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Chapter 1

Kolmogorov’s axioms
We denote by Ω a sample space, that is the set of all possible outcomes of a
random experiment or a situation whose outcome is unknown, random, etc.

Examples in the discrete (and finite) case include coin toss Ω = {1, 2}, the
sample space of a coin toss, Ω = {1, 2, 3, 4, 5, 6}, a dice toss, Ω = { clear,
cloudy, rainy } for weather. We may also look at Ω = {N}, the number of
insurance claims, Ω = {[0,∞)} for water level or Ω = {R} for temperature.
We could of course put upper or lower bounds to these examples in practise,
although the point of the exercise is to show that we can have countable or
infinite sample space, or some more complicated ones, as Ω = {C([0, t])},
the space of continuous functions from 0 to time t.

Probability
Let A ⊆ Ω be an event. We want to assign probabilities to events.

Terminology
1. Ω ⊆ Ω : sure event

2. ∅ ⊆ Ω: impossible event

3. ω ⊆ Ω, ω ⊂ Ω: singleton, elementary event

4. A,B ⊆ Ω,

(a) A ∩B: A occurred and B occurred as well

(b) A ∪B: A or B occurred

(c) A ∩B{: A occurred, but not B

(d) A{: complementary event

(e)
⋃∞
i=1Ai: Ai occurred for at least one i ∈ N.

(f)
⋂∞
i=1Ai: Ai occurred for all i ∈ N.

Example 1.1
Dice toss, Ω = {1, 2, 3, 4, 5, 6}, with A = 1, 3, 5 and B = 5, 6
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Definition 1.1 (σ-field)
Let Ω be a sample space. A set of subsets of Ω, A ⊆ P(Ω)1, is called a
σ-algebra if

1. Ω ∈ A;

2. A ∈ A, then A{ ∈ A;

3. A1, A2, A3 a countable sequence in A, then
⋃∞
i=1Ai ∈ A. 2

Remark
Let A be a σ-field, then

a) ∅ ∈ A since ∅ = Ω{

b) If A,B ∈ A, then A ∪B ∈ A, since it is the same as A ∪B ∪ ∅ ∪ ∅ . . .
More generally, A1, . . . , An ∈ A ⇒

⋃n
i=1Ai ∈ A.

c) If A,B ∈ A, then by De Morgan’s law A ∩B =
(
A{ ∪B{

){
d) If A1, A2, A3, . . . ∈ A, then

⋂∞
i=1Ai =

(⋃∞
i=1A

{
i

)
∈ A.

e) A \B = A ∩B{ ∈ A.

Example 1.2
1. P(Ω) is the largest σ-field;

2. {∅,Ω} is the smallest σ-field

3. Let A ⊆ Ω. The smallest σ-field that contains A is {Ω, ∅, A,A{}

Example 1.3
Let Ω = R and let

A = {A ∈ R : A is countable or A{ is countable}

B = {B ∈ R : B is finite or B{ is finite}
1The power set of a set S is defined as the set of all subsets of S, including trivial sets
2The σ refers to the fact we take infinite union of sets
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We can see that A is a σ-field, but that B is not

Proof

1. Ω{ = ∅, so Ω ∈ B and Ω ∈ A

2. A ∈ A ⇒ A{ ∈ A, and similarly A ∈ B ⇒ A{ ∈ B

3. A1, A2, A3, . . . ∈ A. Consider
⋃∞
i=1Ai. Then we have two cases:

(a) Ai is countable for all i ∈ N, then the union
⋃∞
i=1Ai is also

countable

(b) There exists an i ∈ N, say i0 such that Ai0 is uncountable. Then
(
⋃∞
i=1Ai)

{ =
⋂∞
i=1Ai

{ ⊆ Ai0
{, which is countable by definition

and indeed in A.

(c) For B, let’s give a counterexample.
Let A1, A2, . . . ∈ B and Ai = {i} ∈ B, but

⋃∞
i=1Ai = N /∈ B.

�

Note
A 6= P(R). Just consider the interval [0, 1].

Theorem 1.2 (σ-field generated by E)
Let E ∈ P(R). Then, there exists a unique smallest σ-field such that

1. E ⊆ σ(E)

2. If A is a σ-field such that E ⊆ A, then σ(E) ⊆ A.

And therefore σ(E) is also called the “σ-field generated by E”.

Proof Note that the proof is not constructive.
Let σ(E) =

⋂
i∈I Ai, where Ai is a σ-field for any i such that E ⊆ Ai and I

is an arbitrary set of indices.
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1. P(Ω) ⊇ E power set is there, so non-empty

2. E ⊆ σ(E) by our requirement, E ⊆ Ai ∀ i ∈ I.

3. If A is a σ-field such that E ∈ A, then σ(E) ⊆ A. This proves that it’s
smallest.

4. σ(E) is a σ-field

(a) Ω ∈ σ(E) since Ω ∈ Ai ∀ i ∈ I ⇒ Ω ∈
⋂
i∈I Ai = σ(E)

(b) A ∈ σ(E)⇒ A ∈ Ai ∀ i ∈ I ⇒ A{ ∈ Ai ∀ i ∈ I ⇒ A{ ∈
⋂
i∈I Ai

(c) A1, A2, . . . ∈ σ(E)⇒ Ak ∈ Ai for k = 1, 2, . . . ∀ i ∈ I. Since they
are σ-fields, then

⋃∞
k=1Ak ∈ Ai ∀ i ∈ I ⇒

⋃∞
k=1Ai ∈

⋂
i∈I Ai.

�

Example 1.4
1. Ω countable (or finite)
A ⊆ Ω, then A =

⋃
ω:ω∈A{ω} ⊂ σ(E).

So say A = {2, 4, 6} ⇒ A = {2} ∪ {4} ∪ {6}

2. Ω = R (Ω = Rn)
E = {{ω}, ω ∈ R}, σ(E) = {A ⊆ R : A or A{ is countable}.

Definition 1.3 (Borel σ-field)
The Borel σ-field on R, denoted by B, is the smallest σ-field that contains

E = {(a, b], a ≤ b ∈ R}

Remark
1. If x ∈ R, then {x} ∈ B;

2. (a, b) = (a, b] \ {b}, therefore [a, b), [a, b], (−∞, b), (−∞, b], [a,∞),
(a,∞) and (−∞,∞) are all in B.

