrable. For any x ∈ Ii, then infx∈Ii g(x) = 0 and supx∈Ii g(x) = 1.

However, according to Lebesgue theory, we would want to assign the value of zero for the
integral. The Lebesgue measure, countably finite, on (R,B) which denote by µ, µ(a, b) =
|b − a| and µ({a}). Of course, this is not a probability measure as µ(R) = ∞, yet for any
interval the measure is finite. Here µ(Q) = 0, since this is a countable union of points, and
so this is a correct conclusion to draw from this.

The Lebesgue integral considers the partition of the ordinates and look at the corresponding
measure of the interval. The corresponding Lebesgue lower sum is

∑N
i=1 yi−1µ(f−1(yi−1, yi))

for y = f(x) for f measurable. Correspondingly, we have
∑N
i=1 yiµ(f−1(yi−1, yi)) for the

upper sum and as usual, in the limit we define the Lebesgue integral to be this function
provided the two limits agree. In this case, we need only to partition from zero to one.

This allows us to define
∫

ΩX(ω) dP (ω) as
∑N
i=1 yiP

(
X−1(yi−1, yi)

)
.

Remark (Partitions of the Riemann and Lebesgue integral)
We define the sum to be S =

∑n−1
i=0 yiµ(yi < f(x) < yi+1) where µ(·) is the Lebesgue

measure.

Recall that a probability space is the tuple (Ω,F ,P) where F ⊆ 2Ω, the power set, and
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P : F → [0, 1] is a mapping onto the unit interval. Then the random variable (whether real
valued, complex valued, vector or matrix) is said to be F-measurable if for the pair (R,B)
where we want for each B ∈ B, X−1(B) = {ω ∈ Ω|X(ω) ∈ B} ∈ F . Thus, our measure is
µX(B) = P

(
X−1(B)

)
= Pr(X ∈ B).

We are interested in E (X), the expectation of the random variable, defined as being

E (X) =
∫

Ω
X(ω dP (ω) = lim

n→∞

n−1∑
i=0

yiP (X ∈ (yi, yi+1])

where

{ω ∈ Ω : X(ω) ∈ (yi, yi+1]}

For discrete valued random variables, this boils down to E (X) =
∑m
i=1 pixi if xi, i = 1, . . . ,m

is the set of all possible values with associated measure pi.

Assume now that X(ω) is non-negative, wlog, since we can define the above to be X = X+−
X− with the convention that X+ = max{0, X} and X− = max{0,−X}. If E (X+) = ∞
and E (X−) <∞, then we define E (X) :=∞. Now, if E (X+) <∞ and E (X−) =∞, then
we define E (X) := −∞. If both E (X+) <∞,E (X−) <∞, then X is integrable

We have the following proposition:

Proposition 2.2
1. X is integrable if and only if

∫
Ω |X(ω)|dP (ω) <∞. Here |X(ω)| = X+ +X−

2. Linearity:
∫
R(f + g) dµ +

∫
f dµ +

∫
g dµ and as a result E (X + Y ) = E (X) + E (Y )

and
∫
R

(αf) dµ = α
∫
R f dµ and so E (aX + bY ) = aE (X) + bE (Y ).

3. Comparison of X ≤ Y almost surely if P (X ≤ Y ) = 1, then E (X) ≤ E (Y ).

Theorem 2.3 (Jensen’s inequality)
If φ : R→ R is convex, then E (|X|) <∞, then

φ(E (X)) ≤ E (φ(X))

A deterministic function of a random variable is defined with X : Ω→ R and φ(X) : Ω→
R with [φ(X)](ω) = φ(X(ω)) (since the inverse image under φ(X) is trivially measurable).

Convergence of integrals

If we denote φ(X) and Φ(X) respectively the PDF and CDF of the standard Normal random
variable. Scale family If W ∼ N (0, 1) and we take σ > 0, then Z = σW ∼ N (0, σ2). Indeed

Pr(Z ≤ z) = Pr(σW ≤ z) = Pr(W ≤ z/σ) = Φ(z/σ)
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Consider a sequence of functions which shrinks the variance of a N (0, 1) random variable
with corresponding nth element

fn(x) =
√

n

2π exp
(
−nx

2

2

)
the limiting distribution of which is a generalized, the Dirac δ function, δ(x), defined as
δ(x) = I (x = 0) ∫ b

a

f(x)δ(x) dx = f(0)

provided a ≤ 0 ≤ b. We can also consider shifts, namely we have
∫ b
a
f(x)δ(x − c) dx =

f(x) if a ≤ c ≤ b. Since for each n, we have by standard requirements for densities that∫∞
−∞ fn(x) dx = 1, but for x 6= 0, we have limn→∞ fn(x) = 0. However, at x = 0, we have

limn→∞ fn(x) =∞. Thus limn→∞ fn(x) = 0 a.s.

This however imply that

lim
n→∞

∫ ∞
−∞

fn(x) dx = 1 6=
∫ ∞
−∞

(
lim
n→∞

fn(x)
)

dx

We thus need some convergence theorem and regularity criterion for interchanging integral
and limit operator.
Theorem 2.4 (Monotone convergence)
Let {fn} be a monotone sequence of non-negative functions. We impose the condition
fn(x) ≤ fn+1(x) a.e. Then if limn→∞ fn(x) = f(x) a.e. exists, then

lim
n→∞

∫
fn(x) dx =

∫
f(x) dx

Another result is as follow
Theorem 2.5 (Dominated convergence)
If ∃g ≥ 0, with

∫
g(x) dx <∞ and ∀ n, fn(x) ≤ g(x) a.e., then

lim
n→∞

∫
fn(x) dx =

∫
f(x) dx

Theorem 2.6
Let (Ω,F ,P) be a probability space and g : R → R be Borel measurable with E (|g(X)|)
and X : Ω→ R. Then

E (|g(X)|) =
∫
g(X(ω)) dP (ω) =

∫
R
|g(x)|dµX(x).
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If E (|g(X)|) <∞, then

E (g(X)) =
∫
R
g(x) dµX(x)

Proof The technique uses the standard machine. We first prove the result for

1. indicator functions
2. non-negative simple functions
3. non-negative measurable functions
4. arbitrary measurable functions.

and usually, we simply need to invoke linearity, then monotone convergence theorem and
density for L1 functions, and finally appeal to decomposition of functions.

Let

g(x) = IB (x) =

1 if x ∈ B

0 otherwise
then

E (|g(X)|) = E (IB (X)) = 0 · P (IB (X) = 0) + 1 · P (IB (X) = 1)

= P (X ∈ B)

Now consider µX(A) := P
(
X−1(A)

)
= P

(
IB (A)−1

)
, 5. Then

µX(A) = P (ω : X(ω) ∈ A) .

Thus
∫
R |g(x)|dµX(x) = µX(g(X) = 1) = P (X = B).

For the second step, consider g(x) =
∑n
i=1 aiIBi (x) with ai > 0. Then, by linearity of

expectation,

E (g(X)) =
n∑
i=1

aiE (IBi (X)) =
n∑
i=1

aiP (Bi)

For the RHS, using linearity of the integral, we have

n∑
i=1

ai

∫
R

IBi (x) dµX(x) =
n∑
i=1

aiP (Bi)

5Remark that by definition of the induced measure, if Y : ω 7→ g(X(ω)) = IB (X(ω)), then µY (A) =
P (ω : IB (X(ω)) ∈ A)
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For the third step, consider the Borel sets

Bk,n =
{
x : k2−n ≤ g(x) < (k + 1)2−n

}
for k = 0, 1, . . . , 4n − 1.6

Then

gn(x) =
4n−1∑
k=0

k

2n IBk,n (x)

As n increases, then this forms a non-decreasing sequence. As n→∞, then gn(x)→ g(x).
We get the result applying monotone convergence theorem.

For the fourth part, take g = g+−g−. If |g| = g++g− is integrable, then the result follows. �

Suppose we want to have to take expectation of a random variable. We have
∫
R g(x) dµX(x),

and we want to have this for continuous random variables. We have fX(x) and define for
random variables with density to have µX(B) =

∫
B
fX(x) dx. We then would have

E (g(X)) =
∫
R
g(x)f(x) dx

We then define the cumulative distribution FX(x) = µX((−∞, x]), which will be cadlag,
that is continue à droite, limite à gauche. Thus, if we take g(x) = IB (x), then E (g(X)) =
P (X ∈ B). Now

∫
R IB (x)f(x) dx =

∫
B
f(x) dx = µX(B) = P (X ∈ B). Getting the CDF

or the induced measure is equivalent, i.e. having either is enough to get the measure for
intervals, as µX((a, b]) = FX(b)− FX(a) for a ≤ b.

Change of measure

Suppose we want to make a change of measure from P to P̃, thus (Ω,F ,P) → (Ω,F , P̃)
with E (Z) = 1 and Z ≥ 0 a.s. Then, the P̃ measure of A, P̃(A) =

∫
A
Z dP =

∫
Ω IA (Z) dP.

Thus, E (IA (Z)) =
∫

Ω IA (Z) dP. For this to be a valid change, we need that P̃ be a valid
probability measure.

1. P̃(Ω) = E (IΩ (Z)) = E (Z) = 1
2. P̃ (

⊔∞
i=1Ai) =

∑∞
i=1 P̃(Ai); consider

⊔n
i=1Ai := Bn. We may decompose IBn (x) =

6So given n, all values from g(x) ∈ [0, 2n) are covered.
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∑n
i=1 IAi (x) as to get

P̃(Bn) = E (IBn (Z)) =
n∑
i=1

E (IAi (Z)) =
n∑
i=1

P̃(Ai)

and we can apply monotone convergence theorem to get the result.

Given P, P̃ two measures, does there exist a random variable X that satisfies the above
conditions. To make a change of variable in the other direction, we need P̃ be absolutely
continuous with respect to P. That is, if P (A) = 0 ⇒ P̃(A) = 0. If the relation holds
both way, then the measure P, P̃ are equivalent. If this hold, then by the Radon-Nikodym
theorem says that the random variable is given by

Z(ω) = dP̃
dP (ω)

and dP̃ = Z dP where the corresponding Ẽ(X) = E (ZX) .

This concept will allow us to define more generally the concept of a density of P with
respect to P̃. The one we were discussing before was the Radon-Nikodym with respect to
the Lebesgue measure (relaxing the conditions of Z).7

Consider X ∼ N (0, 1) and introduce Y = X + θ for θ ∈ R+. We want to redefine
Y to be standard normal and shift the probability mass to the right. Consider Z =
exp

(
−θX − 1

2θ
2). We want to show that in the P̃ measure, that Y is standard normal.

We need to show that Z ≥ 0 (immediate) and that E (Z) = 1. Indeed,

E (Z) = 1√
2π

∫ ∞
−∞

exp
(
−θx− 1

2θ
2
)

exp
(
−x

2

2

)
dx

= 1√
2π

∫ ∞
−∞

exp
(
−1

2(x+ θ)2
)

dx

Make the change of variable y = x+ θ, we get then

= 1√
2π

∫ ∞
−∞

exp
(
−1

2y
2
)

dy

7For discrete choice model, we may derive maximum likelihood estimation, then we define the likelihood
with a density. The change of measure thus yields a density with mass at points.
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Thus

P̃(Y ∈ A) = Ẽ (IA (Y ))

= E (ZIA (Y ))

= E
(
e−θX−

1
2 θ

2
IA (X + θ)

)
=
∫ ∞
−∞

e−θX−
1
2 θ

2
IA (X + θ)φ(x) dx

= 1√
2π

∫ ∞
−∞

exp
(
−1

2(x+ θ)2
)

IA (X + θ) dx

= 1√
2π

∫ ∞
−∞

e−
1
2y

2
IA (y) dy

= P (A) = P (X ∈ A) .

We say that P̃ is absolutely continuous w.r.t. P if and only if P (A) = 0⇒ P̃(A) = 0.
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Section 3
Information and conditioning

The idea of information is captured formally in this context by the σ-algebra. An infor-
mation set is a description of what is known to agents at a particular point in time.

This can be considered in the case of the binomial asset pricing model, consider splitting
up events depending of the current period, in terms of σ-algebra. We can define F0 to be
the information at time zero, consisting of the trivial σ -algebra (the collection {∅,Ω}) and
for time 1, we have F1 with F0 ⊆ F1 ⊆ F2 · · · with {∅, H••, T••,Ω}. F3 would be the set
of all subsets with all 8 possible outcomes. This increasing sequence of σ-algebra is called a
filtration. This implies that we have information accumulation, with a history.

We have random variables on (Ω,F) or in most cases is (R,B). Most often, we will deal
with call a stochastic process
Definition 3.1 (Stochastic process)
An indexed set of random variables, indexed by time, denoted F(t). For s ≤ t, this imply
a filtration F(s) ⊆ F(t); we denote the stochastic process by X(t).

We say that X(t) is an adapted process to the filtration {F(t)}, i.e. X(t) is F(t)-
measurable.8

If we specify a probability measure, (with possibly same measurable space), (Ω,F ,P),

We define for measurable sets independence.
Definition 3.2 (Independence)
For two events A,B ∈ F , we say A ⊥⊥ B if P (A ∩B) = P (A) P (B) .

If X,Y are random variables and σ(X) is the σ-algebra generated by X, a subalgebra of B,
that is ∀ B ∈ B, X(B) ∈ σ(X)., We can define the product of Borel algebras as (R×R,B×
B), corresponding to rectangles in 2d space, of the form B1×B2 ≡ {(x, y) : x ∈ B1, y ∈ B2}.

We have X ⊥⊥ Y if ∀ BX ∈ σ(X), ∀ B(y) ∈ σ(Y ), then BX ⊥⊥ BY and thus independence
of σ-algebra is G ⊥⊥ H. We can also have X ⊥⊥ G, which simply means σ(X) ⊥⊥ G.

We now are interested in conditioning, e.g. weather, and conditional expectation E (X|G).
Recall that we have X =

∫
ΩX(ω) dP (ω). To say X is F0-measurable. The inverse image

of any Borel set under X must be either the null set or everything, meaning all realizations
are the same, so X(ω) = x. We will want that Y = E (X|G) be a random variable that
is G-measurable; we want ∀ G ∈ G,

∫
G
X(ω) dP (ω) =

∫
G
Y (ω) dP (ω) . This is referred

to as the partial averaging property. The unconditional expectation can be view as the
conditional expectation on F0 (we cannot split Y over G).

8That is, ∀ B ∈ B, {ω : X(tω) ∈ B}
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We can then write Y as a version of conditional expectation of X, that is almost surely.

If X ⊥⊥ Y and f, g : R→ R are measurable functions, then f(X) ⊥⊥ g(Y ). This follows since
σ(f(X)) ⊆ σ(X). Indeed, if we assume B ∈ σ(f(X)), then ∃D ∈ B such that f(X(D)) = B

which implies X(D) = f−1(B) ∈ σ(X).

If we consider E (X|G) and X ⊥⊥ G, then we would expect the former to be equal to E (X),
which has to be G-measurable, but its trivial since this is generating F0. What about partial
averaging? We would like to have ∀ G ∈ G,

∫
G
X dP = E (X)

∫
G

dP = E (X) P (G). We can
write

∫
ΩXI (G) dP = E (XI (G)) = E (X) E (I (G)).

This uses properties of expectations which are described in Theorem 2.2.7. Recall we had
µX(B) = P

(
X−1(B)

)
. For two random variables X,Y , we want

µX,Y (B1 ×B2) = P
(
X−1(B1) ∩ Y −1(B2)

)
= P ({ω : (X(ω), Y (ω)) ∈ C = B1 ×B2})

The joint distribution function is then

FX,Y (x, y) = Pr(X ≤ x and Y ≤ y) = µX,Y ((−∞, x]× (−∞, y]).

The marginal measures, µX , µY on a single copy of the real line by the random vari-
able; then we have µX(B) is the induced measure µX,Y (B × R) and correspondingly,
µY (D) = µX,Y (R × D). We also define a joint density, fX,Y (x, y) such that µX,Y (C) =∫∫
C
fX,Y (x, y) dx dy. We have

FX,Y (x, y) =
∫ x

−∞
dx′
∫ y

−∞
dy′f(x′, y′)

and
∂2FX,Y
∂x∂y

(x, y) = fX,Y (x, y).

If we have independence, then those factorize into a product of marginal or CDFs, i.e.
FX,Y (x, y) = FX(x)FY (y) and fX,Y (x, y) = fX(x)fY (y). We formalize this in the following

Theorem 3.3
Let X,Y be independent random variables. Then if A ∈ σ(X) and B ∈ σ(Y ), A ⊥⊥ B. We
consider the measure induced by both random variables:

µX,Y (A×B) = P ((X(ω) ∈ A) ∩ (Y (ω) ∈ B))

P (X(ω) ∈ A) P (Y (ω) ∈ B)

= µX(A)µY (B)
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Start now with

FX,Y = FX(x)FY (y)

and assume the mixed partials exist, so we have

fX,Y (x, y) = ∂2FX,Y
∂x∂y

(x, y) = fX(x)fY (y)

We define the moment generating function (MGF), MX(u) = E
(
euX

)
provided it exists.

We need to care about the domain of integration; notice that euX can be Taylor-expanded
into

∞∑
n=0

unXn

n!

with 0! = 1, since n! = Γ (n + 1). This series converges for all x ∈ C, thus we can take the
expectation inside and get

∞∑
n=0

un

n! E (Xn)

If ψX(t) = E
(
eitX

)
, then this function always exists,9 giving rise to the characteristic

function, of which log(ψX(t) is the cumulant generating function. Note that ψX(0) = 1.10

The density, provided it exists, is the inverse Fourier transform of the characteristic function,
that is

ψX(t) =
∫ ∞
−∞

f(x)eitx dx

thus the density f(x) = 1
2π
∫∞
−∞ ψX(t)e−itx dt. This means we could also factor the charac-

teristic function, and as such the MGF.

For an arbitrary Borel measurable function h(x, y), we have

E (h(X,Y )) =
∫
h(x, y) dµX×Y (x, y)

and if X ⊥⊥ Y , this measure µX×Y becomes µX(x)µY (y)

=
∫∫

h(x, y) dµX(x) dµY (y)

9Since |eitX | = 1 since eix = cos(x)+ i sin(x) and the absolute value of a complex number of is the square
root of the Euclidean distance – recall that sin2(x) + cos2(x) = 1, the result follows then immediately.