3. O ⊆ R an open set, then O =
⋃∞
i=1(ai, bi) are also in B. Since com-

plement is also by the axioms, then C ⊆ R, the closed set, is also in
B.
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Notation
Elements of B are called Borel sets .

Note
Not every subset of R is a Borel set. Examples include the Vitali sets.

Remark
For more complex sample spaces, (ex. Ω = C[0, t]), then the Borel σ-field is
the smallest σ-field generated (contained) by the open subsets of Ω.

Definition 1.4 (Probability)
Let Ω be a sample space and A a σ-field. The mapping P : A → R is called a
probability (probability measure) if the following three axioms are fulfilled:

1. P(A) ≥ 0, A ∈ A;

2. P(Ω) = 1;

3. If A1, A2, A3, . . . ∈ A such that Ai ∩Aj = ∅ if i 6= j, then

P(
∞⋃
i=1

Ai) =
∞∑
i=1

P(Ai).

The triplet (Ω,A,P) is called a probability space .

Remark
µ : A → R3, which satisfies 1, 3 and µ(∅) = 0 is called a measure.

Note
Every probability is a measure. P(∅) : P(Ω) = 1 = P(Ω ∪ ∅), but Ω ∩ ∅ = ∅,
hence 1 = 1 + P(∅) so this implies P (∅) = 0.

Example 1.5
Ω = {ω1, . . . , ωn},A = P(Ω) and P ({ωi}) = 1

n so

P(A) = P(
⋃
ω∈A

ω) =
∑
ω∈A

1
n

= |A|
n

for equally likely events.
3R including ±∞
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Example 1.6
Ω = [0, 1],A = {B ∩ [0, 1],B ∈ B} and P (A) =

∫ 1
0 1A{x ∈ A}dx.

A

x

y

y = e−x

Figure 1: Probability of A for a continuous function; P(A) =
∫
A e
−xdx

Intuitively, the outcome of the random experiment is ω ∈ Ω. Suppose we
are able to repeat the experiment independently as often as we like. n

repetitions lead to ω1, . . . , ωn and

P(A) ≈ #ωi ∈ A
n

=
∑n
i=1 1A(ωi)

n

where 1A(x) denotes the indicator function, namely takes value 1 if x ∈ A
and 0 if x /∈ A.

Consequences of Kolmogorov’s axioms

Lemma 1.5 (Properties of probability spaces)
Let (Ω,A,P) be a probability space. Then

1. P(∅) = 0;

2. P(A{) = 1− P(A) for A ∈ A;

3. If A,B ∈ A are such that A ⊆ B, then P(B \ A) = P(B)− P(A) and
P(B) ≥ P(A);
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4. P(A ∪B) = P(A) + P(B)− P(A ∩B), for A,B ∈ A;

5. P(A ∪B) ≤ P(A) + P(B) for A,B ∈ A;

6. Inclusion-exclusion principle or Sieve-formula: if A1, . . . , An ∈ A, then

P
(

n⋃
i=1

An

)
=

n∑
i=1

P(Ai)−
∑
i<j

P(Ai ∩Aj) +
∑
i<j<k

P(Ai ∩Aj ∩Ak)

− · · ·+ (−1)n+1P(A1 ∩ . . . ∩An)

=
∑

∅⊆I⊆{1,...,n}
(−1)|I|+1 P

(⋂
i∈I

Ai

)

A

B

C

Figure 2: Venn Diagram illustrating the Inclusion-exclusion principle

Proof

2. Given that A ∪A{ = Ω, A ∩A{ = ∅ and P(Ω) = 1 =
P (A ∪A{), then (3)= P(A) + P(A{)⇒ P(A{) = 1− P(A);

3. Write B as B = A ∪ (B \ A), A ∩ (B \ A) = ∅. Then the probability
P(B) = P(A∪ (B \A)) (3)= P(A)+P(B \A)⇒ P(B \A) = P(B)−P(A)
since P(B \A) > 0 by definition, hence P(B) > P(A);
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4. In a similar fashion, express A∪B = (A \B)∪ (A∩B)∪ (B \A). The
right hand side terms are pairwise disjoint, so

P(A ∪B) (3)= P(A \B) + P(A ∩B) + P(B \A).

But P(A) = P((A\B)∪(A∩B)) = P(A\B)+P(A∩B). We also recall
that P(A\B) = P(A)−P(A∩B) and similarly P(B\A) = P(B)−P(A∩
B), hence P(A∪B) = P(A)−P(A∩B) + P(A∩B) + P(B)−P(A∩B)
which by cancelling is equal to P(A) + P(B)− P(A ∩B).

5. Follows from (4) since P(A ∩B) ≥ 0;

6. The proof is by induction on n, starting with n = 1 as the trivial case
P(A) = P(A1). Suppose the induction hypothesis holds for n, then for
n+ 1, start by splitting the union in two parts:

P
(
n+1⋃
i=1

Ai

)
= P

({
n⋃
i=1

Ai

}
∪An+1

)

is by applying (4)

= P
(

n⋃
i=1

Ai

)
+ P(An+1)− P

(
An+1 ∩

{
n⋃
i=1

Ai

})

is the same as the union of intersections of events A1, . . . An with An+1

= P
(

n⋃
i=1

Ai

)
+ P(An+1)− P

(
n⋃
i=1

(A1 ∩An+1)
)

Then by applying the induction hypothesis to first and last term (re-
grouping the negative inside the sum), we get

∑
∅⊆I⊆{1,...,n}

(−1)|I|+1P
(⋂
i∈I

Ai

)
+ P(An+1)

+
∑

∅⊆I⊆{1,...,n}
(−1)|I|+2 P

(⋂
i∈I
{Ai ∩An+1}

)
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where the underlined probability is just equal to

P

 ⋂
i∈I∪{n+1}

Ai

 .
Then, in this case, either it does contain n+1 (second and third terms
cancel), else partly, or not at all. In all cases, we get the desired result,
that is

=
∑

∅⊆I⊆{1,...,n+1}
(−1)|I|+1P

(⋂
i∈I

Ai

)
.

�

Remark
Note that if P(∅) = 0 and P(A) = 0 ; A = ∅. Just consider

∫
A e
−xdx where

A = {x0}, then
∫ x0
x0
e−xdx = 0. Analogously, P(Ω) = 1, but P(A) = 1 ;

A = Ω. Consider [0,∞) \ {x0}. While Ω is called sure event, A is called
almost sure event if P(A) = 1.