10The cumulants are functions of the centered moments, but they are not the centered moments.
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Proposition 3.4
1. The joint moment generating function is h = euxevy. This means that we also have
factorization of the moment generating function for independent random variables,

E (euxevy) = E
(
eux+vy) = MX,Y (u, v)

and if X ⊥⊥ Y , MX,Y (u, v) = MX(u) ·MY (v).
Proof

E (h(X,Y )) =
∫∫

eux dµX(x)evy dµY (y) =
∫
eux dµX(x)

∫
evy dµY (y)

�

Taking h(x, y) = xy, for independent random variables X ⊥⊥ Y we have

A =
∫∫

xy dµX(x)v dµY (y) =
∫
xdµX(x)

∫
y dµY (y) = E (X) E (Y ) = E (XY )

2. More generally, if X ⊥⊥ G, then E (X | G) = E (X). For all G ⊂ G,∫
G

xdP =
∫
G

E (X) dP = E (X) P (G)

=
∫

Ω
xI (G) dP ⊥⊥= E (X) E (I (G)) = E (X) P (G)

3. If X is G measurable, E (X | G) = X. For all G ∈ G∫
G

x dP =
∫
G

E (X | G) dP ⇒ E (X | G) = X

4. Taking out what is known: Consider E (XY | G); since X is G measurable, X is
known and E (XY | G) = XE (Y | G)
Proof We use the standard machine. In step 1, consider X = I (B) for B ∈ G; then

E (I (B)Y | G) = I (B)E (Y | G)

thus ∫
G

I (B)E (Y | G) dP =
∫
G∩B

E (Y | G) dP =
∫
G∩B

E (Y | G) dP

and so we have ∫
G

I (B)Y dP =
∫
G∩B

Y dP ⇔
∫
G∩B

E (Y | G) dP
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by definition of E (Y | G), since G ∩B ⊂ G. �

Note
Anything which is G measurable can be treated as deterministic.

5. Law of iterated expectation, sometimes referred to as the Tower property. If H ⊆
G ⊆ F , then

E (E (X | G) | H) = E (X | H)

following the principle of more information, less average.
6. Partial averaging: If Y = E (X | G), we claim E (Y | H) = E (X | H). Indeed, let
h ∈ H. Then we want to assess whether

∫
h
xdP ?=

∫
h

E (X | G) dP.
Since H ⊆ G, we have for all g ∈ G that∫

h

E (X | G) dP =
∫
h

x dP

therefore h ⊆ g, ∫
G

E (X | G) dP =
∫
G

xdP

using the definition of E (X | G).
7. If X is G-measurable and Y ⊥⊥ G, then

E (f(X,Y ) | G) = g(x) = EY (f(X,Y )) = EY (f(X,Y ) | G)

which is a deterministic function of X; thus E (f(x, y) | G) = g(X) implies g(X) is G-
measurable.
8. Partial averaging: for all G ∈ G,∫

G

f(x, y) dP =
∫
G

g(x) dP.

Before presenting some properties of the multinormal distribution, we go on with a few
definitions.
Definition 3.5 (Martingale)
Let X(t) be a stochastic process adapted to F(t). X(t) is a martingale if ∀ t ≥ s,

E (X(t) | F(s)) = X(s).

Similarly, if E (X(t) | F(s)) ≥ X(s), we term X(t) a submartingale, while we say that X(t)
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is a supermartingale if E (X(t) | F(s)) ≤ X(s).

An example of example of such is gain over time of a biding game. Then, if the game is fair
(for example a coin toss with gain/loss of 1), then the expected gain in later periods is the
current amount collected.

Recall the binomial asset pricing model: we were able to price derivative securities using
risk-neutral measure; we had risk-neutral probabilities, which were the expected values at
the later time. The value of the asset in this model is thus a martingale.

We have also the following concept, sometimes referred to as a “forgetting property”, that
of
Definition 3.6 (Markov process)
X(t) is Markov for s ≤ t if there exists a measurable function g such that

E (f(X(t)) | F(s)) = g(X(s))

for f arbitrary measurable.

There are distinctions between the two concepts: f is arbitrary in the definition of the
Markov process, while in the definition of martingale, we have the identity function.

Properties of the multinormal Normal distribution

We have Φ(x) the CDF of the Normal distribution and the density is

φ(x) = 1√
2π

exp
(
−x

2

2

)
The normal distribution is a location-scale family, that is the location denotes the expecta-
tion and the scale is the square-root of the variance. If we denote those quantities respec-
tively by µ, σ2, then Φ

(
x−µ
σ

)
is standard Normal.

In the case of the exponential distribution, this is different since changing the scale, we have
CDF 1− e−xI (x ≥ 0), then the location shift would be in PDF form equivalent to e− xλ .

LetW = (W1, . . . ,Wn)> where Wi ∼ N (0, 1) and Wi ⊥⊥Wj . We would say that the vector
W ∼ Nn(0n, In) where in general

[Var (X)]ij = E ((Xi − E (Xi))(Xj − E (Xj)))

Consider Z = AW +E respectively of dimension (m × 1), (m × n), (n × 1) and (m × 1).
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If W is as above, then E (Z) = E and

Var (Z) = Var (AW ) = E
(
AWW>A>

)
= AE

(
WW>

)
A> = AA>

and so Z ∼ Nm(E,AA>). Now, wlog let E (Z) = 0 Now if Z ∼ N (0,Σ) where Σ must be
symmetric and non-negative definitive. Recall that non-negative definite means that for
any (1×n) vector a, we have a> ≥ 0. Indeed, we have a>E

(
XX>

)
a = E

(
a>XX>a

)
=

E
(
(a>X)2).

We then get Σ = AA>, which is usually taken to be lower-triangular or upper-triangular.
One can use the above as a rule at least for the simulation of the multinormal variates.

The density for our independent random variables will be of the form

fW (w) =
n∏
i=1

φ(wi) = (2π)−n2 exp
(
−1

2w
>w

)

If we perform a location transform, we would get (w−µ)>(w−µ) in the expression above.
For scaling, recall in the univariate case we have Φ

(
x−µ
σ

)
gives 1

σφ
(
x−µ
σ

)
. We suppose X

is (n × 1) and Y is a deterministic function of X of the form Yi = yi(X1, . . . , Xn), then
comparing the probabilities over the two, one would get the transformation

fY (y1, . . . , yn) dy1 . . . , dyn = fX(x1, . . . , xn) dx1 . . . , dxn

then we could have dividing through and taking absolute value of the derivative

fY (y1, . . . , yn) = fX(x1, . . . , xn) dx1 . . . , dxn
dy1 . . . , dyn

This leads to the Jacobian, which is a matrix function [of change of variable], with element[
∂(x1, . . . , xn)
∂(y1, . . . , yn)

]
ij

= ∂xi
∂yj

(y1, . . . , yn)

with the Jacobian determinant11

Now if Z = AW +µ, then ∂Z
∂W = A. Provided A is non-singular, that is invertible, we may

write W = A−1(Z − µ). Recall that singularity would imply linear dependence between
the columns of A, so we could express one as a linear combination of other variables; this
would be happen if we had more. We can also take the inverse of the determinant since this
transformation is an homomorphism. Thus det(Σ) = det(A) det(A>) =

(
det(A)2)

11In French, we avoid this frequent confusion, as “Jacobien” is used for determinant (which is masculine),
while matrix is feminine, so is termed “Jacobienne”
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The formula for change of variable boils down to

f(z) = f(w) |detA|−1

Now in our specific case, we get

(2π)−n2 (det(Σ))−
1
2 exp

(
−1

2(z − µ)>(A>)−1A−1(z − µ)
)

where A>−1
A−1 = (AA>)−1 = Σ−1 and if we had this, yields (z − µ)>(A>)−1A−1(z −

µ) ∼ χ2
n.

Consider now the case of the bivariate Normal distribution; we can parametrize the co-
variance matrix in terms of three parameters, namely Var (X) = σ2

1 ,Var (Y ) = σ2
2 and the

Pearson linear correlation ρ = Cor(X,Y ). Recall that

Cor(X,Y ) = Cov (X,Y )√
Var (X) Var (Y )

We have

Σ =
[

σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

]
=
[
σ1 0
0 σ2

]
·

[
1 ρ

1 ρ

]
·

[
σ1 0
0 σ2

]

and correspondingly the inverse gives

Σ−1 = 1
1− ρ2

[
1/σ1 0

0 1/σ2

]
·

[
1 −ρ
1 −ρ

]
·

[
1/σ1 0

0 1/σ2

]

We want to find BB> and suppose that B is lower-triangular; we get[
σ1 0
0 σ2

]
·BB> ·

[
σ1 0
0 σ2

]
= AA>

The procedure is termed Choleski decomposition, or sometimes referred to as the Choleski
decomposition. Let

B =
[
b11 0
b21 b22

]
BB> =

[
b112 b11b21

b11b21 b222 + b221

]

and choosing b11 = 1, then this restriction forces b21 = ρ and b22 =
√

1− ρ2. This leaves
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us with

A =
[
σ1 0
0 σ2

]
·

[
1 0
ρ
√

1− ρ2

]
=
[
σ1 0
ρσ2 σ1

√
1− ρ2

]

In the case of the bivariate Normal distribution with zero mean vector, we have[
Z1

Z2

]
=
[
σ1 0
ρσ2 σ1

√
1− ρ2

]
·

[
W1

W2

]
=
[

σ1W1

σ2(ρW1 + rW2)

]

where r =
√

1− ρ2. From this construction, we can also derive the conditional distribution
of Z2|Z1. Now

E (Z2 | Z1) = σ2E (ρW1 + rW2) |W1) = ρσ2W1 = ρσ2Z1

σ1

and accordingly,12 we have

Var (Z2|Z1) = E
(
Z2 − ρ

σ2Z1

σ1

∣∣∣∣Z1

)
= E

(
(σ2(ρW1 + rW2)− ρσ2W1)2

∣∣∣Z1

)
= E

(
(rσ2W2)2|W1

)
= r2σ2

2 = σ2
2(1− ρ2)

This leads to the conclusion that Z2|Z1 ∼ N (ρσ2Z1/σ1, σ
2
2(1 − ρ2)). Conditioning leads

to using information from the σ-algebra and allows to improve the forecast (reduce the
variance) and change the expectation.

12To remember, think of different currency change
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Section 4
Brownian motion

We will treat the concept of random walk in one dimension. Consider the simple case with

X1 =

+1 with probability 1
2

−1 with probability 1
2

with M0 = 0 and Mt =
∑t
j=1Xj . We could also consider the drunken walk, that is walking

on an integer lattice in Z× Z. We consider increments Mt −Ms for s < t and write

Mt = Ms + (Mt −Ms);

the process is characterized by independent increments, if 0 < t1 < t2 < . . . , tn. Then
Mtn = M0 + (Mt1 −Mt0) + (Mt2 −Mt1) + · · · + (Mtn −Mtn−1). Now Mt is a martingale,
since E (Mt | Fs) = E ((Mt −Ms) +Ms | Fs) = Ms.

The quadratic variation of the process, [M,M ]t =
∑t
j=1(Mj −Mj−1)2 =

∑t
j=1X

2
j = t,

as opposed to the variance; we know Mt =
∑t
j=1Xj ; since the increments are independent,

we have

Var (Mt) =
t∑

j=1
Var (Xj) = t

again, because we have a symmetric random walk with Rademacher distribution. We have
E (Xj) = 0, with Var (Xj) = 1. This is just a coincidence.

Define now the scaled random walk to be

W
(n)
nt = 1√

n

nt∑
j=1

Xj = 1√
n
Mnt

with E
(
W

(n)
nt

)
= 0 and Var

(
W

(n)
nt

)
= tn

n = t. From there, we generalize to continuous

time process; now W (n)(t) = W
(n)
bntc for t ∈ [0, 1]. Again, it is clear that the expectation is

zero, but now the quadratic variation now is

[
W (n),W (n)

]
t

=
bntc∑
j=1

(
1√
n

)2
= bntc

n

We can establish W (n)
t

d−→ N (0, t) as n→∞, known as convergence in distribution or weak
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convergence. That is {Xt}
d−→ F and

lim
t→∞

∫
g(Xt) dPt =

∫
g(x) dF (x)

The result as stated is simply a consequence of the Central Limit Theorem, which we use
here since E (Xt) = 0 and Var (Xt) = σ2, and Xt are IID random variables, then

1√
n

n∑
t=1

Xt
d−→ N (0, σ2)

that is the partial sum converges in law to a scaled Normal distribution. Recall we had
defined

W
(n)
t = 1√

n

bntc∑
j=1

Xj

and since
√
t
−1
W

(n)
t

d−→ N (0, 1). Thus W (n)
t

d−→ N (0, t).

Denote the partial sum by Zn; we are interested in

MZn(u) = E
(
euZn

)
= E

(
exp

(
u

1√
n

n∑
t=1

Xt

))

= E
(

n∏
t=1

exp
(
uXt√
n

))

=
n∏
i=1

E
(

exp
(
uXt√
n

))
and further denote MX(y) = E

(
euXt

)
n∏
i=1

MX

(
u√
n

)
=
(
MX

(
u√
n

))n
In the case of interest to us, the MGF for a single term is 1

2 (eu + e−u) ≡ cosh(u). We then
are left with

1
2n
(
e
u√
n + e

− u√
n

)n
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Take logs, we get

−n log(2) + n log
(
e
u√
n + e

− u√
n

)
= n log

(
1 +

(
e
u√
n + e

− u√
n

2 − 1
))

.

We now want to perform a Taylor series expansion around 1; recall log(1 + x) = x − x2

2 +
x3

3 −
x4

4 . . .. Now we have

x 7→ 1
2

(
e
u√
n + e

− u√
n

)
− 1

and this is

1
2

(
e
u√
n + e

− u√
n

)
− 1 = u2

n
+O

(
n−2)

Now multiply both sides by n to get u2

2 + O
(
n−1). The quantity tends to eu

2
2 as n → ∞;

this corresponds to the MGF of a standard normal. Indeed, if X ∼ N (0, 1), then

MX(y) = E
(
euX

)
= 1√

2π

∫ ∞
−∞

euxe−
x2
2 dx

where now we complete the square; the terms in the exponent are

−x
2

2 + ux = −1
2(x2 − 2ux+ u2) + 1

2u
2

as to get

e
u2
2

√
2π

∫ ∞
−∞

exp
(
−1

2(x− µ)2
)

dx = e
u2
2

We do not need much extra regularity conditions before to finish the proof. We have

ψ(u) =
∞∑
j=1

iuj

j! κi = u2

2n − κ3
u3

3!n 3
2

as to get nψ(u/
√
n) = −u

2

2 +O(n− 1
2 ).13 The cumulants are the same as those of the char-

acteristic function; we need regularity conditions that are κ3 existing, which is restrictive.

What we want is W (n)(t) d−→W (t) for t ∈ [0, 1]. We need a functional CLT, which is beyond
the scope of the course. We will be interested in Cov (W (s),W (t)) for s ≤ t; we approximate

13In the earlier case, the cumulants were that of the symmetric random variable.
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the continuous version with the discrete analog, with

Cov
(
W (n)(s),W (n)(t)

)
= Cov

 1√
n

bnsc∑
j=1

Xj ,
1√
n

bntc∑
j=1

Xj


= 1
n

bnsc∑
j=1

bntc∑
k=1

E (XjXk)

=
bnsc∑
j=1

1

= bnsc
n
→ s

We thus establish Cov (W (s),W (t)) = min(s, t) and we have independent increments. From
the functional CLT, we establish

Cov (W (s),W (t)−W (s)) = E (W (s)W (t))− E
(
W 2(s)

)
= s− s = 0

Conditions for the Brownian motion; see Shreve.

We now look at transition from the Binomial asset pricing model to infinite horizon when
the period between two coin toss goes to zero. Suppose that the events “up” and “down”
with constant probability p, q. Now, we express

u = 1 + σ√
n

d = 1− σ√
n

There are a total of nt = Ht + Tt periods, where Ht is the number of up transitions before
time t and Tt the number of down transition. Let Mt = Ht − Tt corresponding to the gain;
we require Mt to be a martingale.

bntc = Ht + Tt

Mt = Ht − Tt

Ht = 1
2 (bntc+Mt)

Tt = 1
2(bntc −Mt)

so that, using earlier notation,

Mt = 1√
n
Wbntc
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We then have

St = S0u
HtdTt

= S0

(
1 + σ√

n

) 1
2 (bntc+Mt)(

1− σ√
n

) 1
2 (bntc−Mt)

and this is largely intractable. Take logarithm on both sides to get

log(St) = log(S0) + 1
2(bntc+

√
nWbntc log

(
1 + σ√

n

)
+ 1

2(bntc −
√
nWbntc log

(
1− σ√

n

)
which we Taylor expand, setting n− 1

2Wbntc ≡W (t)

= log(S0) + 1
2
(
bntc+

√
nWbntc

)( σ√
n
− σ2

2n + σ3

3n
√
n

+O(n−2)
)

+ 1
2
(
bntc −

√
nWbntc

)(
− σ√

n
− σ2

2n −
σ3

3n
√
n

+O(n−2)
)

= log(S0) + 1
2

[
σt
√
n− σ2t

2 +O(n− 1
2 ) + σWbntc − σt

√
n− σ2t

2 + σWbntc

]
= log(S0)− σ2t

2 + σWn(t) +O(n− 1
2 )

n→∞−−−−→ log(S0)− σ2t

2 + σW (t)

as to get

St = S0 exp
(
σW (t)− σ2t

2

)
which has lognormal distribution. This construction gives rise to geometric Brownian
motion. Clearly, it is positive and is moreover is martingale. We have independent in-
crements which follows since Cov (W (t),W (s)) = min(t, s) and the joint distribution is
multivariate Normal.

At this stage, we will use the σ-algebra (the filtration) such that the Brownian motion at
time t is adapted at time t to F(t). We want to show that for s ≤ t,

E (W (t) | F(s)) ?= W (s)

Starting by splitting into increments, as to get

E (W (s) + (W (t)−W (s)) | F(s)) = W (s)
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To show that the Brownian motion is a Markov process,

E (f(W (t)) | F(s)) ?= g(W (s))

We go about proving this the same way as before namely

E (f(W (t) + (W (t)−W (s))) | F(s))

and by the independence lemma.

g(x) = E (f(x+ (W (t)−W (s))))

which yields the result. We now aim at establishing that

E (S(t) | F(s)) = S0E
(

exp
(
−σ

2t

2

)
exp (σ(W (s) + (W (t)−W (s)))

∣∣∣∣F(s)
)

= S0 exp
(
−σ

2t

2

)
exp(σW (s))E (exp(σ(W (t)−W (s))))

where we established that the inside is N (0, σ2(t− s)); now use MGF

= E
(
exp

(
σ
√
t− sZ

))
= exp

(
σ2(t− s)

2

)
Coming back to the equation E (S(t) | F(s))

= S0 exp
(
−σ

2s

2 + σW (s)
)

= S(s)

since the expression on the left is the definition of the geometric Brownian motion.

All these properties could hold for filtrations larger than the one generated by the Brownian
motion itself. For it to be adaptive to the “arbitrary ” filtration denoted F(t) we require
W (t) is F(t)-measurable. We also need W (t)−W (s) ⊥⊥ F(s).

The next step is to look at the quadratic variation of the process itself. Again, in our case
we will still get the quadratic variation to be non-random (and equal to the variance once
again); we will need to dig harder to get a stochastic process to get something stochastic. We
consider the sum of all variations, either positive or negative, added for the decomposition.
An example of such function is sin(x−1), since it will oscillate infinitely often at the origin.
We may be interested in first-order variation, the oscillation, which is the function f is
continuously differentiable is equal to

∫ b
a
|f ′(t)|dt. It is standard fact of life that Brownian
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motion has infinite point of non-differentiability; almost nowhere differentiable.

Definition 4.1 (Quadratic-variation)
We have for an interval [0, T ] the quadratic variation QV for Π a partition, where the norm
is just the biggest distance between two points in the partition, namely ‖Π‖ = maxni=1(ti −
ti−1).

QV = lim
‖Π‖→0

n∑
i=1

(f(ti)− f(ti−1))2

If f was differentiable, by the mean-value theorem, then

f(ti)− f(ti−1) = (ti − ti−1)f ′(t∗i )

which now yields

n∑
i=1

(ti − ti−1)2(f ′(t∗i ))2 ≤ ‖Π‖
n∑
i=1

(ti − ti−1)(f ′(t∗i ))2 → 0

as ‖Π‖ → 0. Here, the partition yields
∫ T

0 (f ′(t))2 dt and the quadratic variation goes to
zero if the integral is finite.

For a Brownian motion, we have

E
(

n∑
i=1

(W (ti)−W (ti−1)2

)
=

n∑
i=1

(ti − ti−1) = T

and we show that this is deterministic in the limit by showing that it’s variance goes to zero.
Indeed,

Var
(

n∑
i=1

(W (ti)−W (ti−1))2

)
=

n∑
i=1

Var
(
(W (ti)−W (ti−1))2)

= 2
n∑
i=1

(ti − ti−1)

≤ 2‖Π‖
n∑
i=1

(ti − ti−1)→ 0

where W (ti) − W (ti−1) ∼ N (0, ti − ti−1). If Z ∼ N (0, 1) and Var
(
Z2) = E

(
Z4) −

(E
(
Z2))2 = 3−1 = 2; we could get the fourth moment using the formula(2n−1)(2n−3) · · · 1

to recover the moments of higher order (even); all odd moments are zero by symmetry. Or
you could just try brute force, or MGF.
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We say that the Brownian motion accumulates quadratic variation of amount T . The
notation is akin to what we had before, that is [W,W ](T ) = T .

Some notation, we could consider (W (ti)−W (ti−1))2, we could express this as dW (t) dW (t) =
dt using non-rigorous notation; this will be useful for formulas and calculations. We could
similarly look at dtdt = 0. Now, we could also write dW (t) dt, the cross-variation, defined
as

lim
‖Π‖→0

n∑
i=0

(W (ti)−W (ti−1))(ti − ti−1) ≤ ‖Π‖
n∑
i=0

(W (ti)−W (ti−1)) = ‖Π‖W (T )→ 0

so the rule is dW (t) dt = 0. These will be the rules of stochastic calculus.

Volatility of geometric Brownian Motion

We consider now S(t) = S(0) exp
(
σW (t) +

(
α− σ2

2

)
t
)
, where we can interpret α as the

drift. Unless we had a term, the expectation would be equal to S(0) at all time. We would
like an exponential growth for the rate of return of money. We can develop the concept of
log return, which would be

log
(

S(ti)
S(ti−1)

)
= log

(
1 + S(ti)− S(ti−1)

S(ti−1)

)
≈ S(ti)− S(ti−1)

S(ti−1)

using a Taylor-series expansion.

If we look at the squared log returns, that is
∑n
i=1

(
log
(

S(ti)
S(ti−1)

)2
)
; before, we can look at

the asymptotic behavior of

log
(

S(ti)
S(ti−1)

)
= σ(W (ti)−W (ti−1)) +

(
α− σ2

2

)
(ti − ti−1)

so as to get

n∑
i=1

σ2(W (ti)−W (ti−1))2 + 2
(
α− σ2

2

)
(W (ti)−W (ti−1))(ti − ti−1)

+
(
α− σ2

2

)2

(ti − ti−1)2
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→ σ2T where

σ2 = 1
T

lim
n

n∑
i=1

(
log
(

S(ti)
S(ti−1)

))2

termed the realized volatility.

If we are interested in passage to a point m, we have the first-passage time of W (t),

τm = min {t |W (t) = m}

We will look at stopped martingale, denoted W (t ∧ τm), where we stop at τm and so the
argument will be min(t, τm). We make use of the properties of the exponential martingale

1 = E
(

exp
(
σW (t)− σ2t

2

))
= E

(
exp

(
σW (t ∧ τm)− σ2(t ∧ τm)

2

))
since the term in the exponential is a martingale, and is zero at t = 0. By properties of the
martingale, this is zero, so e0 = 1 gives the result. Wlog, suppose m > 0; if τm <∞, then

1 = E
(

I (τm <∞) exp
(
σm− 1

2σ
2τm

))
We can let σ → 0 with monotone convergence. We also take t → 0, then by MCT, we get
in the limit

1 = E (I (τm <∞)) = P (τm <∞) .

We get

1 = E
(

exp
(
σm− 1

2σ
2τm

))
and rearrangement yields E

(
− 1

2σ
2τm

)
= e−σm Now if α = σ2/2, then σ =

√
2α and

E
(
e−ατm

)
= em

√
2α

and E (τm) =∞ as differentiating with respect to α gives

E
(
τme

−ατm
)

= m
√

2
2
√
α
em
√

2α
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This is yet a paradoxical result, moment generating function em
√

2α, P (τm <∞) = 1 yet
E (τm) =∞.

We now study the reflexion principle; suppose we have hitting time τm for m; then the
continuation of the Brownian motion for times t > τm. Suppose we reach w < m at ti; the
path has length m − w and the reflexion principle states that this has same probability as
drift to 2m− w positively reflected around m, i.e.

P (W (t) < w ∧ τm < t) = P (W (t) > 2m− w)

If w = m, then

P (W (t) < m ∧ τm < t) = P (W (t) > m) = P
(
Z >

m√
t

)
= 1− Φ

(
m√
t

)
and similarly for P (W (t) > m ∧ τm < t), so by the law of total probability, we get

P (τm < t) = 2− 2Φ
(
m√
t

)

We will now consider the maximum to date of the Brownian motion 14

Definition 4.2 (Maximum-to-date)
We denote maximum to date M(t) = maxs≤tW (s). For τm ≤ t, then M(t) ≥ w.

What we are interested in is to look at the joint distribution

P (M(t) ≥ m ∧W (t) ≤ w) = P (τm ≤ t ∧W (t) ≤ w)

= P (W (t) ≥ 2m− w)

= 1− Φ
(

2m− w√
t

)

If we have the joint density of M(t),W (t), this would be∫ ∞
m

dy
∫ w

−∞
dxfM(t),W (t)(y, x)

First, differentiate both expressions with respect to m, to get

2√
t
φ

(
2m− w√

t

)
=
∫ w

−∞
fM(t),W (t)(m,x) dx

14This is not appealing for financial economic purposes, since this is allowed to take negative values.
Certainly, the exponential martingale is a more interesting model.
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and further differentiating with respect to w, we get

fM(t),W (t)(m,w) = 2
t

2m− w√
t

φ

(
2m− w√

t

)
since φ′(x) = −xφ(x).

We saw that the Brownian motion is a Markov process, which told us that if we consider
f(W (t)) any function, then we have

E (f(W (t)) | F(s)) = g(W (s)) =
∫ ∞
−∞

f(y)p(τ, x, y) dy

with t− s = τ and p(τ, x, y) is a density function of y for time increment τ from x. Again,
we have g(x) = E (f(x+W (t)−W (s))). We want to express this knowing that W (t) −
W (s) ∼ N (0, t− s). We can write this as

1√
2π(t− s)

∫ ∞
−∞

dzf(x+ z) exp
(
− z2

2(t− s)

)
and so make the change of variable x+ z = y as to get

= 1√
2πτ

∫ ∞
−∞

dyf(y) exp
(
− (y − x)2

2τ

)
and so the termed transition density is then

p(τ, x, y) = 1√
2πτ

exp
(
− (y − x)2

2τ

)
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Section 5
Stochastic calculus

We will consider
∫ τ

0 W (t) dt, but also integrals
∫ T

0 ∆(t) dW (t), but non-differentiability of
W (t) implies we need careful rules. We will show that dW (t) dW (t) = dt and dtdt = 0
and dW (t) dt.

We will be interested in the Itō integral, for
∫ b
a
∆(t) dW (t), i.e. where the integrator is a

Brownian motion. This is simply an example of Stieltjes integral; if we had a differentiable
integrator, we would have ∫

f dg =
∫
fg′ dt

with dg = g′ dt, with those being interpreted as one form differential on a manifold. Inci-
dentally, this allows us to write d(fg) = f dg + g df , we get a formula for integration by
part ∫ b

a

f dg = f(b)g(b)− f(a)g(a)−
∫ b

a

g df

Recall when we had something not integrable, we would consider partitions of the form∑n
i=1 f(ti)(g(ti)− g(ti−1)) and in the limit, we would have no difference using f(t∗i ) where

t∗i is between ti and ti−1, not necessarily a convex combination. If we have a random
integrator and a (potentially random) integrand, as long as we had some properties, such
as bounded quadratic variation.

We will impose the condition that ∆(t) is adapted, that is there is a filtration F(t), and
such that we have independent increments, that is W (t+ s)−W (t) ⊥⊥ F(t). Suppose ∆(t)
is a simple function, or piecewise-constant. For ti−1 ≤ t < ti, ∆(t) = ∆(ti−1). If, in the
ordinary circumstances have a piecewise constant, then∫ b

a

∆(t) dW (t) =
n∑
i=1

∆(ti−1)(W (ti)−W (ti−1)), t0 = a, tn = b

This is then perfectly well-defined and each factor in the product are independent. Since
∆(ti−1) is F(t) measurable since adapted and so is independent of W (ti)−W (ti−1).15

We will use a limiting procedure to develop the Itō integral for arbitrary measurable func-
15There is also another sort of stochastic integral, the Stratonovich integral, with ∆(ti−1), the lower end,

replaced by ∆((ti − ti−1)/2). Since we are interested in the value of a portfolio; since ∆ is the number of
units of assets, with W (ti) the evolution of the price. The Itō integral would thus give the profit in a given
period on the stock market. These integrals were developed for chemical diffusion models.
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tions, not necessarily piecewise constant. We will first look at some properties.

Proposition 5.1 (Properties of the Itō integral)
Wlog, suppose I(t) =

∫ t
0 ∆(S) dW (s)

1. I(t) is a martingale
Proof We want to show E (I(t+ s) | F(t)) = I(t). Clearly, conditional on F(t) we have
measurability. Now let t0 = t and consider

I(t+ s) = I(t) +
nt,s∑
i=1

∆(ti−1)(W (ti)−W (ti−1))

We have E (I(t+ s) | F(t)) is by linearity

E (I(t+ s) | F(t)) = I(t) +
nt,s∑
i=1

E (∆(ti−1)(W (ti)−W (ti−1)) | F(t))

= I(t) +
nt,s∑
i=1

∆(ti−1)E (W (ti)−W (ti−1))

= I(t) +
nt,s∑
i=1

∆(ti−1) (E (W (ti))− E (W (ti−1)))

= I(t)

using the fact that ∆(ti−1) is F(t) measurable and that W (ti) −W (ti−1) is independent
of F(t); then the first term is zero in expectation and we can use linearity. Since the
expectation of W (t) is zero, the result follows. �

2. Itō isometry: E
(
I2(t)

)
= E

(∫ t
0 ∆

2(u) du
)

Proof Because I(t) is defined as a sum, we have

I2(t) =
n∑
i=1

n∑
j=1

∆(ti−1)∆(tj−1) (W (ti)−W (ti−1)) (W (tj)−W (tj−1))
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Take expectation as to get (by linearity)

E
(
I2(t)

)
=

n∑
i=1

n∑
j=1

E (∆(ti−1)∆(tj−1) (W (ti)−W (ti−1)) (W (tj)−W (tj−1)))

=
n∑
i=1

E
(
∆2(ti−1)(W (ti)−W (ti−1))2)

=
n∑
i=1

E
(

E
(
∆2(ti−1) (W (ti)−W (ti−1))2

∣∣∣F(ti−1)
))

=
n∑
i=1

E
(
∆2(ti−1)E

(
(W (ti)−W (ti−1))2

∣∣∣F(ti−1)
))

=
n∑
i=1

E
(
∆2(ti−1)(ti − ti−1)

)
= E

(∫ t

0
∆2(u) du

)
which is some form of Parseval identity. Since the cross terms have cross-terms, one of
those i, j has to come earlier and iterating on F(min(tj−1, ti−1)), one of the terms has
expectation zero and all off-diagonal terms cancel. �

3. I(t) =
∫ t

0 ∆(s) dW (s) and dI(t) = ∆(t) dW (t). The relation

∫ b

a

dI(t) = I(b)− I(a) =
∫ b

a

∆(t) dW (t)

and I(a) is the constant of integration, which is unknown.16 If we have an adapted inte-
grand which is not simple, we can approximate (by density) by simple functions and as
the mesh gets finer, then E

(
(∆(t)−∆n(t))2)→ 0 a.s.−−→ n→∞ for partition with n points

of discontinuity. We will further require E
(∫ T

0 ∆2(t) dt
)
<∞.

4. I(t) is continuous with respect to t;
Proof Obvious; this follows since W (t) is almost surely continuous, since we only care
about points of discontinuity (since otherwise the function is piecewise constant). �

5. I(t) is adapted and F(t)–measurable
6. I(t) is linear
7. The quadratic variation is given by [I, I]t =

∫ t
0 ∆

2(u) du

16We need to fix the level of the function we are integrating, so that when we combine with the differential
we are integrating, we get the correct answer.
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Example 5.1
Consider

∫ T
0 W (t) dW (t); this is adapted. We will calculate this as

n∑
i=1

W (ti−1)(W (ti)−W (ti−1))

Consider instead

1
2

n∑
i=1

(W (ti)−W (ti−1))2

= 1
2

n∑
i=1

W 2(ti) + 1
2

n∑
i=1

W 2(ti−1)−
n∑
i=1

W (ti)W (ti−1)

= 1
2

n∑
i=1

W 2(ti) + 1
2

n−1∑
i=1

W 2(ti)−
n∑
i=1

W (ti)W (ti−1)

= 1
2W

2(T ) +
n−1∑
i=1

W 2(ti)−
n∑
i=1

W (ti−1) (W (ti−1) + [W (ti)−W (ti−1)])

Now we get

n∑
i=1

W (ti−1)(W (ti)−W (ti−1)) = 1
2W

2(T )− 1
2

n∑
i=1

(W (ti)−W (ti−1))2

and so ∫ T

0
W (t) dW (t) = 1

2W
2(T )− 1

2T

where we have as opposed to regular integral, with∫ T

0
g(t) dg(t) = 1

2

∫ T

0
dg2(t) = 1

2g
2(T )

if g(0) = 0. The extra − 1
2T term comes from the non-zero quadratic variation. We have

seen that the Brownian motion accumulated quadratic variation at linear rate. The rules of
stochastic calculus we have are thus

dW (t) dW (t) = dt

dW (t) dt = 0

dtdt = 0
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We have dW 2(t) = 2W (t) dW (t) + term where we want now to think of this term as a
Taylor series expansion of the form for f some function

f(W (t+ s)) = f(W (t)) + f ′(W (t)) dW (t) + 1
2f
′′(W (t)) dW (t) dW (t)

stopping knowing the cubic variation of the Brownian motion is zero. Thus

W 2(t+ s) = W 2(t) + 2W (t) dW (t) + dW (t) dW (t)

and now integrating this from 0 to T , this is

W 2(T )−W 2(0) = 2
∫ T

0
W (t) dW (t) + T

There is something in this intuition that we can formalize.

Theorem 5.2 (Itō-Doeblin formula)
If f(W (t)) is a measurable function and f ∈ C2(R), then

df(W (t)) = f ′(W (t)) dW (t) + 1
2f
′′(W (t)) dt

using the fact dW (t) dW (t) = dt.17 We have furthermore

df(t,W (t)) = ft(t,W (t)) dt+ fw(t,W (t)) dW (t) + 1
2fww(t,W (t)) dt

proved in exactly the same way.

Definition 5.3 (Itō process)
We define the Itō process as

X(t) = X(0) +
∫ t

0
∆(u) dW (u) +

∫ t

0
Θ(u) du

where
∫ t

0 ∆(u) dW (u) ≡ I(t) and
∫ t

0 Θ(u) du ≡ R(t) where Θ(u) is an adapted process, with
regularity conditions

∫ t
0 |Θ(u)|du <∞ and E

(∫ t
0 ∆

2(u) du
)
<∞. The quadratic variation

of X(t) is

[X,X]t =
∫ t

0
∆2(u) du

17This is argued by looking simply at sample path, since all we are interested in using Taylor theorem,
we require differentiability of f ; this corresponds to lims↓0(f(W (t+ s))− f(W (t)))/s.
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To remember this result, we can rewrite it in differential form, as

dX(t) = ∆(t) dW (t) +Θ(t) dt

dX(t) dX(t) = ∆2(t) dt

since R(t) is continuous with respect to t. Let Γ (u) be an adapted stochastic process. We
define ∫ t

0
Γ (u) dX(y) :=

∫ t

0
Γ (u)∆(u) dW (u) +

∫ t

0
Γ (u)Θ(u) du

f(T,X(T )) = f(0, X(0)) +
∫ T

0
[ft(t,X(t)) + fx(t,X(t)) +Θ(t) + 1

2fxx(t,X(t))∆2(t)] dt

+
∫ T

0
fx(t,X(t))∆(t) dW (t)

We would expect that

df(t,X(t)) = ft(t,X(t)) dt+ fx(t,X(t)) dX(t) + 1
2fxx(t,X(t)) dX(t) dX(t)

= ft(t,X(t)) dt+ fx(t,X(t))(∆(t) dW (t) +Θ(t) dt) + 1
2fxx(t,X(t))∆2(t) dt

= (ft + fxΘ(t) + 1
2fxx∆

2(t)) dt+ fx∆(t) dW (t)

which yields the above.

Generalization of the geometric Brownian motion

If we have formally have the differential

dX(t) = σ(t) dW (t) + (α(t)− 1
2σ

2(t)) dt

dX(t) dX(t) = σ2(t) dt

Consider now S(t); we promoted σ(t) and α(t) as adapted process and now have

S(t) = S(0)eX(t)
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and with X(0) = 0, we get

dS(t) = S(0) deX(t)

= S(0)
[
eX(t) dX(t) + 1

2e
X(t) dX(t) dX(t)

]
= S(0)eX(t)

[
σ(t) dW (t) + (α(t)− 1

2σ
2(t)) dt+ 1

2σ
2(t) dt

]
= S(t) [α(t) dt+ σ(t) dW (t)]

and if α(t) was absent, then S(t) being adapted, and σ(t) adapted, we would have a mar-
tingale. The α(t) term corresponds to a drift and σ(t) to the diffusion. In applications,
σ(t) could be an Itō process; these two Brownian motions would drive the process; these
stochastic volatility models are popular because they fit well the data. If we have correlation
between the volatility process σ(t) and the price process dW (t), then we will term the latter
occurrence leverage.

Almost surely positive (at all times) stocks, it has no jumps and is driven by a single
Brownian motion can be modeled with the geometric Brownian motion. The beta is the
correlation between Brownian motions describing the price of the various assets in a market.