Corollary 1.6 (Bonferroni inequality)
Let A1, . . . , An ∈ A, n ∈ N. Then

n∑
i=1

P(Ai)−
∑
i<j

P(Ai ∩Aj) ≤ P
(

n⋃
i=1

Ai

)
≤

n∑
i=1

P(Ai).

Proof The proof is similar in style to the proof of Sieve formula, by
induction on n. Consider first the right hand side of the inequality. Clearly,
P(Ai) = P(Ai). Assume as an induction hypothesis that it holds for n. Then
for n+ 1,

P
(
n+1⋃
i=1

Ai

)
≤ P

(
n⋃
i=1

Ai

)
+ P(An+1) ≤

n+1∑
i=1

P(Ai)

For the left hand side of the Bonferroni inequality, P(Ai) = P(Ai) and by
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induction, we get for n+ 1

P
(
n+1⋃
i=1

Ai

)
≥

n∑
i=1

P(Ai)−
n∑
i<j

P(Ai ∩Aj) + P(An+1)−
n∑
i=1

(Ai ∩An+1)

and remarking the right hand side of the above is equal to

n+1∑
i=1

P(Ai)−
n+1∑
i<j

P(Ai ∩Aj)

we get the desired result. �

Corollary 1.7 (Boole’s inequality)
Let A1, A2, . . . , An ∈ A. Then

P(A1 ∩A2) ≥ 1− P(A1
{)− P(A2

{)

and more generally, for n ∈ N

P
(

n⋂
i=1

Ai

)
≥ 1−

n∑
i=1

P(Ai{)

Proof

P

{ n⋂
i=1

Ai

}{ = P
(

n⋃
i=1

Ai
{

)
≤

n∑
i=1

P(Ai{)

but also

P

{ n⋂
i=1

Ai

}{ = 1− P
(

n⋂
i=1

Ai

)

Rearranging the equalities yield the result. �

Theorem 1.8
Let {Ai} be a sequence of events in A. Then
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1. If the sequence is increasing, A1 ⊆ A2 ⊆ A3 ⊆ · · · ⊆ An ⊆ An+1, then

P
( ∞⋃
i=1

Ai

)
= lim

n→∞
P(An);

2. If the sequence is decreasing A1 ⊇ A2 ⊇ · · · ⊇ An, then

P
( ∞⋂
i=1

Ai

)
= lim

n→∞
P(An).

Proof (1) Since the sequence is increasing, we can write each set as follows:
A1 = A1, A2 = A1 ∪ (A2 \ A1), A3 = A1 ∪ (A2 \ A1) ∪ (A3 \ A2), . . . ,
An =

⋃n
i=1(Ai \Ai−1), and A0 = ∅. We have

∞⋃
i=1

Ai =
∞⋃
i=1

(Ai \Ai−1)

where (Ai \Ai−1) are pairwise disjoint since Ai−1 ⊆ Ai. Then

P
( ∞⋃
i=1

Ai

)
=
∞∑
i=1

P(Ai \Ai−1) = lim
n→∞

n∑
i=1

P(Ai \Ai−1)

= lim
n→∞

n∑
i=1
{P(Ai)− P(Ai−1)}

telescoping sum

which is equal to limn→∞ P(An) and hence P(A1) ≤ P(A2) ≤ . . . ≤ 1 �

(2) The sequence {An} is decreasing, then A1
{ ⊆ A2

{ ⊆ . . . so by (1)

P
( ∞⋃
i=1

A1
{

)
= lim

n→∞
P(An{)

1− P
( ∞⋂
i=1

Ai

)
= 1− lim

n→∞
P(An)
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Corollary 1.9
Let {Ai} be a sequence in A. Then

P
( ∞⋃
i=1

Ai

)
≤
∞∑
i=1

P(Ai)

Proof Consider the following sequence: Bn =
⋃n
i=1Ai, n = 1, 2, . . . and

B1 ⊆ B2 ⊆ . . .. we have that
⋃∞
i=1Ai =

⋃∞
i=1Bi so

P
( ∞⋃
i=1

Ai

)
= lim

n→∞
P(Bn) ≤ lim

n→∞

n∑
i=1

P(Ai) =
∞∑
i=1

P(Ai)

�

Think about P(
⋂∞
i=1Ai) ≥ 1−

∑∞
i=1 P(Ai) and remark that Boole’s inequal-

ity even hold for ∞.

Definition 1.10 (Limits of sets)
Let {Ai} be an arbitrary sequence of events in A.

1. lim inf
n→∞

An =
∞⋃
n=1

∞⋂
i=n

Ai = {ω : ω ∈ Ai ∀ i but finitely many};

2. lim sup
n→∞

An =
∞⋂
n=1

∞⋃
i=n

Ai = {ω : ω ∈ Ai for ∞ many i’s}.

For sure, we have lim infn→∞An ⊆ lim supn→∞An4. Furthermore, we get
that

(
lim inf
n→∞

An
){

=
( ∞⋃
n=1

∞⋂
i=n

Ai

){
=
∞⋂
n=1

( ∞⋂
i=n

Ai

){
=
∞⋂
n=1

∞⋃
i=n

Ai
{ = lim sup

n→∞
An
{.

If lim infn→∞An = lim supn→∞An, then

lim
n→∞

An = lim inf
n→∞

An = lim sup
n→∞

An.

4This idea of lim inf and lim sup refer to the same concept as in analysis, but we are
dealing here with sets, not numbers.
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Example 1.7
Let Ω = R,A = B and Ai = {(−1)i}.
With this specific example,

lim inf
n→∞

An = ∅ and lim sup
n→∞

An = {−1, 1}.

We can also look at our previous example of An a monotonically increasing
sequence, that is {A1 ⊆ A2 ⊆ A3 ⊆ . . .}. Then

lim inf
n→∞

An = lim sup
n→∞

An =
∞⋃
n=1

An.

To see this, note that the lim inf is the union of An since An is always the
smallest set in the intersection. For the lim sup, we are over and over again
intersecting the same set since the union is just the biggest of the elements
in the set.

Similarly, we can get for the decreasing sequence of An that

lim inf
n→∞

An = lim sup
n→∞

An =
∞⋂
n=1

An.

It holds that if limn→∞An exists, P(limn→∞An) = limn→∞ P(An). In gen-
eral, P(lim infn→∞An) and P(lim supn→∞An) can be computed in some
cases. These probabilities are the subject of the so-called 0-1 laws or the
lemmas due to Borel and Cantelli.
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Chapter 2

Conditional probability
Suppose that we are playing a game (of chance) with the following speci-
fications: 2 coins are flipped independently. If the 2 coins show the same
symbol (with probability 1

2), then player α wins. If the 2 coins show different
symbols, then player β wins. This is a fair game. Suppose now that a third
player flip the coins and tell us one of the coin showed “tail”. Then, it is no
longer a fair game. Let us formalize the above.

Let Ω = {(1, 1), (0, 1), (1, 0), (0, 0)} and P(Ω), P((i, j)) = 1/2 with i =
0, 1; j = 0, 1. With no information, P(A) = P({(1, 1), (0, 0)}) = 1/2 and
P(A)∗ = 1/3. Note that if we are told that the first coin was “tail”, then
the game is still fair.

Definition 2.1 (Conditional probability)
Let (Ω,A,P), B be an event such that P(B) > 0. Then, the conditional
probability of (an event) A given B is

P(A|B) = P(A ∩B)
P(B)

Example 2.1
B = {(1, 1), (0, 1), (1, 0)},P(B) = 3/4. Then

P(A|B) = P(A ∩B)
3/4 = P({1, 1})

3/4 = 1/4
3/4 = 1

3

Example 2.2
Suppose that a teacher carries around an umbrella to go to school. He visits
4 shops before going to his office. The probability that he forgets it in some
location Ai is P(Ai) = 1/5, i = 1, 2, 3, 4. B is the event that the umbrella is
left in one of the stores. B = A1 ∪A2 ∪A3 ∪A4 and P(B) = 4/5, therefore

P(A1|B) = P(A1 ∩B)
4/5 = 1/5

4/5 = 1
4 .
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Additional information changes the sample space and also affect the prob-
ability measure. We can make it more precise by observing the following.

Theorem 2.2
Let (Ω,A,P) and B ∈ A, P(B) > 0. Then PB : A → R is given by
PB(A) = P(A|B). This new mapping is again a probability measure on
(Ω,A).

Proof

1. Consider the probability of Ω:

PB(Ω) = P(Ω ∩B)
P(B) = P(B)

P(B) = 1;

2. PB(A) ≥ 0 since both P(A ∩B) and P(B) ≥ 0;

3. Let A1, A2, A3, . . . be pairwise disjoint. Then by using the definition
of conditional probability and the fact that the An are disjoint, hence
that the union of Ai ∩B is disjoint:

PB

( ∞⋃
n=1

An

)
= P ({

⋃∞
n=1An} ∩B)
P(B) = P (

⋃∞
n=1(An ∩B))

P(B)

=
∞∑
n=1

P (An ∩B)
P(B) =

∞∑
n=1

P(An|B) =
∞∑
n=1

PB(An)

�

Remark
Note that if A ∩B = ∅ , then

P(A|B) = P(A ∩B)
P(B) = P(∅)

P(B) = 0

Therefore, the “new” sample space can be B. If AB = {A ∩ B,A ∈ A},
then AB is a σ-field and for PB : AB → R, then (B,AB,PB) is a probability
space.
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Theorem 2.3
Let (Ω,A,P) and A1, . . . , An events such that P(

⋂n
i=1Ai) > 0. Then

P
(

n⋂
i=1

Ai

)
= P(A1) · P(A2|A1) · P(A3|A1 ∩A2) · · ·P(An|A1 ∩ . . . ∩An−1)

Proof

P
(

n⋂
i=1

Ai

)
= P(A1) · P(A1 ∩A2)

P(A1) · P(A1 ∩A2 ∩A3)
P(A1 ∩A2) · · ·

P(An−1 ∩An−2 . . . ∩A1)
P(An−2 ∩An−3 . . . ∩A1) ·

P(An ∩An−1 . . . ∩A1)
P(An−1 ∩An−2 . . . ∩A1)

Cancel all but the last numerator to get the result. �

Example 2.3
Consider the following problem involving a random walk problem. Suppose
that a coin is flipped and you get -1 if tail, 1, if the result is head. Note that
not every sequence is equally likely, that is certain path are impossible. For
example, the path (1, -2,1) is not possible.

1 2 3

−3

−2

−1

0

1

2

3

Figure 3: Random walk with a coin toss
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We have Ω = {−1, 1}×{−2, 0, 2}×{−3,−1, 1, 3} and suppose as illustrated
in red that (A1, A2, A3) = {(1, 0,−1)}. Then

A1 = {(t1, t2, t3), t1 = 1},

A2 = {(t1, t2, t3), t2 = 0},

A3 = {(t1, t2, t3), t3 = −1}

and so the probability of this path is

P(A1 ∩A2 ∩A3) = P(A1) · P(A2|A1) · P(A3|A1 ∩A2)5 = 1
2 ·

1
2 ·

1
2 = 1

8

The previous theorem is of use in stochastic processes and leads to condi-
tional σ-field.

Theorem 2.4 (Law of total probability)
Let (Ω,A,P) be a probability space, {Bi} a collection of pairwise disjoint
sets with P(Bi) > 0 such that

⋃∞
i=1Bi = Ω. In other words, {Bi} is a

partition of Ω. Then, for any A ∈ Ai,

P(A) =
∞∑
i=1

P(A|Bi)P(Bi) =
∞∑
i=1

P(A ∩Bi)

Proof Starting from the end terms and going backward, we have

∞∑
i=1

P(A ∩Bi)
P(Bi)

P(Bi) =
∞∑
i=1

P(A ∩Bi)

then by reversing axiom (3) of our definition of probability and after noting
that A is in the union for all terms, we get

= P
( ∞⋃
i=1

(A ∩Bi)
)

= P
(
A ∩

∞⋃
i=1

Bi

)
= P(A ∩ Ω) = P(A)

�
5Note that P(A3|A1 ∩ A2) = P(A3|A2). This is called Markov properties of random

chains.
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Example 2.4
Consider a random experiment where white and black balls are placed in
3 urns. The following assets for the urn content: U = (1w, 2b), V =
(2w, 1b), W = (3w, 3b). Toss a dice: if {1, 2, 3}, you choose urn U, {4}
choose V and else if {5, 6} choose W . Define A as A =“Ball is white”
and U, V,W as choosing respectively urns U, V,W . We have the following
probabilities:

P(U) = 1/2, P(V ) = 1/6, P(W ) = 1/3 and U ∪V ∪W = Ω, U ∩V ∩W = ∅
so we given this partition, we have the following

P(A) = P(A|U)P(U) + P(A|V )P(V ) + P(A|W )P(W )

= 1
3

(1
2

)
+ 2

3

(1
6

)
+ 1

2

(1
3

)
= 4

9

Here is an extremely useful corollary of the Law of total probability
Theorem 2.5 (Bayes’ rule)
Let (Ω,A,P) be a probability space, {Bi} a collection of pairwise disjoint
sets with P(Bi) > 0 such that Ω =

⋃∞
i=1Bi and P(Bi) > 0 ∀ i = 1, 2, . . .