When we have our deterministic integrand, we will consider the usual Itō integral which is
just

I(t) =
∫ t

0
∆(s) dW (s)

then I(t) ∼ N (0,
∫ t

0 ∆
2(s) ds). The moments follow from the Itō isometry property and

from usual arguments. To show the distributional claim, we argue by MGF. We have

E (exp(uI(t))) ?= exp
(

1
2u

2
∫ t

0
∆2(s) ds

)
and then

E
(

exp
(
uI(t)− 1

2u
2
∫ t

0
∆2(s) ds

))
= 1

If we can show that X(t) = exp
(
uI(t)− 1

2u
2 ∫ t

0 ∆
2(s) ds

)
is a martingale with respect to t,

then we will get that the expectation is 1 with respect to t. This is always a martingale, but
if ∆ is non-random, then we can take it outside the integral. To show that it is a martingale,
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we use the Itō-Doeblin formula with dI(t) = ∆(t) dW (t):

dX(t) = X(t)
[
−1

2u
2∆2(t) dt+ udI(t) + 1

2u
2 dI(t) dI(t)

]
= X(t)

[
−1

2u
2∆2(t) dt+ u∆(t) dW (t) + 1

2u
2∆2(t) dt

]
= X(t)u∆(t) dW (t)

and ∆(t), X(t) being adapted, W (t) being a martingale, then the result is a martingale.

The next example is actually drawn from finance.

Example 5.2 (Vasicek interest-rate model)
We define

dR(t) = (α− βR(t)) dt+ σ dW (t)

This is (implicitly) the first instance of a stochastic differential equation which we
encounter. We can draw tools from ODE to get a closed-form solution of the SDE. If σ = 0,
we have

dR = (α− βR) dt⇒ dR
α− βR

= dt

using separation of variables and integrate, from R0 to R(t),

− 1
β

log(α− βR)
∣∣∣∣R(t)

R0

= t

and so

log
(
α− βR(t)
α− βR0

)
= −βt

exponentiate the result

(α− βR(t))eβt = (α− βR0)

which implies

R0 = 1
β

(
α− (α− βR)eβt

)
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and now X(t) = (α− βR)eβt. Now

dX = αβ(α− βR)eβt dt− βeβt dR

= βeβt [(α− βR) dt− (α− βR) dt− σ dW (t)]

and

dX = −βeβtσ dW

X(t) = X(0)− βσ
∫ t

0
eβs dW (s)

and now, since we are interested in R(t) and not X(t), we can replace out the terms to get

(α− βR)eβt − (α− βR0) = −βσ
∫ t

0
eβs dW (s)

which we can simplify to, isolating R(t),

R(t) = α

β
− 1
β

(α− βR0)e−βt + σ

∫ t

0
eβ(t−s) dW (s)

which gives as final answer

R(t) = e−βtR0 + α

β
(1− e−βt) +N

(
0, σ2

∫ t

0
e−2βs ds

)
with variance 1

2β
(
1− e−2βt), so

R(t) d−→ N
(
α

β
,

1
2β

)
Example 5.3 (Cox-Ingersoll-Ross interest rate model)
Starting with something which is almost surely positive, this model

dR(t) = (α− βR(t)) dt+ σ
√
R(t) dW (t)

which avoids negative, since the randomness vanishes. Unfortunately, the solution will not
be available in closed form, but we can nevertheless characterize it.

44



We will again look at the evolution eβtR(t) and so the differential

d
(
eβtR(t)

)
= eβt

[
βR(t) dt+ (α− βR(t)) dt+ σ

√
R(t) dW (t)

]
⇒ eβtR(t) = R(0) + α

∫ t

0
eβs ds+ σ

∫ t

0
eβs
√
R(s) dW (s)

since the equation is linear in R(t), the second derivative vanishes. Instead of deriving the
full stochastic solution to the SDE, we will consider the expected value

E
(
eβtR(t)

)
= R(0) + α

β

(
eβt − 1

)
.

and we get

E (R(t)) = R(0)e−βt + α

β

(
1− e−βt

)
which is a steady state. We see that the process forget where it came from at an exponential
rate. We have now for

d
(
e2βtR2(t)

)
= e2βt [2βR2(t) dt+ 2R(t) dR(t) + dR(t) dR(t)

]
= e2βt

[
2βR2(t) dt+ 2R(t)(α− βR) dt+ 2R 3

2σ dW + σ2R dt
]

= e2βt
[
R(t)(2α+ σ2) dt+ 2R 3

2σ dW
]

⇒ e2βtR2(t) = R2(0) + (2α+ σ2)
∫ t

0
e2βsR(s) ds+ 2σ

∫ t

0
e2βsR

3
2 (s) dW (s)

and now taking expectation,

e2βtE
(
R2(t)

)
= R2(0) + (2α+ σ2)

∫ t

0
e2βs

[
R(0)e−βs + α

β

(
1− e−βs

)]
ds

and some painful calculations yields

Var (R(t)) = σ2

β
R(0)

(
e−βt − e−2βt)+ ασ2

2β2

(
1− 2e−βt + e−2βt)

and taking the limit as t→∞,

lim
t→∞

Var (R(t)) = ασ2

2β2
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Black-Scholes-Merton model

We are looking at the price of an asset which satisfies a SDE and the parameters of which
are assumed to be constant, of the form

dS(t) = αS dt+ σS dW (t)

which gives the random time evolution of the asset. We may ask what

d log(S(t)) = 1
S(t) dS(t)− 1

2S2(t)σ
2S2(t) dt

=
(
α− 1

2σ
2
)

dt+ σ dW (t)

is; if we were to exclude the term σ dW (t) for the moment, we see that the solution would
then be S(t) = S(0)e

(
α−σ2

2

)
t. This would yield

d
(
e

(
α−σ2

2

)
t
S

)
= e

(
α−σ2

2

)
t

[
−σ

2

2 S dt+ σS dW
]

= σ2

2 e

(
α−σ2

2

)
t
S dt+ e

(
α−σ2

2

)
t
σS dW

We begin by considering the European call, coming at maturity at time T and the payoff at
maturity is (S(T )−K)+ for strike price K. Let S(t) be the price of the option, distinguished
from the value of a general portfolio generated by holding at each period ∆(t) units of the
underlying asset for unit time t. Consider the differential of the value of the portfolio

dX(t) = ∆(t) dS(t) + r(X(t)−∆(t)S(t)) dt (5.2)

with X0 the starting point. This is making absurd assumptions about the market. We are
interested mostly in the discounted value

de−rtX(t) = −re−rtX(t) dt+ e−rt dX(t)

Let us take (5.2) and substitute it in our geometric Brownian motion model. We then get

dX(t) = ∆αS dt+∆σS dW + rX dt− r∆S dt

= ∆S(α− r) dt+ rX dt+ σ∆S dW
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and now

de−rtX(t) = e−rt [−rX dt+∆S(α− r) dt+ rX dt+ σ∆S dW ]

= e−rt∆S [(α− r) dt+ σ dW ]

a Brownian motion with drift. Suppose some mechanism tells us what the value of the
option is at time t and of the price, c(t, x) such that c(t, S(t)) is the price of the option at
time t conditional on the price at time t for the stock. We want a Markov process property
for such function to exist. We will delay this until the next section.18 We want

e−rtX(t) = e−rtc(t, S(t)) ⇒ d
(
e−rtX(t)

)
= d

(
e−rtc(t, S(t))

)
and we also need the initial value condition be satisfied, that is X(0) = c(0, S(0)). This
then is the principle of no-arbitrage pricing. We will evaluate the right hand side, using
Itō-Doeblin, assuming the function c(t, x) for x some price variable

e−rt∆S [(α− r) dt+ σ dW ]

= e−rt
[
−rc(t, S) dt+ ct dt+ cxS(α dt+ σ dW ) + 1

2cxxS
2σ2 dt

]
= e−rt

[
dt
(
−rc+ ct + 1

2cxxS
2σ2 + αcxS

)
+ σcxS dW

]
which implies that ∆S = ∆cxS and ∆(t) = cx(t, S(t)) which is the delta-hedging rule, an
extension (analogous) to continuous price of the concept introduced for the Binomial asset
pricing model.

We thus want
(α− r)cxs = −rc+ ct + 1

2σ
2S2cxx + αcxS

and canceling common factors, we get

ct + rxcx + 1
2σ

2x2cxx = rc (5.3)

which is a second order PDE (partial differential equation), which is backward parabolic
equation. This equation, (5.3), is referred to as the Black-Scholes-Merton equation. In
order to get a unique solution, we need boundary conditions.19 This has not specified the
call price or the nature of the option (call or put); the only condition we required was the
Markov property. We have c(T, x) = (x−K)+. If we look at the space for (t, x), we have a

18We could have prices being a function of M(t), the maximum and so to get such function c(t, S(t))
would be impossible

19This requires a 1d object in a two dimensional space, the same way we needed some initial condition
and smoothness for an ODE.
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line at T and another at x = 0. c(t, 0) = 0; for our model, recall we had dS = S(α dt+σ dW )
to get ct(t, 0) = rc(t, 0); we have furthermore ct(t, 0) = 0, which is enough conditions for
uniqueness of the PDE solution, given by

c(t, x) = xΦ(d+(T − t, x))−Ke−(T−t)Φ(d−(T − t, x))

where

d±(τ, x) = 1
σ
√
τ

[
log
( x
K

)
+
(
r ± σ2

2

)
τ

]
It is easy to verify for c(t, 0) since x multiplies the first argument and log(x) = −∞ when
x→ 0+. Also, the condition holds for c(T, x); we now have the three partial derivative, the
delta (cx), the theta (ct) and the gamma (or cxx). Now

∂

∂x
d±(τ, x) = 1

σx
√
τ
.

Note that τ here is interpreted as the time to maturity; we get

cx = Φ(d+(τ, x)) + φ(d+(τ, x)) 1
σ
√
τ
−Ke−rτφ(d−(τ, x)) 1

σx
√
τ

= Φ(d+(τ, x)) > 0.

SOMETHING WRONG IN THE ABOVE

It will turn out theta is positive and gamma is negative. See Figure 4.5.1 on p.161.

The portfolio is such that ∆ = cx and this is termed delta-neutral. We also say the port-
folio, which has convex shape, that gives it the terminology long-gamma; it is profitable
in times of high stock volatility. The explanation gives intuition about why the PDE might
work, economically speaking, for the case of interest.

We will now look at European put option, recall call was to buy the stock at a strike price,
while the put is the other way around and to sell at the strike price (K−S(T ))+. This leads
to put-call parity. We introduce a forward contract S(T )−K; it pays off if the strike
price is high then the market price. We use this as intermediate to relate put and call. For
arbitrary K, we can relate it to

x−K = (x−K)+ − (K − x)+

which is long one call and short one put. We can thus get the value of the put as a function
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of the value of the call and the forward contract. The answer is then

f(t, x) = x− e−r(T−t)K

where again τ = T − t is the time to maturity. We have S(0) is one unit of the asset.
One gets S(0) − e−rTK, the latter has to be borrowed on the money market to buy one
unit of the asset. What is the hedging portfolio then worth? In the money market, we
have −K and one unit of the asset, worth S(T ) at maturity; this yields a static edge.
f(t, x) = c(t, x)− p(t, x). The two, put and call, do not vary independently.

This needs not be confounded with the forward price, the price paid now to get later
delivery, e−rτS(t). This is used for commodities, for example with airlines and fuel; a lot of
companies went bankrupt during the oil price shock.

Multivariate Stochastic Calculus

Suppose we start with d independent and identical Brownian motions, We denote

W (t) = [W1(t) · · ·Wd(t)]>

for this d-dimensional Brownian motion adapted to a filtration F(t).We will want to discuss
the possibility of correlated Brownian motion. Further extensions to the rules are:

dWi(t) dWi(t) = dt, dWi(t) dt = 0 dtdt = 0 dWi(t) dWj(t) = 0

for i 6= j. This means the cross-quadratic variation [Wi,Wj ](t) = 0. We thus want to show
this to consider a sum over a partition

n∑
k=1

(Wi(tk)−Wi(tk−1))(Wj(tk)−Wj(tk−1))
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and all increments are independent with mean zero, therefore for any partition are zero. We
can reasonably claim then that the expectation is zero, for partition. We now want

E
(

n∑
k=1

n∑
l=1

(Wi(tk)−Wi(tk−1))(Wi(tl)−Wi(tl−1))(Wj(tk)−Wj(tk−1))(Wj(tl)−Wj(tl−1))
)

=
n∑
k=1

E
(

((Wi(tk)−Wi(tk−1))2 ((Wj(tk)−Wj(tk−1))2
)

=
n∑
k=1

(tk − tk−1)2

≤ ‖Π‖
n∑
k=1

(tk − tk−1)→ 0

et cetera. We now give a generalization of Itō formula for more than two processes, but we
will consider for now the simple case for two process

X(t) = X(0) +
∫ t

0
Θ1(s) ds+

∫ t

0
σ11(s) dW1(s) +

∫ t

0
σ12(s) dW2(s)

Y (T ) = Y (0) +
∫ t

0
Θ2(s) ds+

∫ t

0
σ21(s) dW1(s) +

∫ t

0
σ22(s) dW2(s)

and in differential notation

dX(t) = Θ1(t) dt+ σ11(t) dW )1(t) + σ12(t) dW2(t)

dY (t) = Θ2(t) + σ21(t) dW1(t) + σ22(t) dW2(t).

Theorem 5.4 (Itō-Doeblin formula in two variables)
Consider a function f(t,X(t), Y (t)) with fxx, fyy, fyx = fxy and ft all exist. Then

df(t,X(t), Y (t)) = ft dt+ fx dX(t) + fy dY (t)

+ 1
2fxx dX(t) dX(t) + 1

2fyy dY (t) dY (t) + fxy dX(t) dY (t)

where

dX(t) dX(t) = (σ2
11(t) + σ2

12(t)) dt

dY (t) dY (t) = (σ2
21(t) + σ2

22(t)) dt

dX(t) dY (t) = (σ11σ21 + σ12σ22) dt
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This gives an interesting corollary, taking f(t, x, y) = xy. By the previous theorem, taking
the corresponding derivatives, this is then
Corollary 5.5 (Itō product rule)

d(X(t)Y (t)) = Y (t) dX(t) +X(t) dY (t) + dX(t) dY (t)

Recognizing Brownian Motion

This will be used when we will change measure to get a risk-neutral measure, and using it
and its properties will give the solution of the Black-Scholes-Merton PDE. Thus a charac-
terization of the Brownian motion will be necessary in the upcoming chapter.
Theorem 5.6 (Lévy)
LetM(t) be a process which is F(t) measurable and is a martingale relative to the filtration
F(t), t ≥ 0, such that E (M(t+ s) | F(t)) = M(t). If furthermore M(0) = 0,M(t) should
have almost surely continuous path and its quadratic variation accumulated at rate t, i.e.
[M,M ](t) = t. Then M(t) is a Brownian motion.

Note here we do not need to check Gaussianity and it has the correct covariance structure;
the last part is easy from the martingale property and the quadratic variation. Remark
that the Itō-Doeblin formula does not depend on the Normality; we use Taylor theorem
to expand a function and having done so looked at the resulting quadratic variation. The
above is thus enough to use Itō-Doeblin formula. We look again at the moment generating
function, being interested in euM(t)− 1

2u
2t. The fact that this function is a martingale follows

from the quadratic variation. Now define f(t,M) = euM−
1
2u

2t, so that by Itō-Doeblin
formula, we get

df(t,M) = euM−
1
2u

2t

[
−u

2

2 dt+ udM + 1
2u

2 dt
]

= euM−
1
2u

2tudM

and when we integrate this up, we get a martingale whose value at zero is 1, and so this
establishes the Normality assumption. We can extend this result to more than one dimen-
sion:
Theorem 5.7 (Lévy, two dimensions)
Let W1(t) and W2(t), t ≥ 0 be martingales adapted to the filtration F(t). Assume that
Wi(0)=0, Wi(t) has continuous paths and [Wi,Wi](t) = t, ∀ t ≥ 0, i = 1, 2. If in addition
[W1,W2](t) = 0 for all t ≥ 0 thenW1(t) andW2(t) are independent Brownian motions.

We need to establish the full covariance structure.
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The first application is to correlated stock prices. The model considered in Shreve is

dS1(t)
S1(t) = α1 dt+ σ1 dW (t), dS2(t)

S2(t) = α2 dt+ σ2 [ρdW1(t) + r dW2(t)]

the SDE used in Black-Scholes-Merton, and one using correlation Brownian motions, with
r =

√
1− ρ2 as to get ρ2 + r2 = 1. We have

(ρdW1 + r dW2)(ρdW1 + r dW2) = ρ2 dt+ r2 dt

since the cross-term by assumption, using Itō-Doeblin formula, are zero. We could then
express [ρ dW1(t) + r dW2(t)] = dW3(t). Thus

dW1 dW3 = dW1(ρ dW1 + r dW2) = ρ dt

In the next chapter, all of these will be time-dependent, so as to get generalized geometric
Brownian motions.

Brownian bridge

Definition 5.8 (Brownian bridge)
A Brownian bridge is a Gaussian stochastic process denoted B and characterized by the
conditions

◦ B(0) = B(1) = 0, zero at the endpoints.
◦ Cov (B(t), B(s)) = s(1 − t) for s ≤ t; notice in passing the variance is lower than the
one from Brownian motion W (t).

One can easily build a Brownian bridge from a standard Brownian motion, B(t) = W (t)−
tW (1). We could compute as E (B(t)) = 0 that

Cov (B(t), B(s)) = E (B(t)B(s))

= E ((W (t)− tW (1))(W (s)− sW (1)))

= s− sE (W (t)W (1))− tE (W (s)W (1)) + tsE (W (1)W (1))

= s− st = s(1− t)

Now, we have B(t) and W (1) are independent; from the multinormality of W (t) and by
standard computations

Cov (B(t),W (1)) = E ((W (t)− tW (1))W (1)) = t− t = 0

52



What is the interest of this Brownian bridge. Well, we can define an empirical process,
which will have a Brownian bridge as asymptotic distribution. Indeed, start from an IID
sample Xi, i = 1, . . . , n and consider the empirical distribution function (EDF) of the sample
defined to be

F̂ (x) = 1
n

n∑
i=1

I (Xi ≤ x) a.s.−−→ E (I (X ≤ x)) = P (X ≤ x) = F (x)

holds except at points of discontinuity of F . This result is sometimes referred to in the
literature as the fundamental theorem of statistics and establishes consistency via the strong
law of large numbers. If we consider the uniform distribution on the unit interval, with CDF
given by

F (x) =


0 if x ≤ 0

x if 0 ≤ x ≤ 1

1 if x ≥ 1

We have n 1
2 (F̂ (x)− F (x))→ B(x) for x ∈ [0, 1]. Write

F̂ (x)− F (x) = 1
n

n∑
i=1

(I (Xi ≤ x)− F (x)) .

Consider as usual 0 ≤ s ≤ t < 1, as

E
(

(F̂ (t)− F (t))(F̂ (s)− F (s))
)

= 1
n2

n∑
i=1

n∑
j=1

E ((I (Xi ≤ t)− F (t))(I (Xj ≤ s)− F (s)))

= 1
n2

n∑
i=1

E ((I (Xi ≤ t)− t)(I (Xi ≤ s)− s))

= 1
n2

n∑
i=1

(s− st− st+ st)

= 1
n
s(1− t)

which yields correct covariance structure. If we go back to Xi and use the probability
integral transform, then F (Xi) ∼ U(0, 1) provided F is continuous. We can extend the
result for continuous random variables and assert that

√
n(F̂ (x)− F (x))→ B(F (x))
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The left hand side is the empirical process.