Then, if P(A) > 0,

P(Bi|A) = P(A|Bi)P(Bi)∑∞
j=1 P(A|Bj)P(Bj)

.

Proof We use the definition of conditional probability twice here and also
the Law of total probability to get the result

P(Bi|A) = P(A ∩Bi)
P(A) = P(A|Bi)P(Bi)∑∞

j=1 P(A|Bj)P(Bj)

�

Example 2.5 (Paradox of rare disease)
Here are the results of a study performed in Hamburg between 1975 to 1977
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about breast cancer in women aged 30 to 40. The study has found that the
probability of getting breast cancer is p = 64/124787 ≈ 0, 000513. Let A be
the event that a woman aged 30-40 has breast cancer. We denote P(A) = p

and P(A{) = 1 − p. The test to test for breast cancer gives event B if the
test is positive. The following probabilities have been computed

P(B|A) = 0.99 P(B{|A{) = 0.95 and P(B|A{) = 1− P(B{|A{) = 0.05

Then, by Bayes’ rule, the probability of getting positive result and having
cancer is

P(A|B) = P(B|A)P(A)
P(B|A)P(A) + P(B|A{)P(A{)

= 0.99p
0.99p+ 0.05(1− p) ≈ 0.01

A A{

B B{ B B{

p 1− p

0.99 0.01 0.05 0.95

Figure 4: Bayes’ rule: considering the situation with a tree

Example 2.6 (Genetic disorder: Haemophilia)
Determine the probability of an unknown woman having the gene for H
based on the number of her non-haemophiliac sons (in fact, the gene could
be recessive in her sons). Consider first the case of her having one boy.

The event of allele being recessive is denoted by H̄, B̄. The two probability
trees show the relevant information. Using Bayes’ rule,

P(B|H̄) = (1/2)(1/2)
(1/2)(1/2) + (1/2)(1) = 1/3.
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B

H̄ H

B̄

H H̄

1
2

1
2

1
2

1
2 0 1

Figure 5: Probability tree for haemophilia with one son

As we will see, having non-haemophiliac sons increase the likeliness of not
having the gene. In this case,

B

H̄

H̄ H

H

H̄ H

B̄

H

H H̄

H̄

H H̄

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

0

0 1

1

0 1

Figure 6: Probability tree for haemophilia with two sons

P(B|H̄2) = (1/2)(1/2)(1/2)
(1/8) + (1/2) = 1/5.

Note that we could have made a smaller tree and spared the big one. If

B

H̄ H

B̄

H H̄

1
3

2
3

1
2

1
2 0 1

Figure 7: Short probability tree for haemophilia with two sons

we want to find the relation between the number of haemophiliac, we could
believe for a minute that it is 1

2n+1 . But considering a larger number of sons
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(theoretically going to ∞). So the formula is given by

B H̄ · · · H̄

B̄ H̄ · · · H̄

1
2

1
2

1
2

1
2

1 1

(1/2)(1/2)n

(1/2)(1/2)n + (1/2) = 1
1 + 2n

All bare down if one son is haemophiliac.

Independence of events
Recall on of the previous examples. Ω = {(1, 1), (0, 1), (1, 0), (0, 0)} and
A = {(1, 1), (0, 0)}, B = {(1, 1), (0, 1), (1, 0)} where at least one of the coins
show head and C{(1, 0), (1, 1)} if the first coin show heads. Then we have
found that P(A) = 1/2 and P(A|B) = 1/3. In contrast, P(A|C) = 1/2.
C does not change the probability of A, since it does not provide addition
information. This observation leads to
Definition 2.6 (Independent events)
Let (Ω,A,P), A,B ∈ A. A and B are independent if P(A∩B) = P(A)P(B).

Lemma 2.7
If A,B are independent and P(B) > 0, then P(A|B) = P(A) (and vice-versa)
since P(A|B) = P(A∩B)

P(B) .

Lemma 2.8
If A and B are independent, then so are A and B{, A{ and B, A{ and B{.

Proof

P(A{ ∩B) = P(B \A) = P(B)− P(A ∩B) = P(B)− P(A)P(B)

by factoring P(B), you get P(B){1 − P(A)} = P(B)P(A{). The intuition
here is that it gives you the same amount of information. �
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Note
Independence does not mean empty intersection. They [events] are exclusive
so P(A∩B) = 0 6= P(A)P(B) unless either P(A) = 0 or P(B) = 0. This will
be useful later when we discuss of random vectors.
Definition 2.9
Let Ai, i ∈ I be a collection of sets in A (I may be finite, countable or
infinitely large). Then

1. {Ai, i ∈ I} are pairwise independent if ∀ i 6= j; i, j ∈ I, it holds that

P(Ai ∩Aj) = P(Ai)P(Aj),

that is Ai, Aj are independent.

2. {Ai, i ∈ I} is independent if for any finite subset J ⊆ I, it holds that

P
(⋂
i∈J

Ai

)
=
∏
i∈J

P(Ai).6

As for the remark, a similar warning apply to disjoint sets. To see that
pairwise disjoint Ai ∩Aj = ∅, i 6= j is stronger, note that it implies disjoint,
that is

⋂
i∈I Ai = ∅. For the reverse implication, consider the following

counterexample.

Figure 8: An example of disjoint sets, but not pairwise disjoint.

6Here, one should note that (1) does not imply (2). However, independence does imply
pairwise independence, as it is a stronger concept
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Example 2.7
Consider an urn with 4 marbles, a white, a yellow, a blue and one rain-
bow. Each can be drawn with probability p = 1/4. Denote the events
Aω =“Marble shows colour ω” where ω = {white, yellow, blue}. Then
P(Ab) = 1/2,P(Aw) = 1/2,P(Ay) = 1/2. If we consider the probability
of having both white and yellow on a marble, then P(Aw ∩ Ay) = 1/4 =
P(Aw)P(Ay) and similarly for all pairs Ay ∩ Ab and Aw ∩ Ab. Therefore,
Aw, Ay, Ab are pairwise independent. But if we consider rainbow marble,
that is one showing all three colours, we have

P(Aw ∩Ay ∩Ab) = 1
4 6=

1
8 = P(Aw)P(Ay)P(Ab)

We have to conclude that pairwise independence does not imply indepen-
dence. The following other example is illustrative too, although being arti-
ficial.
Example 2.8
If I is finite, considering J = I is not enough. We could conclude from
this observation that getting the condition for all may well be luck. Let
Ω = {ω1, ω2, ω3, ω4} with P(Ω) be our sample space. We have

P({ω1}) =
√

2/2− 1/4

P({ω2}) = P({ω4}) = 1/4

P({ω3}) = 3/4−
√

2/2.

Consider now the following events:

E1 = {ω1, ω3}, E2 = {ω2, ω3}, E3 = {ω3, ω4}. Now if we look at the proba-
bility of all events, we get

P(E1 ∩ E2 ∩ E3) = P({ω3}) = 3
4 −
√

2
2

=
(1

2

)(
1−
√

2
2

)(
1−
√

2
2

)
= P(E1)P(E2)P(E3)
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But if we look at pairs

P(E1 ∩ E2) = 3/4−
√

2/2 6= 1/2−
√

2/4 = P(E1)P(E2).

It is therefore important to look at all possible combinations before claiming
independence.
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Chapter 3

Laplace experiments
We recall the equally likely events from the introduction.

Definition 3.1
Let (Ω,A,P) be a probability space such that

• Ω = {ω1, . . . , ωn}; Ω is finite

• P(Ω)

• P({ωi}) = 1/n, i = 1, . . . , n

Then (Ω,A,P) is called a Laplace experiment and P is called a Laplace
distribution.

P(A) =
∑

i:ωi∈A

1
n

= |A|
n

= # favorable outcomes
# all outcomes .

Example 3.1 (Chevalier de Méré, (1607-1685))
Suppose that you are playing with three dices and you want to look at
the probabilities that 3 numbers sum to 11 and to 12. de Méré noticed
that the probability of getting a sum of 11 seemed to be higher than just
playing 12, which contradicted Laplace’s definition of equally likely events.
In this example, Ω = ((ω1, ω2, ω3), ωi ∈ {1, 2, . . . , 6}, i = 1, 2, 3) and we
have P({(ω1, ω2, ω3)}) = 1/63 and two events, namely A={sum is 11} and
B={sum is 12}. Let’s look at the possibilities, examining also the number
of permutations, denoted #Ai and #Bi. It is now easily seen, as Poincarré
pointed out to his friend that not all the combinations have the same number
of permutations, and in a sense his observation was right as

P(A) = 27/63 ≈ 0, 125 > 0, 116 ≈ 25/63.

Lemma 3.2 (The multiplicative rule)
Let (ω1, . . . , ωk) be an ordered k-tuple (called k-permutation ) and suppose
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Ai #Ai Bi #Bi
1+4+6 6 1+5+6 6
1+5+5 3 2+4+6 6
2+3+6 6 2+5+5 3
2+4+5 6 3+3+6 3
3+3+5 3 3+4+5 6
3+4+4 3 4+4+4 1

Figure 9: Summing three dices to get 11 or 12

that ω1 ∈ A1 and |Ai| = n1, ω2 ∈ A2, . . . , |A2| = n2, . . . , ωk ∈ Ak, . . . , |Ak| =
nk. Then, there are exactly

∏k
i=1 ni such k-permutations.

Example 3.2
Consider (ω1, . . . , ωk) with ωi ∈ {1, . . . , k} and ωi 6= ωj . There are k! such
permutations. Here, Ω = {ω1, . . . , ωn}, |P(Ω)| = 2n. To see this, just con-
sider the binary representation in a table.

Example 3.3
Consider an urn with N numbered (distinguishable) marbles 1, . . . , N and
of which k marbles with replacement (drawn, then placed back).

We have Ω = {(ω1, . . . , ωk), ωi ∈ {1, . . . , N}}. Then |Ω| = Nk

Example 3.4
Urn as above, k marbles are drawn without replacement.
Ω = {(ω1, . . . , ωk), ωi ∈ {1, . . . , N}, ωi 6= ωj for i 6= j}. Then

|Ω| = N(N − 1) · · · (N − (k − 1)) = N !
(N − k)!

Example 3.5 (Birthday match)
Here Ω = {(i1, . . . , in), ij ∈ {1, . . . , 365}} and |Ω| = (365)n. We are inter-
ested in the probability of having at least one overlap for a given group. Let
A be “there is no overlap” (that is, we look at the complement of having at
least one overlap). Then for ij 6= ik:

P(A) = 365 · 364 · 363 · · · (365− n+ 1)
365n =

365!
(365− n)!

365n
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Then for n ≈ 20,P(A) ≈ 0.589 so overlap happens close to 41% ot the
time. Similarly, if n = 30, we have P(A) ≈ 0.32 implying P(A{) ≈ 0.68. By
enlarging the number of people in the sample to only 60 people, we have
P(A{) ≈ 0.99412.

Lemma 3.3 (k-combination)
A k-combination is a sequence of k-numbers in which the ordering is irrele-
vant. There are exactly

(n
k

)
k-combinations out of n elements. Here

(n
k

)
is

called the binomial coefficient and is equal to(
n

k

)
= n!
k!(n− k)! .

Example 3.6 (Crazy cloakroom lady)
Suppose a lady in charge of the cloakroom decides to mix the numbers
corresponding to the clothes. Than, for number 1, . . . , n, we are interested
in the probability of being lucky and getting a tie, that is the event Ai that
there is a fixed point of the permutation (πi = i).

The probability of getting one fixed point is equal to P(
⋃n
i=1Ai) and Ω =the

set of all permutations 1, . . . , n. The probability P(Ai) = (n − 1)!/n! and
P(Ai ∩ Aj) = (n − 2)!/n! so by the Inclusion-exclusion principle, we have
P (
⋃n
i=1An) is equal to

=
n∑
i=1

P(Ai)−
∑
i<j

P(Ai ∩Aj) +
∑
i<j<k

P(Ai ∩Aj ∩Ak)

− · · ·+ (−1)n+1P(A1 ∩ . . . ∩An)

= n
(n− 1)!
n! −

(
n

2

)
(n− 2)!
n! +

(
n

3

)
(n− 3)!
n! + · · ·+ (−1)n+1

n!