Other properties of the Brownian bridge: we have

(1− t)W
(

t

1− t

)
= B(t)

and it is only a matter of determining appropriate constants, since W ranges in [0,∞] while
B(t) has support t ∈ [0, 1]; to get covariance. We can invert this relation, set t

1−t = s so
t = s

1+s and (1− t) = (1− s)−1; thus

W (s) = (1 + s)B
(

s

1 + s

)
What now about simulation? If we were interested in a finite set of values of t, we could
use Cramer-Wold device, otherwise we need to use the Functional central limit theorem, as
to get

√
n(F̂ (t)− t) d−→ B(t)

one can show that it is impossible to get convergence in probability. If instead of looking
at the whole stochastic process, we looked at some functional of it, we can use the result to
get convergence in probability.

We can simulate one sample path of the Brownian bridge, and simulate longer and longer
paths. Consider a Brownian motion, starting at zero and ending atW (1), known to be Nor-
mal, and interpolate linearly. Then, take distribution at 1

2 and use conditional distribution
and multinormality. We know [

W
( 1

2
)

W (1)

]
∼ N

(
0,
(

1
2

1
2

1
2 1

))

ρσ1σ2 = 1
2 , σ1 = ρ = 1√

2
, σ2 = 1

as to get W2 | W1 ∼ N ( 1
2W (1), 1

4 ) since E (W2 |W1) = ρσxy/σy and similarly for the
variance. We linearly interpolate and fill, conditioning successively for points between the
different dyadic expansions. Note that the variance decreases as powers of two. This is
referred to as infill asymptotics or cts-record.

Another property, dating back from fractals, of the Brownian motion is that it is self-
similar. We could look at stretched interval, and zooming in we get exactly same behavior.
This procedure would allow to get the asymptotic distribution of say the augmented Dickey-
Fuller statistic.
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Remark
If we consider Brownian motion W (t) | W (1) = 0, we get the covariance structure of the
Brownian bridge

We had found earlier a joint distribution for the pair M(t),W (t), given by

fM,W (m,w, t) = 2(2m− w)
t
√

2πt
exp

(
− (2m− w)2

2t

)
fM (m, t |W (t) = w) = 2(2m− w)

t
exp

(
−2m(m− 2)

t

)
Proposition 5.9 (Kolmogorov-Smirnov test)
This is a measure of goodness of fit, F̂ (x)− F (x), and look at

sup
x∈[0,1]

√
n(F̂ (x)− F (x))

or correspondingly

sup
t∈[0,1]

B(t)

which is the Kolmogorov-Smirnov test statistic. We want to find the asymptotic distribution
of this. Write now

fM (m, 1 |W (1) = 0) = 4m exp(−2m2)

for m ≥ 0, we can integrate to get∫ ∞
0

fm(m, 1 |W (1) = 0) dm =
∫ ∞

0
− d

dm exp(−2m2) = 1

so as to verify this is a well-define density on [0,∞) interval. The CDF is F (m) = 1−e−2m2 ,
the distribution of the supremum of the KS for a one-sided test. For the two-sided test,
however, if we look supt∈[0,1] |B(t)|, one gets

F (m) = 1− 2
∞∑
k=1

(−1)k−1e−2k2m2
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Section 6
Risk-Neutral measure

We will cover in this section the fundamental theorem of asset pricing; if a risk-measure
exists, we can always edge a security (replicate the payoff of the derivative securities using
assets). The other theorem says that arbitrage can still be possible even if we edge all
securities; we need uniqueness of the risk-neutral measure to guarantee no-arbitrage. We
then lead to Girsanov’s theorem.

Recall the Radon-Nikodym theorem, which deals with two probability measure, P, P̃ where
p̃ is absolutely continuous under p, i.e. P (A) = 0⇒ P̃(A) = 0. If the other inclusion holds,
we say the measures are equivalent. We then have the existence of a measurable function
Z = dp̃

dP , or dP̃ = Z dP. If Z is strictly positive, then we have

1
Z

= dP
dP̃

dP = 1
Z

dP̃.

We also have

1 =
∫

Ω
dP̃ =

∫
Ω
Z dP ⇒ E (Z) = 1, Ẽ

(
1
Z

)
= 1

If X P∼ N (0, 1), then Z = exp
(
−θX − 1

2X
2), and Y = X + θ, then Y P̃∼ N (0, 1). This was

for a single random variable; we want to extend this to a stochastic process.

Suppose we have a function Z = Z(1) and a filtration F(t); now Z(t) = E (Z | F(t)). We
want Z to be F(1)-measurable. For s ≤ t, then

E (Z(t) | F(s)) = E (E (Z | F(t)) | F(s)) = E (Z | F(s)) = Z(s)

using the definition of Z and the tower property. Recall Ẽ(Y ) =
∫

Ω Y dP̃ =
∫

Ω ZY dP.

Lemma 6.1
Fix t and let Y be F(t) measurable. Then Ẽ(Y ) = E (Y Z(t)).

Proof

Ẽ(Y ) = E (Y Z) = E (Y E (Z | F(t))) = E (Y Z(t))

using iterated expectations and “taking out what is known”. �
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Lemma 6.2
Fix s ≤ t let Y be F(t) measurable. Then

Ẽ(Y | F(s)) = 1
Z(s)E (Y Z(t) | F(s))

Proof We need measurability and the above Ẽ partial averaging property. Measurability
for F(s) is directly satisfied; we then have to show that for A ∈ F(s),∫

Ω
IA (ω)ZY dP =

∫
A

Y Z dP̃

?=
∫
A

Ẽ(Y | F(s)) dP̃

=
∫
A

1
Z(s)E (Y Z(t) | F(s)) dP̃

=
∫

Ω

IA (ω)
Z(s) E (Y Z(t) | F(s)) dP̃

= Ẽ
(

IA (ω)
Z(s) E (Y Z(T ) | F(s))

)
= E

(
IA (ω)
Z(s) Z(s)E (Y Z(t) | F(s))

)
= E (E (IA (ω)Y Z(t) | F(s)))

= E (IA (ω)Y Z(t))

The first result follows from taking F(1) since Z(0) = 1.

Theorem 6.3 (Girsanov, 1-dimension)
Let W (t) be a Brownian motion on (Ω,F ,P) and F(t) be a filtration for W (t). Let Θ(t) be
an adapted process to F(t) and define20

Z(t) = exp
(
−
∫ t

0
Θ(u) dW (u)− 1

2

∫ t

0
Θ2(u) du

)
W̃ (t) = W (t) +

∫ t

0
Θ(u) du

Assume Θ(t) is square-integrable. We have E (Z) = 1 and under the probability measure P̃,
W̃ (t) is a Brownian motion.

Looking at differential notation, we establish from definition the martingale property. Let
20Analogous to Z = exp(−θX − 1

2 θ
2) and Y = X + θ
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X(t) be the argument in the exponent:

dZ(t) = Z(t) dX(t) + 1
2 dX(t) dX(t)

dX(t) = −Θ(t) dW (t)− 1
2Θ

2(t) dt

dX(t) dX(t) = Θ2(t) dt

so we can rewrite

dZ(t) = Z(t)
(
−Θ dW − 1

2Θ
2(t) dt+ 1

2Θ
2(t) dt

)
= −Z(t)Θ(t) dW (t)

and so is a martingale, we get the result for E (Z(1) | F(t)) = E (Z(t)). For Lévy theorem to
apply, we need accumulation of quadratic variation at time t, since W (t) is continuous and
the integral is continuous as a function of the limit of integration, W̃ (t) is also continuous.
We want

Ẽ(W̃ (t) | F(s)) = W̃ (s) (6.4)

Clearly, W̃ (t) is F(t) measurable since Θ(t) is adapted and W (t) is F(t) measurable. By
the previous lemma, we have (6.4) equal to

= 1
Z(s)E

(
W̃ (t)Z(t) | F(s)

)
= E

(
W +

∫ t

0
Θ(u) duZ(t)

Z(s)

∣∣∣∣ F(s)
)

?= W (s) +
∫ s

0
Θ(u) du

so it suffices to show that the term W̃ (t)Z(t) is a regular martingale with respect to P.
Using Itō product rule, we have

d(W̃ (t)Z(t)) = W̃ (t) dZ(t) + Z(t) dW̃ (t) + dZ(t) dW̃ (t)

and recall that

dW̃ = dW +Θ dt dZ = −ZΘ dW

and we then get

−W̃ (t)Z(t)Θ(t) dW (t) + Z( dW (t) +Θ(t) dt)− Z(t)Θ(t) dt
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and so this establishes the martingale property. The quadratic variation has nothing
to do with the probability measure, so it is trivial to establish, and dW̃ (t) dW̃ (t) =
dW (t) dW (t) = dt. �

Example 6.1
We can apply this to the geometric Brownian motion of the form

dS(t) = α(t)S(t) dt+ σ(t)S(t) dW (t)

for a stock price. We introduce the discounted version, the discount process as

D(t) = exp
(
−
∫ t

0
R(s) ds

)
where R(s) is though of as the instantaneous interest rate (thus D(t) is continuous dis-
counting with time varying interest rate). Notice that D(t) has zero quadratic variation;
the differential dD(t) is

dD(t) = −D(t)R(t) dt

What we are interested in is d(DS); using Itō product rule, this is

d(DS) = D dS +D dD + dS dD

= α(t)D(t)S(t) dt+ σ(t)D(t)S(t) dW (t)−R(t)D(t)S(t) dt

= D(t)S(t)((α(t)−R(t)) dt+ σ dW (t))

= σDS

(
α−R
σ

dt+ dW
)

≡ σD(t)S(t) dW̃ (t)

most of the time, we expect α − R to be positive, so that the return be greater than the
standard return on the money market. Obviously, since the quantities is random, nothing
could prevent but the average return should be greater.

We can apply Girsanov theorem on the latter expression: recall we have dS = Θ dt+ dW
and change of measure W̃ = W +Θ with associated differential dW̃ = dW +Θ dt. In our
example, we set Θ = α−R

σ where we choose wlog σ > 0; here Θ is termed market price of
risk.

We are going to look at a portfolio; denote by X(t) the value of the portfolio at any time and
the balance from the money market by ∆(t) (the investment in the risky asset); ∆(t)S(t) is
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then the value in the asset. Then

dX(t) = ∆(t) dS(t) +R(t)(X(t)−∆(t)S(t)) dt

What we will be interested in is once again d(D(t)X(t)), using the product rule and noticing
dD(t) dX(t) = 0, we have

d(D(t)X(t)) = D(t) dX(t) +X(t) dD(t)

= D∆dS +DR(X −∆S) dt−DRX dt

= αD∆S dt+ σD∆S dW −D∆RS dt

= D∆S((α−R) dt+ σ dW )

= ∆(t) d(D(t)S(t))

Suppose we have some derivative security V (T ) and we want to edge it; we need to determine
X(t), ∆(t) for the hedging portfolio. In order to avoid arbitrage we want V (t) = X(t); we
know that under the risk neutral measure , anything involving dW̃ (t) is a martingale. We
want thus

Ẽ(D(T )V (T )) = V (0) = X(0)

whatever the value of ∆(t) might be. We use the tilde-martingale property to get

D(t)V (t) = Ẽ(D(T )V (T ) | F(t))

We consider an European call, so V (T ) = (S(T ) − K)+.21 Let us now derive the Black-
Scholes-Merton equation:

Recall D(t) = exp
(
−
∫ t

0 R(s) ds
)
. We can write

V (t) = Ẽ
(
D(T )
D(t) V (T )

∣∣∣∣F(t)
)

= Ẽ
(

exp
(
−
∫ T

t

R(s) ds
)

(S(T )−K)+

∣∣∣∣∣ F(t)
)

21An American option can be exercised at any time between 0 and T included; this is the most complicated
to deal with mathematically, at least for the American put.

60



Remember what we have

dS(t) = RS dt+ σS dW̃

S(t) = S0 exp
[∫ t

0
σ(s) dW̃ (s) +

∫ t

0
(R(s)− 1

2σ
2(s) ds

]
so that

S(T )
S(t) = exp

(∫ T

t

σ(s) dW̃ (s) +
∫ T

t

(
R(s)− 1

2σ
2(s)

)
ds
)

= exp
(
σ(W̃ (T )− W̃ (t)) +

(
τ − 1

2σ
2
)

(T − t)
)

The earlier tilde-expectation may thus be written as

Ẽ
(
e−r(T−t)

(
erτS(t)e(r−

1
2σ

2)(T−t) exp
(
σ(W̃ (T )− W̃ (t))

)
−K

)
+

∣∣∣∣ F(t)
)

= Ẽ
((

erτS(t)e−σ
2

2 (T−t)eσ(W̃ (T )−W̃ (t)) −K
)

+

∣∣∣∣ F(t)
)

= Ẽ
((

erτxe−
σ2τ

2 eσN (0,τ) −K
)

+

)
= E

((
erτxe−

σ2τ
2 eσN (0,τ) −K

)
+

)
= E

((
erτxe−

σ2τ
2 eσ

√
τY −K

)
+

)
using the independence lemma; we have thus demonstrated the existence of the function
c(t, x) :=

(
erτxe−

σ2τ
2 eσ

√
τY −K

)
+
.22 Further denote

Y = W̃ (T )− W̃ (t)√
τ

∼ N (0, 1)

and before using the density of the standard Normal distribution, we want to determine the
22K here is not discounted by convention, while the payoff is.
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conditions for which this is positive,23 that is

K ≤ xe
(
r−σ2

2

)
τ
eσ
√
τY ≥ K

⇔ Y ≥ 1
σ
√
τ

log
(
K

x
+ 1
σ
√
τ

(
r − σ2

2

)
τ

)
.

= d−(τ, x)

and

d±(τ, x) = 1
σ
√
τ

[
log
(
x

K
+
(
r ± σ2

2

)
τ

)]

= 1√
2π

∫ ∞
1

σ
√
τ

log
(
K
x +σ

√
τ

2

) e− y2
2 x

and to complete the derivation, we complete the square to get − 1
2 (y − σ

√
τ)2 making the

change of variable z = y − σ
√
τ , z = d+(τ, x)

= 1√
2π

∫ ∞
d−(τ,x)

xerτ exp
(
−1

2(y − σ
√
τ)2
)

dy

= 1√
2π

∫ ∞
d+(τ,x)

xerτe−
z2
2 dz

=
∫ ∞
d+(τ,x)

xerτφ(z) dz

and we have taken a different road from Shreve; the book final result is

c(t, x) = xΦ(d+(τ, x))− erτKΦ(d−(τ, x))

Martingale Representation Theorem

This is a restrictive result, yet useful for our needs.

Theorem 6.4 (Martingale representation)
Let W (t) is Brownian motion and corresponding F(t) filtration,W (t) → F(t). Before, we
allowed F(t) to contain more information, yet not to be giving any more information for
forecasting. Now, F(t) is the smallest σ-algebra so that W (t) is adapted. Suppose M(t) is

23To compute the conditional expectation –integrating w.r.t y –recall the independence lemma: if we
want E (f(X,Y ) | F) and if X ∼ F-measurable and Y ⊥⊥ F , then the expectation is g(X) where g(x) =
E (f(x, Y )) .
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a martingale and is adapted to F(t). Then there is Γ (t) adapted such that

M(t) = M(0) +
∫ t

0
Γ (s) dW (s)

Corollary 6.5
If Θ(t) is adapted and we define as usual the Radon-Nikodym derivative process as

Z(t) = exp
(
−
∫ t

0
Θ(s) dW (s)− 1

2

∫ t

0
Θ2(s) ds

)
W̃ (t) = W (t) +

∫ t

0
Θ(s) ds

dW̃ (t) = dW (t) +Θ(t) dt

Then, there must exist an adapted process Γ̃ (t) such that

M̃(t) = M̃(0) +
∫ t

0
Γ̃ (s) dW̃ (s)

Any portfolio discounted and the portfolio value is also a martingale. We used this for BSM
equation. We investigate the details of hedging a portfolio: R(t), α(t), σ(t) are adapted if
random and we have

dS
S

= α dt+ σ dW̃

and D(t)V (t) is a P̃-martingale. We want to combine this to the fact that and equate drift
and diffusion; using the Martingale Representation theorem

D(t)V (t) = V (0) +
∫ t

0
Γ̃ (s) dW̃ (s)

and in differential form, we want d(DV ) = Γ̃ dW̃ . We had earlier d(DS) = DSσ dW̃ and

d(D(t)X(t)) = ∆(t) d(DS) = DSσ∆ dW̃

and so for the hedging, ∆ has to satisfy

Γ̃ = DS∆σ ⇔ ∆ = Γ̃

σDS

provided σ 6= 0, to define the hedging portfolio (since in such case we have something
equivalent to the money market or we have arbitrage). It is also not observed in practical
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applications. What is Γ̃ will be investigated in the next chapter using PDEs. We first need
to extend Girsanov theorem and the Martingale Representation theorem.

LetW (t) be a d× 1 vector of Brownian motion and F(t) be the filtration generated by the
d independent Brownian motion.

Theorem 6.6 (Girsanov)
Let Θ(t) be d× 1 adapted and

dW̃ = dW +Θ dt

W̃ (t) = W (t) +
∫ t

0
Θ(s) ds

with

Z(t) = exp
(
−
∫ t

0
Θ(s) · dW (s)− 1

2

∫ t

0
‖Θ2(s)‖2 ds

)
Theorem 6.7 (Martingale Representation)

M(t) = M(0) +
d∑
i=1

∫ t

0
Γi(s) dW (s)

and transformed, with Γ̃ adapted to the original filtration F(t) giving

M̃(t) = M̃(0) +
d∑
i=1

∫ t

0
Γ̃i(s) dW̃ (s)

Multidimensional market model

Suppose we have m assets and d Brownian motions. We have

dSi(t) = αi(t)Si(t) dt+ Si(t)
d∑
j=1

σij(t) dWj(t)

for i = 1, . . . ,m. Then the quadratic variation

d

 d∑
j=1

σij(t) dWj(t)

 · d∑
k=1

σij(t) dWj(t) =

 d∑
j=1

σ2
ij

 dt
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and we can define σi as

σi :=

√√√√√
 d∑
j=1

σ2
ij


and let Bi(t) be another Brownian motion. We can write then

dSi(t) = αi(t)Si(t) dt+ Si(t)σi dBi(t)

so that

dBi(T ) =
∑d
j=1 σij(t) dWj(t)

σi(t)

This allows us to look at the cross quadratic variation

dBi dBj = 1
σiσj

∑
k

∑
l

σikσjl dWk dWl

and by the extended Itō-Doeblin rule, only when k = l does those differ from zero and we
have

= 1
σiσj

∑
k

σikσjk dt ≡ ρij(t)

for i, j index of assets. In terms of cross quadratic variations of the prices,

dSi dSj = SiSjρijσiσj dt ⇒ dSi
Si

dSj
Sj

= ρijσiσj dt

where we can think of ρij as the instantaneous correlation. This will be the setup of the
multidimensional model. Now

d(D(t)Si(t)) = (αi −R)DSi dt+ σiDSi dBi

= σiDSi(
(αi −R)

σi
dt+ dBi)
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A risk neutral measure will make all discounted prices martingales. If we have such risk
neutral measure, we want to have

d(D(t)Si(t)) = D(t)Si(t)
d∑
j=1

σij(t) dW̃j(t)

= D(t)Si(t)
d∑
j=1

σij(t)(Θj(t) dt+ dWj(t))

To get Θ, we write

d(DSi) = (αi −R)DSi dt+DSi

d∑
j=1

σij dWj

= DSi

(αi −R) dt+
d∑
j=1

σij dWj


= DSi

d∑
j=1

σij

(
dWj + αi −R

σij
dt
)

so that

d∑
j=1

σijΘj = αi −R

a system of linear equation for i = 1, . . . ,m; we would thus expect to have as many Brownian
motions as there are assets since we have d unknowns and m equations. If d > m, we expect
an infinity of solutions, if d < m, we expect no solution.