= 1− 1
2! + 1

3! + · · ·+ (−1)n+1 1
n!

=
n∑
i=1

(−1)i+1 1
i!

It may seem paradoxical that as n → ∞, the probability of getting back a
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coat does not go to zero. Indeed, P(no fixed point) equals

1− P
(

n⋃
i=1

An

)
= 1−

n∑
i=1

(−1)i+1 1
i! =

n∑
i=0

(−1)i 1
i!

As n→∞ the probability

P→
∞∑
i=0

1
i! = 1

e
≈ 0.368

Remark (About the binomial coefficient)
We have the following properties for the Pascal triangle

1.
(n

0
)

=
(n
n

)
;

2.
(n

1
)

= n;

3.
(n
k

)
=
( n
n−k

)
(symmetric);

4.
(n−1
k−1
)

+
(n−1
k

)
=
(n
k

)
;

5. Binomial theorem :

(x+ y)n =
n∑
k=0

(
n

k

)
xkyn−k

and in particular
∑n
k=0

(n
k

)
= 2n.

Note that
(n
k

)
is also the number of k-combinations drawn out of n balls

without replacement. There are
(n+k−1

k

)
k-combinations with replacement.

To see this, let us have a look at the table where the different draws are
expressed as follow: each draw has zero corresponding to the number of 0
not distinguishable and 1 not distinguishable. We have n − 1 ones and k

zeros. We get the expression

000︸︷︷︸
draw 1

1 00︸︷︷︸
draw 2

1 0︸︷︷︸
draw 3

1 0000︸ ︷︷ ︸
draw 4

 
(n− 1 + k)!
k!(n− 1)!
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Figure 10: Illustration of the Pascal triangle

Lemma 3.4
A set of size n can be partitioned into k categories (subsets) of size n1, . . . nk

(where n1 + . . .+nk = n) in exactly n!
n1!...nk! ways, or equally

( n
n1...nk

)
. Here,( n

n1...nk

)
is called the multinomial coefficient.

Proof(
n

n1

)
·
(
n− n1
n2

)
·
(
n− n1 − n2

n3

)
· · ·
(
n− n1 − · · · − nk−1

nk

)

are the quantities and what can placed into each bin. By cancelling the
terms, we get

n!
n1!(n− n1)! ·

(n− n1)!
n2!(n− n1 − n2)! · · ·

nk
nk!0! = n!

n! · · ·nk!

�

Lemma 3.5 (Multinomial theorem)

(x1 + · · ·+ xk)n =
∑

n1,...,nk≥0
n1+···+nk=n

n!
n1! · · ·nk!

xn1
1 · · ·x

nk
k

of which the binomial theorem is a special case.

31



Chapter 4

Discrete probability measures
Definition 4.1 (Discrete probability measure)
Let S ⊆ Ω, S countable (S is finite or countably infinite) and let ps ∈
[0,∞), s ∈ S be a collection of numbers such that

∑
s∈S ps = 1.

Then P: P(Ω)→ [0, 1] such that

P(A) =
∑

s∈S∩A
ps =

∑
s∈S

ps1A(s)

is a probability measure on (Ω,P(Ω)). It is called a discrete7 probability
measure with support S.

The function F : Ω→ R given by

f(ω) =

0 ω /∈ S

ps ω = s ∈ S

is called the probability mass function or PMF (density of P with respect to
the counting measure).

Remark
• ps = P({s}), s ∈ S;

• Ω = S

• The PMF defines P uniquely

If f : Ω → [0,∞) is such that S = {ω ∈ Ω : f(ω) > 0} is countable
and

∑
ω∈S f(ω) = 1, then f defines a probability measure on Ω,P(Ω)) by

P : P(Ω) → [0, 1] and A =
∑
ω∈S f(ω)1A(ω) (that is, we get an injective

function from the PMF to the probability measure).
Notation
A discrete probability measure if often called a discrete distribution

7Refers to the countability of the support
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Example 4.1 (Dirac distribution)
Ω, ωo ∈ Ω fixed and f : Ω→ [0, 1] and

ω →

0 if ω 6= ωo

1 if ω = ωo

The support of f is {ωo}. The corresponding probability measure is such
that

P(A) =

0 if ω /∈ A

1 if ω ∈ A

The Dirac distribution describes a deterministic experiment (sure outcome).
It is also denoted by Eωo .

Example 4.2 (Discrete uniform distribution)
Ω = {ω1, . . . ωn}, f(ωi) = 1/n where i = 1, . . . , n.

Example 4.3 (Bernoulli distribution)
Ω = {0, 1}, f(0) = 1− p and f(1) = p for p ∈ [0, 1].

The Bernoulli distribution is denoted B(p) or B(1, p). It describes the out-
come of a “0,1” experiment, where 0=“failure” and 1=“success”. Examples
include the coin toss, gender, presence or absence of some characteristic. If
we were to be interested in a sequence of Bernoulli trials, then we would
look at

Example 4.4 (Binomial distribution)
Ω = {0, . . . , n} = S and

f(k) =
(
n

k

)
pk(1− p)n−k

for k = 1, . . . , n. Indeed,
∑n
k=0 f(k) = 1 (by the binomial theorem). The bi-

nomial distribution is denoted B(n, p). It describes the number of successes
in n independent Bernoulli trials.

We have Ω∗ = {(ω1, . . . , ωn), ωi ∈ {0, 1}} where Ak = successes out of
n = {(ω1, . . . , ωn) ∈ Ω∗,

∑n
i=1 ωi = k}. P({1, . . . , 1, 0, . . . 0)} = pk(1− p)n−k
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which is equal to
(

1
2

)n
if p = 1

2 and similarly for all (ω1, . . . , ωn). with k 1’s
and (n − k) 0’s with P(Ak) =

(n
k

)
pk(1 − p)n−k. Here is an example. Given

that a mother carries the gene for haemophilia, suppose she has n sons. The
probability that exactly k of them are haemophiliac.(

n

k

)(1
2

)k (1
2

)n−k
Another example arises from quality control. In Hamburg harbour, ship-
ments of coffee arrive and are stored in gigantic storage house. Bags are
chosen at random and quality of the shipment is evaluated by digging the
bag with a small spade to retrieve 50 beans and considering each of them.
This procedure allows to asset the quality of the shipment.