If we put more randomness in the model, we have more information than needed to solving
the asset process. We don’t expect the risk neutral measure to be unique in that, since we
can fiddle around to change it on the non-relevant randomness. If d < m, we could well
have arbitrage.

Suppose in the context of a very simple problem we have two assets and the underlying
processes are

α1 − r = σ1θ

α2 − r = σ2θ
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is true if and only if

α1 − r
σ1

= α2 − r
σ2

= θ

and either they are the same or we have arbitrage, go short on one and long on another and
make infinite profit.

Let us look formally at arbitrage. Let X(t) be the portfolio value and X(0) = 0; we have
arbitrage if

P (X(T ) > 0) > 0 and P (X(T ) < 0) = 0

Theorem 6.8 (First fundamental theorem of asset pricing)
If there exists a risk-neutral measure P̃, then there is no arbitrage.

We have by the existence of a risk-neutral measure that

P̃(X(T ) < 0) = 0

since the P̃ measure agrees with P for sets of measure zero and

Ẽ(D(T )X(T )) = 0.

Indeed, ∫
D(T )X(T ) dP̃ = 0

and since D(T ) is zero. For this to be zero, we need P̃(X(T ) > 0) = 0 and this implies that
P (X(T ) > 0) = 0. This is a contradiction, hence there cannot be such arbitrage.

We have inferred the interest rate process R(t) allows for discounting; with

D(t) = exp
(
−
∫ t

0
R(s) ds

)
.

The risk neutral measure has to be such that the discounted price measure D(t)Si(t) from
i = 1, . . . ,m, is a martingale, so that

Ẽ(D(t)Si(t) | F(s)) = D(s)Si(s)

for i = 1, . . . ,m for s ≤ t. If we consider a portfolio X(t) with ∆i(t) units of asset i; then we
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see that the process D(t)X(t) is also a martingale. Arbitrage would correspond to having a
portfolio where X(0) = 0, P (X(T ) < 0) = 0 and P (X(T ) > 0) > 0. If P̃ is the risk-neutral
measure, then Ẽ(D(T )X(T )) =

∫
D(T )X(T ) dP̃ = 0 under P̃. Since both measures agree

and D,X are positive, then ∫
D(T )X(T ) dP̃ > 0

but then this implies P̃(D(T )X(T ) > 0) = 0, the P̃(X(T ) > 0) = 0 and as such P (X(T ) > 0) =
0.

We can say then that the existence of a risk-neutral measure rules out arbitrage. If we
allow out-of-equilibrium events, for short time, they certainly can exist until we are back to
economic rules prevail again.

We introduce the notion of hedging; a model is said to be complete if every derivative
security can be hedged. Consider the process

dX(t) =
m∑
i=1

∆i(t) dSi(t) +R(t)
(
X(t)−

m∑
i=1

∆i(t)Si(t)
)

dtd(D(t)X(t))

= D dX +X dD + dX dD

but from before we have that

dD(t) = −D(t)R(t) dt.

so we can ignore dX dD. We thus get

= D

m∑
i=1

∆i dSi +DR

(
X −

d∑
i=1

∆iSi

)
dt−XDR dt

= D

m∑
i=1

∆i dSi −DR
d∑
i=1

∆iSi dt

=
m∑
i=1

∆i d(DSi) (6.5)

recalling that

d(DSi) = D dSi −DRSi dt.
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Since each term in the sum above in (6.5) is a martingale, the term

D(t)X(t) = X(0) +
d∑
j=1

∫ t

0
Γ̃j(s) dW̃j(s)

and in differential notation

d(D(t)X(t)) =
∑
j

Γ̃j(t) dW̃j(t)
∑
i

∆i d(DSi).

We now assume in our differential market model, that

d(DSi) = DSi
∑
i

σij dW̃j

where σij could be though of as the “covariance” of the Brownian motions. This tell us that

Γ̃j = D
∑
i

σij∆iSi

or rearranging

Γ̃j
D

=
∑
i

σij∆iSi (6.6)

where (6.6) are the so-called hedging equations.

Theorem 6.9 (Second Fundamental Theorem of Asset Pricing)
Under the assumption of existence of a risk-neutral measure, a market model is complete if
and only if the risk neutral measure associated with it is unique.

Assume that we have hedged a market and there are (for a contradiction) associated mea-
sures P̃1 and P̃2 are risk-neutral measures. Then, if

D(T )V (T ) = IA

for some event A. If we can edge it, then there is D(t)X(t) a martingale under any risk-
neutral measure for which

Ẽ1(IA) = X0 = Ẽ2(IA)

which means since IA is an indicator that P̃1(A) = P̃2(A). Conversely, we want to solve a
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d×m system of equation for arbitrary adapted process Γ̃j ; we had

dSi = αiSi dt+ Si
∑
j

σij dWj

= RSi dt+ Si
∑
j

σij dW̃j

and

αi −R =
∑
j

σijΘj

Consider now A, the m× d matrix [σij ] and we want to find

A>


∆1S1

...
∆mSm

 =


Γ̃i/D

...
Γ̃d/D


Then AΘ = α − R can be found if A is non-singular and invertible, we have a unique
solution to the system of linear equation and we can solve for arbitrary Γ̃i.

Dividend paying stocks

We assume that there is a rate A at which dividends are paid, which mean they are paid
according to AS dt. Here, the essential insight into this analysis is that if we reinvest it into
the security to get larger unit of share; this will have under the risk-neutral measure the
properties of a martingale. With a little more details, what we see is

dS = −αS dt+ σS dW −AS dt

dX = ∆dS +∆AS dt+R[X −∆S] dt

and substituting dS in dX, one obtains

= ∆αS dt+∆σS dW −∆AS dt+R[X −∆S] dt+∆AS dt

= ∆αS dt+∆σS dW +R[X −∆S] dt

= ∆S(α−R) dt+ ∆σS dW +RX dt

and we get as usual

d(DX) = D∆S(α−R) dt+DRX dt+D∆σS dW −XRD dt

= D∆S(α−R) dt+D∆σS dW
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and setting

Θ = α−R
σ

dW̃ = dW +Θ dt

and

d(DX) +D∆σS dW̃

which leads to the formula with a constant

c(τ, x) = xe−aτΦ(d+(τ, x))− e−rτKΦ(d−(τ, x))

where

d±(τ, x) = 1
σ
√
τ

[
log
( x
K

)
+
(
r − a± σ2

2

)
τ

]
Suppose now that we set dividends paid at discrete time, with 0 < t1 < t2 < . . . < td < T

and at time tj , dividend of ajS(t−j ), which is cadlag – we shall also assume it is reinvested
in the market. We get

S(tj)− S(t−j )− ajS(t−j ) = (1− aj)S(t−j ) (6.7)

and we assume that in between periods, the stock follows a geometric Brownian motion.
Our derivative is

dS = αS dt+ σS dW

dX = RX dt+∆σS(Θ dt+ dW )

Solving with the recurrence relationship with the jump in (6.7), we get

S(T ) = S(0)
n−1∏
j=0

(1− aj+1) exp
(
σW̃ (T ) +

(
r − σ2

2

)
T

)

so the only difference lie in the change from S(0) to S(0)
∏n−1
j=0 (1− aj+1).
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Section 7
Connections with Partial Differential Equations

We will generalize the ideas with Black-Scholes-Merton and somewhat more general SDEs
and how they can be linked with PDEs and the associated solutions. We start with a
definition
Definition 7.1
A stochastic differential equation (SDE) is an equation satisfying dX(u) = β(u,X(u)) du+
γ(u,X(u)) dW (u)

A geometric Brownian motion is clearly an example of the form. Here, we term the function
β the drift and γ the diffusion. We are in the presence of a linear SDE if it is of the form

dX(u) = [a(u) + b(u)X(u)] du+ [γ(u) + σ(u)X(u)] dW (u)

which can be solved explicitly if they are one-dimensional if the functions are adapted and
a, b, γ, σ are nonrandom.

In integral form, we have

X(t) = X(0) +
∫ t

0
β(u,X(u)) du+

∫ t

0
γ(u,X(u)) dW (u)

to solve numerically, one can use Euler method of discretization to get some tractability
with step size

X(t+ δ) = X(t) + β(t,X(t))δ + γ(t,X(t))
√
δε1

where ε1 ∼ N (0, 1). This is by no mean the only way to discretize, but it is the easiest for
ODEs, PDEs or SDEs. This procedure is recursive; one gets X(t+ δ) and replace X(t); we
take an independent standard normal variable there, i.e.

X(t+ 2δ) = X(t+ δ) + β(t+ δ,X(t+ δ))δ + γ(t+ δ,X(t+ δ))
√
δε2

and so on for εi
iid∼ N (0, 1).

This could be used for stochastic volatility models, with

dS(t) = β(t, S(t)) dt+ σ(t) dWS(t)

dσ(t) = α(t, σ(t)) dt+ V (t, σ(t)) dWσ(t)
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where WS ,Wσ are allowed to be correlated; in such case, the correlation is termed the
leverage in the model. We could use Euler method to generate that: add the step

σ(t+ δ)− σ(t) = a(t, σ(t)) + δ + V (t, σ(t))
√
δη1

where η1 is standard normal.

We want to establish the Markov properties of the solutions of SDEs. If we have a process
X governed by a SDE, then
Theorem 7.2
If X(u), 0 ≤ u ≤ T be a solution to the SDE with given initial conditions. Then

g(t, x) = Et,x(h(X(T )))

with X(t) = x.

Recall we say Y (t) is a Markov process if E (h(Y (T )) | F(s)) = g(t, Y (s)) for s < t. Once
we establish the existence and uniqueness of the solution to the SDE, then the result

E (h(X(T )) | F(t)) = g(t,X(t))

follows from the independence lemma, as

X(T ) = X(t) +
∫ T

t

· · · dt+
∫ T

t

· · · dW

Theorem 7.3 (Feynman-Kac)
Consider the stochastic differential equation

dX(u) = β(u,X(u)) du+ γ(u,X(u)) dW (u)

and let the measurable function h such that g(t, x) = Et,x(h(X(T )). 24 Then the function
g(t, x) satisfies the partial differential equation

gt(t, x) + β(t, x)gx(t, x) + 1
2γ

2(t, x)gxx(t, x) = 0

and the terminal condition g(T, x) = h(x).

The two physicist after whom the theorem is named have made great contributions.

Moreover, g(t,X(t)) is a martingale. We have to show that
24The previous theorem gives us the Markov property and the solution to the stochastic differential

equation g.
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E (g(t,X(t) | F(s))

Using the Markov property explicitly, we have

E (h(X(T )) | F(t)) = g(t,X(t))

thus

E (h(X(T )) | F(s)) = g(s,X(s))

= E (E (h(X(T )) | F(t)) | F(s))

= E (g(t,X(t)) | F(s))

which is what we wanted to prove. Since it is a martingale, its differential will involve no
dt term. If we look at the differential of g using Itō-Doeblin formula, one gets

dg(t,X(t)) = gt dt+ gx dX + 1
2gxx dX dX

= gt dt+ gx(β dt+ γ dW ) + 1
2gxxγ

2 dt

= (gt + βgx + 1
2γ

2gxx) dt+ γgx dW

but the martingale property implies that (gt + βgx + 1
2γ

2gxx) = 0. The function h comes
in for the terminal condition g(T, x) = h(x).

If we introduce the following discounted SDE along with the function

f(t, x) = Et,x
(
e−r(T−t)h(X(T ))

)
and for the martingale property, we have analogous to the previous theorem

E
(
e−rTh(X(T ))

)
= e−rtf(t,X(t))

E
(
e−rTh(X(T ))

)
= e−rsf(t,X(s))

and we can use the discounted process and iterated conditioning to get as before

E
(
e−rtf(t,X(t)) | F(t)

)
= E

(
e−rsf(s,X(s)) | F(s)

)
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Then, looking at the differential, where dX = β dt+ γ dW , we have

d(e−rtf(t,X(t))) = e−rt
[
(−− rf + ft) dt+ fx dX + 1

2fxx dX dX
]

= e−rt
[
(−rf + ft + βfx + 1

2γ
2fxx) dt+ fxγ dW

]
so as to get

ft + βfx + 1
2γ

2fxx = rf

now that we discount the Feynman-Kac equation, we have an additional term on the right.

Let us work with Black-Scholes-Merton equation: recall we have

dS = αS dt+ σS dW

dS = rS dt+ σS dW̃

and assume h(S(T )) = V (T ) is the payoff. Thus

V (t) = Ẽ
(
e−r(T−t)h(S(T )) | F(t)

)
v(t, S(t)) = V (t) = v(t, x)

In the context of the discounted Feynman-Kac theorem, we have

vt + rxvx + 1
2σ

2x2vxx = rv

with terminal condition v(T, x) = h(x) = (x −K)+. For any given strike price, fixing the
interest rate we can get a solution and ‘fiddle’ σ2 such that it fits the market price of the
asset; the resulting σ̂ is termed the implied volatility, which is a function of the strike
price and is typically convex (referred to as the volatility smile) function.

Let [W1 W2] be independent standardized Brownian motions and two processes

dX1 = β1(t,X1, X2) dt+ γ11(t,X1, X2) dW1 + γ12(t,X1, X2) dW2

dX2 = β2 dt+ γ21 dW1 + γ22 dW2

Let h(x1, x2) be a function for which

g(t, x1, x2) = Et,x1,x2 (h(X1(T ), X2(T )))

f(t, x1, x2) = Et,x1,x2
(
e−r(T−t)h(X1(T ), X2(T ))

)
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its discounted counterpart. Then

gt + β1gx1 + β2gx2 + 1
2(γ2

11 + γ2
12)gx1x1

+ (γ11γ21 + γ12γ22) gx1x2 + 1
2(γ2

21 + γ2
22)gx2x2 = 0

One application of the Feynman-Kac equation is the Asian option, which is a call option
with payoff at maturity given by

V (T ) =
(

1
T

∫ T

0
S(t) dt−K

)
+

which is the average over time. We now have something which depends on the trajectory
of the asset price rather than the simple value at T . We can get around with this by
introducing a new stochastic process,

Y (t) =
∫ t

0
S(s) ds

where now

V (T ) =
(

1
T
Y (T )−K

)
+

Now the pair S(t), Y (t) pair satisfies a system of differential equation

dS = rS dt+ σS dW̃

dY = S dt

which satisfy the requirements for a stochastic differential equation we laid out, so (S(t), Y (t))
is a Markov process. Y is not a Markov process; this is what we use in order to price the
option. As usual, we write for intermediate time 0 ≤ t < T

e−rtV (t) = Ẽ
(
e−rT

(
1
T
Y (T )−K

)
+

)

We assume the existence of a function of the time to maturity e−rtv(t, x, y) where x stands
for the asset price and y for the corresponding variable (from the Markov property). Us-
ing the two-dimensional Feynman-Kac with σ11 = σS and all other corresponding terms
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σ12, σ21, σ22=0, we have

d(e−rtv) = e−rt
[
(vt − rv) dt+ vx dS + vy dY + 1

2vxx dS dS
]

= e−rt
[(
vt − rv + rxvx + xvy + 1

2σ
2x2vxx

)
dt+ σxvx dW̃

]
so the corresponding PDE is

vt − rv + rxvx + xvy + 1
2σ

2x2vxx = 0

a function of three independent variables. This is very similar to Black-Scholes-Merton
except for the additional term; we further require the boundary conditions v(T, x, y) =(
y
T −K

)
+; we need a two-dimensional cut of the three-dimensional plane specified to get a

unique solution.

We next look at interest rate models. We had varying interest rates in previous models,
but this time the volatility will involve accumulating quadratic variation and the volatility
will be governed by a Brownian motion. Which of those two is more appropriate in the real
world is almost an empirical question.

Example 7.1 (Zero-coupon interest rate model)
Let

dR(t) = β(t, R(t)) dt+ γ(t, R(t)) dW̃ (t)

As usual, we define the discount process to be

D(t) = exp
(
−
∫ t

0
R(s) ds

)
dD(t) = −R(t)D(t) dt

We will define B(t, T ) for a bond, called the zero-coupon bond. This bound only pays at
maturity, and we assume for simplicity it delivers one unit of money, so that B(T, T ) = 1.
We will want to discount the bond since it has value before maturity. We will also want
D(t)B(t, T ) to be a martingale, so that

D(t)B(t, T ) = Ẽ (D(T ) | F(t))

We can then write that

B(t, T ) = Ẽ
(

exp
(
−
∫ T

t

R(s) ds
) ∣∣∣∣∣ F(t)

)
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We may ask the question: what is the value of the discounted bond at T , denoted

e−Y (T,t)(T−t) = B(t, T )

Here Y is called the yield; taking logs, we get

Y (T, t) = − 1
T − t

log (B(t, T ))

Thus D(t)f(t, R(t)) has to be a martingale; such function f exists by the martingale prop-
erty. We proceed to finding the differential, using Itō product rule

d(D(t), f(t, R(t))) = D(t) df(t, R(t)) + f(t, R(t)) dD(t)

= D(t)(ft dt+ fr dR+ 1
2frr dR dR)−RDf dt

= D(t)
[(
ft −Rf + frβ + 1

2frrγ
2
)

dt+ γfr dW̃
]

which once again gives a partial differential equation for f ,

ft + frβ + 1
2frrγ

2 = Rf

and we need a terminal condition, f(T, r) = 1 (the payoff at maturity is the value of the
bond).

Example 7.2 (Hull-White interest rate)
We have

dR(t) = (a(t)− b(t)R(t)) dt+ σ(t) dW̃ (t)

where a, b, σ are non-random positive adapted functions of time. This corresponds to β ≡
(a(t)− b(t)R(t)) and γ ≡ σ(t). We can substitute this into the equation for the zero-coupon
model. We have

ft + (a− br)fr + 1
2σ

2frr = rf

We guess the solution has the form

e−r(T−t)B(t, T ) = f(t, r) = e−rC(t,T )−A(t,T )

for non-random C,A functions. Using this and the definition of the yields, we can see that

log(B(t, T )) = −rC(t, T )−A(t, T ) + r(T − t)
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taking logs, in which case the yield

Y (T, t) = −r + r
C(t, T )
T − t

+ A(t, T )
T − t

which is affine in r. All such models are termed affine yield model. Dropping the
(explicit) dependence on T , we have f = e−rC−A, with differentials

ft = f(−rC ′ −A′) fr = −fC frr = fC2

Since f is positive and proportional to this, we get

−rC ′ −A′ − (a− br)C + 1
2σ

2C2 = r

or correspondingly

−A′ − aC + 1
2σ

2C2 = r [1 + C ′ − bC]

Since this must hold for all values of r, t. Setting r = 0, we get that

−A′ − aC + 1
2σ

2C2 = 0

1 + C ′ − bC = 0

two ordinary differential equations. We have C ′ = b(t)C − 1, so

dC
dt − b(t)C = −1

with integrating factor exp
(
tT (s) ds

)
. Now,

d
dt

(
C exp

∫ T

t

b(s) ds
)

= exp
(∫ T

t

b(s) ds
)[

dC
dt − b(t)C

]

= − exp
(∫ T

t

b(s) ds
)

and so

C(t, T ) =
∫ T

t

exp
(
−
∫ s

t

b(u) du
)

Example 7.3
Suppose we have a stationary economic environment with varying interest rate, positive, so
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that

dR(t) = (a− bR(t)) dt+ σ
√
R(t) dW̃

and we get again two ordinary differential equations, with solutions given in the book.

Example 7.4 (Options on a bond)
Let t ≤ T1 < T2 and B(T2, T2) = 1 and from the Markov property, with maturity at T1 and
then discount onward

c(t, R(t)) = Ẽ =
(
e
−
∫ T1
t

R(s) ds (f(T1, R(T1))−K)+

∣∣∣∣ F(t)
)

with e
−
∫ T1
t

R(s) ds = D(T1)/D(t) and D(t)C(t, R(t)) is a martingale. The usual business
gives the same partial differential equation as before, given as

ct + β(t, r)cr + 1
2γ

2(t, r)crr = rc

with this time a different terminal condition c(T, r) = (f(T, r)−K)+.
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Section 8
American Derivative Securities

What distinguishes these securities from other is that they can be exercised at any time,
worth (V (t0) − K)+ for call options and similarly for put options. It will turn out that
with call option, the American call provides no advantage over the European option. It
is advantageous for the put option however. This gives rise to all sorts of complication; if
one wishes to hedge a position where one sell short an option, then it is not just having a
question of having a portfolio that meets the value of the option at T , if it is desired to
hedge the short term. We need to have a portfolio to have a value at least that of the stock.

Will the holder exercise at any particular time; this depends on the person who is long on
the option; for the person who is short, this implies more randomness. This means the
portfolio may be higher in order for the person to be able to meet its requirement.

This gives rise to the perpetual American put, exercised at any time. In order to deal
with this maturity, we introduce the concept of a stopping time, and we will look at the
optimal stopping time (the time at which the holder would exercise the option). Our generic
notation will be τ ; the event τ = t as an event is F(t) measurable. This is not a suitable
way to define, however we will require this condition in our definition. We want

(τ ≤ t) ∈ F(t), and so (τ > t) ∈ F(t)

and the requirement to get

(τ = t) = (τ ≤ t) ∩
( ∞⋂
n=1

(
τ > t− 1

n

))

is also in F(t) by properties of σ-algebras. We came across first-passing time for a Brownian
motion, and looked the distribution and the joint distribution of the current value and the
maximum. We have

τm = min{t ≥ 0 | X(t) = m}

where X(t) is adapted and has continuous path. If t = 0, then (τ ≤ t) = (τ = 0) ∈ F0. We
consider the following event:

A =
∞⋂
n=1

⋃
0≤q≤t
qrational

{
m− 1

n
< X() < m+ 1

n

}

ad we claim (τm ≤ t) ⊂ A, countable additivity gives the first side. On the other hand, A
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is non-empty; let ω ∈ A; then ∀ n ∈ N,∃qn ∈ Q, qn ≤ t such that

m− 1
n
< X(qn, ω) < m+ 1

n

Take a subsequence qn∗ with an accumulation point so that qn∗ → q, which can’t be anything
but τm; a bounded sequence of real number, given the inequalities above, this must be τm.
This says that A ⊂ (τm ≤ t).

We now have the following important theorem: let X(t) be a stochastic process and denote
the stopped process X(τ ∧ t):

Theorem 8.1 (Optional sampling)
A stopped martingale is a martingale (and accordingly for supermartingale or submartin-
gale).

Perpetual American Put

In this case, the underlying security has a price described in the usual way by a geometric
Brownian motion,

dS = rS(t) dt+ σS(t) dW̃ (t)

where r, σ are positive constants with payoff (K − S(t))+. It make sense to maximize this
quantity over all stopping time τ ∈ T ,

v∗(x) = max
τ∈T

Ẽ
(
e−rτ (K − S(τ))+

)
with S(0) = x.We want to determine a particular value of v∗(x). As the holder of the option,
we need an optimal rule, which is not time dependent. This has to be a rule that is a function
of x only. This will be characterized by some set; since it is a put, and it is a decreasing
function of the asset price; we should exercise below a threshold. We restrict to stopping
times which satisfy the threshold condition L∗, so the maximum over τL∗ . Subsequently,
we will then show that the more general problem has to be less than or equal to the one
obtained from the restricted problem L∗.

Lemma 8.2 (Laplace transform for first passage time of drifted Brownian motion)
Let W be a Brownian motion, and let µ ∈ R,m ≥ 0 defining X(t) = µt + W (t) and
corresponding stopping time τm for first passage time at m. We look for

m = µτm +W (τm).

or W (τm) = m− µτm which can be interpreted as the first passage to a line with intercept
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m and slope µ in the space. If µ is negative, there will be a positive probability of not
reaching the slope.

We use the stopped exponential martingale for this purpose: let

M(t) = exp
[
σW (t ∧ τm)− 1

2σ
2(t ∧ τm)

]
we want σ to be such that taking t→∞, we get the result we want. We are after E

(
e−λτm

)
and the solution will be σ = −µ+

√
µ2 + 2λ > 0 for λ > 0 or equivalently solving for λ, one

has µ2 + 2λ = (µ+ σ)2 thus λ = µσ + 1
2σ

2. We want to look at the MGF and take t→∞
to recover the value of τm:

exp (σX(t)− λt) = exp
(
σX(t)− µσt− 1

2σ
2t

)
= exp

(
σW (t) + µσt− µσt− 1

2σ
2t

)
which goes back to the definition of M(t), except the latter is stopped, yet both are martin-
gales. For t < τn, we have W (t) < m− µt The expectation of M is 1 = M(0) = E (M(n)),
which is all that is needed. This is

E (M(n)) = E
(

exp
(
σ(n ∧ τm)− 1

2σ
2(n ∧ τm)

))
= E

(
I (τm ≤ n)eσ(m−µτm− 1

2σ
2τm) + I (τm > n)eσW (n)− 1

2σ
2n
)

and now we let n→∞. We have I (τm > n)eσW (n) < I (τm > n)eσ(m−µn) Thus

E (M(n)) = E
(

I (τm ≤ n)eσ(m−λτm) + I (τm > n)eσX(n)−λn
)

where

σW (n)− 1
2σ

2n = σX(n)− σµn− 1
2σ

2n

and we will bound the second term, let λ→ 0 to get the probability P (τm ≤ n).

We have a Brownian motion with drift, of the form X(t) = µt+W (t); we are after the first
passage time of m > 0, labeled τm. To know when to exercise the option, we look after the
MGF; for λ > 0, one thus look for E

(
e−λτm

)
. We are looking after a martingale of the form

exp(σX(t)− λt); we require this to involve undrifted Brownian motion:

exp(σX(t)− λt) = exp(σW (t)− (λ− σµ)t) (8.8)
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that is if λ − σµ = 1
2σ

2 (an exponential martingale). We need to solve the corresponding
equation

σ2 + 2µσ − 2λ = 0, σ = −µ±
√
µ2 + 2λ

and we choose the root σ = −µ +
√
µ2 + 2λ; with that, we can then assert that (8.8) is a

martingale. We consider then

exp (σW (t ∧ τm)− (λ− σµ)(t ∧ τm))

our stopped martingale. We have

E (exp (σW (t ∧ τm)− (λ− σµ)(t ∧ τm))) = 1

and want to split this when min(t, τm) = τm. Let wlog t ∈ Z+, t ≡ n, and consider

E (I (τm ≤ n) exp (σW (τm)− (λ− σµ)τm)) + E (I (τm > n) exp (σW (n)− (λ− σµ)n))

and since X(τm) = m by definition, then for t < τm, X(t) < m and W (τm) = m−µτm thus
the term in the exponential is

σW (τm)− (λ− σµ)τm = σm− λτm.

We thus have

eσmE
(
I (τm ≤ n)e−λτm

)
+ †;

where † stands as placeholder for the second term which can be bounded; now t < τm, X(t) <
m and thus W (t) ≤ m− µt; this gives

σW (n)− (λ− σµ)n ≤ σm− λn

Thus

† ≤ E (I (τm > n)) eσm−λn

Let now n (or t) →∞. Using Dominated convergence or monotone convergence, e−λn → 0
and I (τm > n)↘ 0, so we conclude E (limn→∞(·)) = 0. We are left with the first term

eσmE
(
I (τm <∞)e−λτm

)
.
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If λ→ 0, then

e−σm = E (I (τm <∞)) = P (τm <∞) = lim
λ→0

exp
(
−(−µ+

√
µ2 + 2λ)m

)
= exp (−|µ|+ µ)

and we get that if µ > 0, then P (τm <∞) = 1, while if µ < 0, then P (τm <∞) = e−2|µ| <

1. In other words, if the barrier is positive but we drift away from it, there is a positive
probability of not getting to it. Recall we have

E
(
e−λτm

)
= E

(
I (τm <∞)e−λτm

)
+ E

(
I (τm =∞)e−λτm

)
using complementary events; the second term is zero if τm =∞. Replacing in λ, we get the
MGF

E
(
e−λτm

)
= e−σm = em(µ−

√
µ2+2λ

as opposed to what we had before (which was e−m
√

2λ).

Let us go back now to the perpetual American put option. If the strike price is greater than
the market price, you make profit by exercising (selling) the option (stock). We want to do
this optimally: we are after

max
τ

E
(
e−rτ (K − S(τ))+

)
= V (x)

with S(0) = x. If S is our usual geometric Brownian motion, than this depend on the initial
value. Our optimality criterion will be to wait until S(t) = L < K so as to get e−rτL(K−L)
in return. In the following, the expectation will always be under the risk-neutral measure
and W (t),E are understood as W̃ (t), Ẽ. For the price process

dS = rS dt+ σS dW

the solution is found to be

S(t) = S(0) exp
(
σW (t) +

(
r − 1

2σ
2
)
t

)
the discounted value of the exponential martingale. If S(t) = L, we get

W (t) +
(
r − 1

2σ
2
)
t

σ
= − 1

σ
log
( x
L

)
and

vL(x) = (K − L)E
(
e−rτL

)
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If we make the change of variable

m = 1
σ

log
( x
L

)
and so

µ = − 1
σ

(
r − 1

2σ
2
)
t

and λ = r; we get

1
σ

(
r − 1

2σ
2
)

+

√
1
σ2

(
r2 + rσ2 + 1

4σ
4
)

= 1
σ

(
r − 1

2σ
2
)

+

√
1
σ2

(
r + 1

2σ
2
)2

= 2r
σ
.

We then have

E
(
e−rτL

)
= exp

(
− 2r
σ2 log

( x
L

))
=
( x
L

)− 2r
σ2

and at last, we get

vL(x) = (K − L)
( x
L

)− 2r
σ2
.

For more on this, see Shreve; what is done is sensible and illuminating.

We pursue our quest of optimal stopping rule; if x < L, then we should exercise immediately
and get K−x. For x ≥ L, we have in Figure 8.3.1 a picture of the lines. The condition K−x
gives us the first line segment. If the curve vL is below, then we are wrong (lower value in
waiting). As in most cases in economics, we want L∗ to be at the point of tangency; any
value of L that is bigger or lower is suboptimal, and one can convince oneself that exercise
should have been taking place before. The tangency requirement gives us two conditions:

vL(L) = K − L and v′L(L) = −1

as the graph and our line are at the same ordinate at L with the same slope; thus vL(L0
holds automatically. For the second,

v′L(x) = − 2r
σ2 (K − L)x−

2r
σ2−1L

2r
σ2

and so

v′L(L) = − 2r
σ2

(K − L)
L
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from which we get that K
L = σ2

2r + 1 = σ2+2r
2r and

L = 2rK
σ2 + 2r

is our optimal condition.

Because of the time translation invariance, we are allowed to look back at the discounted
value e−rtvL(S(t)); we examine its differential using the Itō-Doeblin formula

d(e−rtvL(S(t))) = e−rt
[
−rvL(S(t)) dt+ v′L(S(t)) dS(t) + 1

2v
′′
L(S(t)) dS(t) dS(t)

]
where

dS = rS dt+ σS dW

under the risk neutral measure. Thus d(e−rtvL(S(t))) will involve a dt term. The above
becomes

= e−rt
[(
−rvL dt+ rSv′L + v′′L

2 σ2S2
)

dt+ v′LσS dW
]

Now

vL(x) = (K − L)
( x
L

)− 2r
σ2

v′′L(x) = 2r
σ2

(
2r
σ2 + 1

)
(K − L)L

2r
σ2 x−

2r
σ2−2I (x > L)

while for x < L

vL(x) = K − L

v′L(x) = −1

v′′L(x) = 0

and so

−rvL + rxv′L = −r(K − x)− rx = −rK
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which is not zero.

If x > L : rvL − rxv′L −
1
2σ

2x2v′′L = 0, v > K − x

If x < L : rvL − rxv′L −
1
2σ

2x2v′′L = rK, v = K − x

which we refer to as the linear complementary conditions. The term with dt is a super-
martingale, since the term is negative, we have a downward drift. If e−rtv(S(t)), which
in general is a supermartingale, is stopped, giving e−r(t∧τm)v(S(t ∧ τm)) – and this is a
martingale.

To show that one cannot do any better (no other optimal stopping rule), we use the fact
that e−rtv(S(t)) is a supermartingale under the risk-neutral measure. For arbitrary τ ,

E
(
e−r(t∧τm)v(S(t ∧ τm)) | F0

)
≤ vL(S(0))

but we have of course that

E
(
e−r(t∧τL)v(S(t ∧ τL)) | F0

)
= vL(S(0))

and so this τL∗ is optimal.

Shreve rightfully so points out that if you are short on these options, you want to hedge
using the delta-hedging rule while in the martingale phase – when in phase is where the
holder would have exercised and have v = K−x, you go short one unit of the asset and have
to be able to buy one unit at K; if things have gone too far, sit with the one short option,
you can start consuming the interest on the money market after the optimal time - you can
consume K at rate r while still being able to meet your obligations. To consider the process
more generally, since the only information available is the stock price, consider a stopping
set S and a continuation set C forming the whole of R+ with a threshold. Using the time-
translation invariance, on the finite horizon model, we have t limited to times 0 ≤ t < T ; we
get the graph in Figure 8.4.1. We have x, τ and stopped as x ≤ L(τ) – this will be our new
stopping rule (which intuitively makes sense- the further from T , the more you are ready to
wait). If x < K with the complementary-slackness conditions, we have

rv − vt − rxvx −
1
2σ

2x2vxx = 0

on top for C with v(t, x) > K−x while underneath the curve x = L(τ), v(t, x) = K−x = rK.
We have smoothness in the C1 sense; the solutions are equal at vL and the first derivative
coincide; this is not the case for higher derivatives. The rest of the details are in the book.
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For the American call (S(t) − K)+, it is not optimal to exercise before maturity of the
option. Consider a function h(x) which is convex that is

h(x1λ+ (1− λ)x2) ≤ λh(x1) + (1− λ)h(x2)

Since (x − K)+ is convex, if h(0) = 0, this tells us that h(λx) ≤ λh(x). What we have
to consider is the expectation under the risk-neutral measure of the discounted value of
exercise.

E
(
e−rth(S(t)) | F(s)

)
≥ h

(
E
(
e−rtS(t) | F(s)

))
= h

(
e−rsS(s)

)
for s < t as e−rtS(t) is a martingale. In short,

E
(
e−r(t−s)h(S(t)) | F(s)

)
≥ h(S(s))

this process is now a submartingale and will tend to go up, so we have no advantage to
exercise early. The only exception to this rule will be when dividend (whether in discrete
or continuous time) are paid, since the value of the underlying asset go down with the
payment (it is the person hedging (not the holder) who would be getting the dividend).
Then, it would be optimal to exercise just before the dividend payment.
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Section 9
Introduction to Jump Processes

We will be interested mostly in Poisson processes, which will be our new source of random-
ness. A jump process is one in which jumps happen at a random time. The waiting time is
governed by the exponential distribution

F (t) = 1− e−t

or introducing a scale parameter F (t) = 1− e−t/s. Indeed, if X ∼ E(1), then sX will have
expectation E (sX) = s. We could also characterize the distribution with a rate parameter
λ, in which case F (t) = 1 − e−λt. For the E(1) distribution, we have f(t) = e−t for t ≥ 0.
One can easily verify that

∫∞
0 e−t dt = 1 with corresponding expectation∫ ∞

0
te−t dt = −

∫ ∞
0

td(e−t) = −te−t
∣∣∣∞
0

+
∫ ∞

0
e−t = 1

integrating by parts and the second moment∫ ∞
0

t2e−t dt = −
∫ ∞

0
t2 d(e−t) = 2

∫ ∞
0

e−ttdt = 2

or correspondingly 2
λ2 for rate λ, 2s2 if we have a scale parameter s. The exponential

distribution, as mentioned earlier, is used for waiting time; jump between exponential time
amount. The sum Sn is the time before n jumps,

Sn =
n∑
i=1

τi, τi ∼ E(1)

where τi ⊥⊥ τj are independent. The sum of exponential distribution follows a Gamma
distribution. Y ∼ γ(a) has a PDF of the form

f(y) = 1
Γ(a)y

a−1e−y

where

Γ(z) =
∫ ∞

0
e−yyz−1 dy

is the gamma function; it has a set of poles at negative integers and Γ(−n) = ∞; Γ(1) =∫∞
0 e−y dy = 1 and for positive integers Γ(n) = (n − 1)!. The Gamma function is non-
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elementary. We can also derive an interesting recurrence relation, for Γ(n+ 1) where n ∈ N

Γ(n+ 1) =
∫ ∞

0
e−yyn dy

= e−y
∫ ∞

0
e−y d(yn)

= n

∫ ∞
0

e−yyn−1 dy = nΓ(n).

We now derive the moment generating function of τ , which is then E (e−uτ ) = int∞0 e
−uτe−τ dτ =

(1 + u)−1. The moments are of the form

1
Γ(n)

∫ ∞
0

e−yyn+k−1 dy = Γ(n+ k)
Γ(n) .

For the sum, we have the MGF is E
(
e−uSn

)
= (1 + u)−n; the Gamma moment generating

function is on the other hand

1
Γ(n)

∫ ∞
0

e−uyyn−1 dy = 1
Γ(n)

∫ ∞
0

e−z
zn−1

(1 + u)n dy =
(

1
1 + u

)n
making the change of variable z = (1 + u)y, dy = dz

1+u .

We can easily generate random numbers for integer value using the probability integral
transform for F (t) = 1 − e−t, we have F−1(p) = − log(1 − p) and we can take sum of
independent draws for the γ distribution.

Poisson process

We now define the Poisson process corresponding to the number of jumps before or at
time t as

N(t) =

0 if t < s1

1 if s1 ≤ t < s2

and the correspondence {N(t) ≥ n} ⇔ {Sn ≤ t}. We thus have

P (N(τ) ≥ n) = P (Sn ≤ t)

= 1
Γ(n)

∫ t

0
e−sn(sn)n−1 dsn

91



which is the incomplete gamma function. Since N(t) is discrete, we want a PMF taking
values 0, 1, . . . , n. We have

P (N(t) ≥ n)− P (N(t) ≥ n+ 1) = 1
Γ(n)e

−ssn−1 ds− 1
Γ(n+ 1)

∫ t

0
e−ssn ds

and once again, integration by parts saves the day. We take the second term with

− 1
Γ(n+ 1)

∫ t

0
sn d(e−s) = − t

ne−t

n! + 1
Γ(n+ 1)

∫ t

0
e−s d(sn)

which gives

1
Γ(n)e

−ssn−1 ds− 1
Γ(n)e

−ssn−1 ds+ tne−t

n!

so

P (N(t) = n) = tne−t

n!

and
∞∑
n=0

P (N(t) = n) = e−t
∞∑
n=0

tn

n! = 1

–we will use this as the base distribution to characterize our process. We will be interested
in the survival function

P (τ > t | τ > s) = P ((τ > t) ∧ (τ > s))
P (τ > s) = e−(t−s)

which is the same distribution as if the process started at time s; this is the memoryless
property of the exponential distribution. We are now set to extend stochastic calculus to
jump processes.

If we looked at N(t) ∼ P(t) corresponding to the number of jumps before time t, so

P (N(t) = n) = e−ttn

n!

If we look at this as a function of t, then we will have to deal with covariance and correlation.
However, the memoryless property gives us independent increments, that is for s ≤ t,
N(t) − N(s) ⊥⊥ N(s) and N(t) − N(s) d= N(t − s). This allows us to work out little
bits and pieces. We can think of a filtration F(t), such that N(t) is F(t)-measurable and
N(t+ s)−N(t) ⊥⊥ F(t), analogous to the properties we have for Brownian motion.
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We will want to have evolution of price governed by both the path of a Brownian motion and
the jump process, both adapted to the filtration F(t); in that case, the Brownian motion
and jump processes have to be independent. Another thing that we find is that we can
extend the Itō-Doeblin formula and deal with stochastic differential equation akin to what
we had before.

Consider as a generalization an extension to P(λt) random variables N(t). This will give
a Poisson process of intensity λ. If λ is large, the expectation is very small and vice-versa.
The density becomes

P (N(t) = n) = e−λt
(λt)n

n!

which could just be a redefinition of time ( used in financial markets and sometimes called
θ time, so to have constant transaction occurrence). It makes sense to have a martingale.
Consider N(t) − λt = M(t). It is obvious that E (M(t)) = 0 and the martingale property
follows from the independent increment property

E (M(t+ s) | F(t)) = M(t).

We next define compound process, since we do not expect to have jump of the same size
in the same direction continuously happening. Instead, if the jumps have a particular
distribution, which are IID generalization of a distribution; let Yi be the ith jump– when
N(t) = i. We define the compound Poisson process

Q(t) =
N(t)∑
i=1

Yi

and N ⊥⊥ Yi, where N stands for the whole process. More generally, we would be interested
in E (Q(t)) = βN(t), if E (Yi) = β. Also, it is clear that Q(t) − λβt is a martingale. The
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latter is called compensated Poisson process. The moment generating function is

E
(
euQ(t)

)
= E

exp

uN(t)∑
i=1

Yi


= E

N(t)∏
i=1

euYi


= E

(
(MY (u))N(t)

)
=
∞∑
n=0

Mn
Y (u)e−λt (λt)

n

n!

= e−λteλtMY (u)

= eλt(MY (u)−1)

in the compound case if we let MY (u) := E
(
euYi

)
and for simple P(λt) random variable,

the MGF is

M(u) = eλt(e
u−1).

If the possible jumps are in the set y1, . . . , yM with p(ym) for m = 1, . . . ,M corresponding
probability such that

∑M
i=1 p(ym) = 1, then we can say that the total number of jumps is

N(t) =
M∑
m=1

Nm(t)

Q(t) =
N(t)∑
i=1

Yi =
M∑
m=1

ymNm(t)

First, if Q(t) is as above, a combination of simple Poisson process, the MGF will be

MY (u) = E
(
euY

)
=

M∑
m=1

p(ym)euym

and we get

exp (−λt) exp
(

M∑
m=1

p(ym)euym
)

= e−λt
M∏
m=1

exp (λtp(ym)euym)

=
M∏
m=1

exp ((λp(ym)t(euym − 1))
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since the exponential of sums is the product of exponentials; for later use take λm ≡ λp(ym).
Suppose we start with M different processes with intensity λm. We have then Nm(t) ∼
P(λm) mutually independent. We define

Q(t) =
M∑
m=1

ymNm(t).

Once again, we have

E
(
euQ(t)

)
=

M∏
m=1

E
(
euymNm(t)

)
=

M∏
m=1

exp (λmt(euym − 1))

Earlier, we worked out integrals of adapted functions and Brownian motionW . We introduce
J , arbitrary jump processes until we have specific models using compound or simple Poisson
processes. Before that, we have few definitions and properties which follow from those.

Consider a stochastic process

X(t) = X(0) +
∫ t

0
Θ(s) ds+

∫ t

0
Γ (s) dW (s) + J(t),

Θ, Γ adapted to σ(W (t)); we will want regularity conditions such that J(t) is also adapted.
We require that in any finite time interval, the number of jumps is finite – we rule out the
case of singular distribution, since having explosion is not plausible from a financial point
of view. Let

X(t) = Xc(t) + J(t)

a pure jump part and a piecewise constant part, which moves only at jump times. We now
consider integrals: ∫ t

0
Φ(s) dX(s) =

∫ t

0
Φ(s) dXc(s) +

∑
s<t

Φ(s)∆J(s)

where

∆J(s) = J(s)− J(s−)

so that J is right-continuous and cadlag. For the quadratic variation, first look at the
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continuous part, viz

[Xc, Xc](t) =
∫ t

0
Γ 2(s) ds

so dXc dXc = Γ 2 dt and we would interpret as a Stieltjes integral

Φ(t) dX(t) = Φ(t) dXc(t) + Φ(t) dJ(t)

Unless we take particular precaution, even for adapted integrand, the general X(t) process
involving a jump part will not be a martingale, as the following example illustrates.

Example 9.1
Let M(t) = M(t) − λt again the compensated Poisson process and Φ(s) = ∆N(s) and
consider

∫ t
0 Φ(s) dM(s).∫ t

0
Φ(s) dM(s) = −λ

∫ t

0
Φ(s) ds+ (∆N(s))2 = N(t)

as ∆N(s) ≤ 1, so we need that ∆N(0) = 0, so there is no jump at time 0. We do not have
a martingale; by the first Fundamental theorem of asset pricing, if we find the risk-neutral
measure for M(t), we could rule out arbitrage which is happening in this example. To get
out with adaptivity, we will require that the integrand be left-continuous and the integrator
is right-continuous. We have Φ(s−) dM(s). In such case, if we integrate with respect to
a martingale, then we get back a martingale. We could use predictable (that is require
unpredictability of the integrand, which is a weaker condition than the left-continuity.)

Let Φ(s) = I (s ≤ S1), for S1 the first jump time. Then, we get a martingale integrating
against M(s).

Now that we established cross quadratic-variation between jump processes and Brownian
motion, which will turn out to be zero. If Xk(t) = Xc

k(t) + Jk(t); we want

lim
‖Π‖→0

∣∣∣∣∣
n∑
i=1

(X1(ti)−X1(ti−1)) (X2(ti)−X2(ti−1))

∣∣∣∣∣
= lim
‖Π‖→0

∣∣∣∣∣
n∑
i=1

(Xc
1(ti)−Xc

1(ti−1) + J1(ti)− J1(ti−1)) (Xc
2(ti)−Xc

2(ti−1) + J2(ti)− J2(ti−1))

∣∣∣∣∣
= lim
‖Π‖→0

∣∣∣∣∣
n∑
i=1

(Xc
1(ti)−Xc

1(ti−1)) (Xc
2(ti)−Xc

2(ti−1)) + [· · · ]

∣∣∣∣∣
where the first term corresponds to [Xc

1 , X
c
2 ](t). Using the triangle inequality and looking
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now at [· · · ], involving the cross-term, we have

n∑
i=1
|(Xc

1(ti)−Xc
1(ti−1)) (J2(ti)− J2(ti−1))|

≤ max
i
|(Xc

1(ti)−Xc
1(ti−1))|

n∑
i=1
|J2(ti)− J2(ti−1)|

=→ 0

so we conclude that [Xc
1 , J2](t) = 0 and dXc

1 dJ2 = 0. Similarly for the terms involving
Xc

2 , J1. The last terms in the cross-product will be

n∑
i=1

(J1(ti)− J1(ti−1)) (J2(ti)− J2(ti−1))

=
∑
s<t

∆J1(s)∆J2(s)

and this is non-zero provided that the jumps are not simultaneously occurring. If Nm ⊥
⊥ Nn, then the cross quadratic variation will be [J1, J2](t) = 0, otherwise the product of
of the jumps where they are simultaneous. If we have a Brownian motion, the variation
[W,J ](t) = 0 by an argument analogous to above.

Let us introduce the notation X̃k(t) = X̃k(0) +
∫ t

0 Φk(s) dX(s) for k = 1, 2, for the integral
of such process. It can also be expressed with a pure jump process added to a continuous
process, so as to get

X̃k = X̃c
k + J̃k

and

[X̃1, X̃2](t) = [X̃c
1 , X̃

c
2 ](t) + [J̃1, J̃2](t)

=
∫ t

0
Φ1(s)Φ2(s) dXc

1 dXc
2 +

∑
s≤t

Φ1(s)Φ2(s)∆J̃1(s)∆J̃2(s)

=
∫ t

0
Φ1(s)Φ2(s) d[X1, X2](s) +

∑
s≤t

Φ1(s)Φ2(s)∆J̃1(s)∆J̃2(s)
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Proposition 9.1 (Jump Itō-Doeblin formula)
If f ∈ C2, then

f(X(t)) = f(X(0)) +
∫ t

0
f ′(X(s)) dXc(s) + 1

2

∫ t

0
f ′′(X(s)) dXc(s) dXc(s)

+
∑

0≤s≤t
[f(X(s))− f(X(s−))]

Geometric Poisson process

Since the compensated Poisson process can be negative, we consider the geometric Poisson
process, which is of the form for σ > −1

S(t) = S(0) exp (N(t) log(σ + 1)− λσt) = S(0)e−λσt(σ + 1)N(t)

and we have to show that this is a martingale

Proposition 9.2 (Martingale property of the geometric Poisson process)
Using the Itō-Doeblin formula, consider

X(t) = N(t) log(σ + 1)− λσt

where λσt is the continuous part and N(t) log(σ + 1) the jump part. It is easy to see that

S(s) = S(s−)(σ + 1), ⇒ ∆S(s)− σS(s−) = σS(s−)∆N(s)

We can see that with f(x) = ex, we get

1− λσ
∫ t

0
S(s−) ds+

∑
0≤s≤t

S(s)− S(s−)

= 1− λσ
∫ t

0
S(s) ds+ σ

∫ t

0
S(s−) dN(s)

= 1 + σ

∫ t

0
S(s−) ( d(−λs+N(s)))

for S(0) = 1; this gives a martingale, since we have the compensated process on the right
and a left-continuous integrand S(s−).

Corollary 9.3
Let W (t) be a Brownian motion and N(t) be a Poisson process adapted to one and the
same filtration F(t). Then N(t) and W (t) are independent.
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Proof Look in the book, consider the crucial

Y (t) = exp
(
u1W (t) + u2N(t)− 1

2u
2
1t− λ(eu2 − 1)t

)
the joint characteristic function; because of the separability of the characteristic function
factors for any time t and since the above is a martingale with expectation 1, we can get
that they are independent for each t. �

Proposition 9.4 (Itō-Doeblin formula for two jump processes)
We have functions of two arguments f(t, x1, x2) with f(t,X1(t), X2(t)); the formula is then

X1(t)X2(t) = X1(0)X2(0) +
∫ t

0
X2(s−) dX1(s) +

∫ t

0
X1(s−) dX2(s) + [X1, X2](t)

We look now at change of measures to the risk-neutral measure for Poisson processes. For
stochastic processes without jump, we can invoke Girsanov theorem to change the measure
using the Radon-Nikodym theorem to the risk-neutral measure. Let

Z(t) = exp
(
−
∫ t

0
Γ (s) dW (s)− 1

2

∫ t

0
Γ 2(s) ds

)
= exp

(
Xc(t)− 1

2 [Xc, Xc](t)
)

and

dZ(t) = −Z(t)Γ (t) dW (t)

= Z(t) dXc(t)

where

Xc(t) = −
∫ t

0
Γ (s) dW (s).

Now, for the corresponding process with jump, we have

dZX(t) = ZX(t−) dX(t)

∆ZX(s) = ZX(s−)∆X(s)

ZX(s) = ZX(s−) + ∆Zx(s) = ZX(s−)(1 + ∆X(s))
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To correspond with what we had for Z(t) up here, we define the following process

ZX(t) = exp
(
Xc(t)− 1

2 [Xc, Xc](t)
) ∏

0≤s≤t
(1 + ∆X(s)) (9.9)

which we claim to be the solution of dZX(t). Indeed,

ZX(t) = 1 +
∫ t

0
ZX(s−) dX(s)

where we have the back of the book answer. Again, due to lack of time, we refer the reader
to the book. Writing ZX(t) = Y (t)K(t) where K(t) is the product

∏
0≤s≤t (1 + ∆X(s)),

we can use the product rule, and it goes through in a straightforward fashion using Propo-
sition 9.4. Note in passing that (9.9) is named (after Catherine Doléan) the Doléan-Dale
exponential of X(t).

Change of measure

Let N(t) be a Poisson process in the usual setting. Let λ̃ be positive and define

Z(t) = e(λ−λ̃)t

(
λ̃

λ

)N(t)

and M(t) = N(t)− λt the compensated counterpart, so that

dZ(t) = λ̃− λ
λ

Z(t−) dM(t)

where

Xc(t) = (λ− λ̃)t

J(t) = λ̃− λ
λ

N(t)

and the jump 1+∆X(t) = λ̃
λ which allows us to Z(t) itself. To show that this is martingale,

we show that it is the Doléan-Dale exponential of X(t) defined as

X(t) = λ̃− λ
λ

M(t).

Now
Proposition 9.5
Under the risk-neutral measure P̃, we have N(t) ∼ P(λ̃t). Indeed,
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P̃(A) =
∫
A

Z(T ) dP

for T positive. We want to look at

Ẽ
(
euN(t)

)
= E

(
Z(t)euN(t)

)
= · · · = exp

(
λ̃t(eu − 1)

)
Example 9.2
Consider a change of measure to risk-neutral for a geometric Poisson process model, of the
form

S(t) = S(0)e(α−λσ)t(σ + 1)N(t)

dS = αS dt+ σ(t−)S dM(t)

as to get

dS = rS dt+ σ(t−)S dM̃(t),

we need the relationship S(α− λσ) = S(r − λ̃σ) so that

λ̃ = λ− α− r
σ

which requires to have λ > α−r
σ . If not, then we have the possibility of an arbitrage.

If we had now different intensity, we could have

Zm(t) = e(λm−λ̃m)t

(
λ̃m
λm

)Nm(t)

for the mth process. We use the fact for Z(t) =
∏M
m=1 Zm(t) using Itō product rule and

extending to more by induction. This holds for the discrete case, with some more work and
time, we can show that

Z2(t) = e(λ−λ̃)t
N(t)∏
i=1

λ̃f̃(Yi)
λf(Yi)
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which is also a martingale and E (Z2(t)) = 1. If now

Z1(t) = exp
(
−
∫ t

0
Θ(s) dW (s)− 1

2

∫ t

0
Θ2(s) ds

)
then Z1(t)Z2(t) = Z(t) is also a martingale with expectation 1.

We can get more than one martingale, dealing with one asset with two martingales, for
example one Poisson and one Brownian motion, then we do not have a unique risk-neutral
measure (it does exist, but we cannot edge except in the average). For three asset, two
Poisson processes and one Brownian motion, we may fail to have risk-neutral price. The
market price risk equation may then be solved.

We finish with an European call model driven solely by Poisson jump processes. We have

S(t) = S(0)e(α−λσ)t(σ + 1)N(t)

dS(t) = αS(t) dt+ σS(t−) dM(t)

and we make the change of measure to get

dS(t) = −rS(t) dt+ σS(t−) dM̃(t)

and now the value of the portfolio under the risk neutral measure is

V (t) = Ẽ
(
e−r(T−t)(S(T )−K)+

∣∣∣ F(t)
)

and

S(T ) = S(t)er−λ̃)(T−t)(σ + 1)N(T )−N(t)

where now N(T )−N(t) ≡ N(T − t) and using the independence lemma, we get

V (t) = c(t, S(t))

where

c(t, x) =
∞∑
j=0

(
xe−λ̃στ (σ + 1)j −Ke−rτ

)
+

λ̃jτ j

j! e−λ̃τ

and we can get a corresponding PDE as in Feynman-Kac using Itō-Doeblin rule with dM̃(t)
with e−rtc(t, S(t)) to get (answer)

−rc(t, x) + ct(t, x) + (r − λ̃σ)xcx(t, x) + λ̃(c(t, (σ + 1)x)− c(t, x)) = 0
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a difference equation.
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Index
independent Brownian motions., 51

absolutely continuous, 14
adapted process to the filtration, 16
affine yield model, 79
arbitrage, 3, 67
Asian option, 76

Black-Scholes-Merton equation, 47
Brownian bridge, 52

call, 3
Choleski, 23
compensated Poisson process, 94
complete, 68
compound Poisson process, 93
contracts, 3
cumulative distribution, 13

delta, 48
delta-hedging rule, 4, 47
delta-neutral, 48
derivative securities, 3
deterministic function, 10
diffusion, 3, 42
drift, 32, 42

empirical process, 53, 54
European call options, 3
exercise, 3

filtration, 16
first-order variation, 30
first-passage time, 33
forward contract, 48
forward price, 49

gamma, 48

geometric Brownian motion, 29
geometric Poisson process, 98
Girsanov theorem, 64

hedging, 3
hedging equations, 69

implied volatility, 75
increments, 25
independence., 16
information set, 16
integrand, 8
Itō isometry, 37
Itō process, 40

Jacobian, 22

Law of iterated expectation, 20
leverage, 42
long-gamma, 48

marginal measures, 17
market price of risk, 59
martingale, 20
maximum to date, 34

no arbitrage, 3
non-negative definitive., 22

options, 3
outcome, 7

partial averaging, 16, 20
perpetual American put, 81
Poisson process, 91
portfolio, 3
probability integral transform, 53
probability space, 7
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put, 3
put-call parity, 48

quadratic variation, 25

realized volatility, 33
reflexion principle, 34
risk-neutral probabilities, 5

scaled random walk, 25
standard machine, 12
static edge, 49
Stieltjes, 8
stochastic differential equation, 43
stochastic process, 16
stochastic volatility, 72
stopped process, 82
stopping time, 81
strike price, 3
symmetric , 22

theta, 48
time to maturity, 48
transition density, 35

underlying asset , 3

yield, 78
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