Alternatively, consider quality-control in a manufacture of light bulbs. Each
hour, 10 bulbs are selected ar random and tested. If at least one is defec-
tive bulb is discovered, the production stops. Suppose the probability of a
light bulb being defective is 2% Then having no defective in the observation
happens with probability

(10
0
)
(0.02)0(0.98)10 ≈ 0.82.

Example 4.5 (Hypergeometric distribution)
Let N . . . size of the population, K . . . defectives in the population, n . . . size
of the sub-population (sample) from the entire population and Ω = {0, . . . n}
and

f(k) =


0 k > min(n, k), k < max(0,K + n−N)(K
k

)(N−K
n−k

)(N
n

) otherwise.

If N →∞,K →∞ such that K/N → p ∈ [0, 1], then if n is fixed

f(k) ≈
(
n

k

)
pk(1− p)n−k.
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Let us look closer at the above. We have

f(k) =

K!
k!(K − k)!

(N −K)!
(n− k)!(N −K − n− k)!

N !
n!(N − n)!

and for the denominator expanding yields(
n

k

)
K(K − 1) . . . (K − k + 1)
N(N − 1) . . . (N − k + 1)

and for the denominator

(N −K)(N −K − 1) . . . (N −K − n− k + 1)
(N − k) . . . (N − n+ 1)

which tends to our starting result.

Example 4.6 (Poisson distribution)
The Poisson distribution (denoted P(λ) has a countable support Ω = {0, 1, . . .}
with

f(k) = λk

k! e
−λ, λ > 0

which is clearly non-negative so

∞∑
k=0

λk

k! e
−λ

is a Taylor series that converges to eλe−λ so this is a valid probability. We
could see the Poisson as the limit of the binomial, just as the binomial can
be seen to be a limit of the hypergeometric. Our motivation here is that
n→∞, p→ 0 such that np→ λ > 0. Then,(
n

k

)
pk(1− p)n−k = n(n− 1) . . . (n− k + 1)

k!nk (np)k
(

1− np

n

)n (
1− np

n

)−k

and as n tends to infinity and np to λ, we get (k!)−1λk(e−λ).

The Poisson distribution describes a distribution of rare events. For exam-
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ple, the number of gene that mutate due to radiation or the probability for
each car of getting an accident today in the city of Montreal. An interesting
fact about the historic of the Poisson distribution is that it served originally
to measure the death of soldiers due to horse kick in the Prussian army.

Example 4.7 (Geometric distribution)
Has support Ω = {0, 1, . . .} with

f(k) = pk(1− p)

where p ∈ (0, 1). Non-negativity is obvious since the sum gives the geometric
series

∞∑
k=0

f(k) =
( ∞∑
k=0

pk
)

(1− p) = 1

We can think of the geometric distribution as an infinite sequence of inde-
pendent trials, for example in a coin toss experiment the number of heads
before seeing a tail. The Geometric distribution describes the number of
failures until the first success.8

The Geometric distribution arises in fields like extreme-value theory. One
could possibly study the dikes in the Netherlands (Delta Works) and wonder
how high the dikes should be. Consider the heights given annually from the
data sample and cut the data into yearly partition, looking at the maximum
for each year. with p . . . maximum yearly sea height ≤ H and n − p . . .

the max sea height > H. We are interested in the number of years until
the first spillover. This event has geometric distribution supposing yearly
flow. Now, reverse the question: if we want to have spillovers only every say
125,000 years, what height should the dikes be? If we extend this concept to
get r spillovers, we then get the negative binomial distribution, but before
proceeding we look at a feature of the geometric distribution, the
Lack of memory property.
The info that nothing happened before m−1 does not affect the probability
( in our example, the maxima would have to be independent). Therefore,

8There is discordance in the literature: sometimes, the support is given to be {1, . . .}
and the distribution is defined to be the number of trial before the first success
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Figure 11: Lack of memory property
0 1 2 3 . . . m− 1 m . . . k

k ≥ m

the probability P({k}|{m,m− 1, . . .})

= pk(1− p)
∞∑
i=m

pi(1− p)
= pk(1− p)

pm
∞∑
i=0

pi(1− p)
= pk(1− p)

pm
= pk−m(1− p)

remains unchanged.

Example 4.8 (Negative binomial distribution)
Consider our Bernoulli trials: 000011001011. We are waiting for the r suc-
cess with Ω = {0, 1, . . .}, r ≥ 1. Look at the number k of failures before the
r success

f(k) =
(
k + r − 1

k

)
pk(1− p)r

where p ∈ (0, 1). This distribution is linked to the Poisson distribution: to
see this, consider the car accident example, where we assumed the probabil-
ity of failure to be the same. Not every car is as likely to be involved in an
accident. If we assign different probabilities, such that we get a distribution,
namely the Negative binomial, that is used mostly in insurance.
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Chapter 5

Probability measures on (R,B)
Remark
Any discrete probability measure discussed so far (Bernoulli, binomial, hy-
pergeometric, Poisson, geometric, NB) can be viewed as a probability mea-
sure on (R,B). For example, the Poisson distribution on (R,B) has support
S = {0, 1, . . .} and PMF

f(k) =


λk

k! e
−λ x ∈ S

0 x /∈ S

just by embedding the distribution in (R,B).

Example 5.1
Consider the interval [0, 1] and suppose we fix n ∈ N large and we look at
the discrete uniform distribution on { in , i ∈ {1, . . . , n}}.

Pn
({

i

n

})
= 1
n

so Pn((a, b]), 0 ≤ a < b ≤ 1

= 1
n

∣∣∣∣i : a < i

n
≤ b

∣∣∣∣ = 1
n

[
bbnc − banc

]
is by adding and subtracting the same terms

= 1
n

(bn− an− bn+ an+ bbnc − banc) = b− a+ εn
n

where εn = (bbnc − bn) + (an − banc). Observe that |εn| ≤ 2 (in fact ≤ 1
by the triangle inequality). Hence, limn→∞ Pn((a, b]) = b− a.

Definition 5.1
A probability distribution function F is any function F : R→ R such that

1. F is non-decreasing;
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2. F is right-continuous;

3. limx→−∞ F (x) = 0 and limx→∞ F (x) = 19

Example (continued)
F : R→ R and choose

F (x) =


0 x < 0

x x ∈ [0, 1)

1 x ≥ 1

clearly is an example of distribution function (it is even continuous)

Pn((a, b])→ b− a = F (b)− F (a) for a, b.

Theorem 5.2
For every distribution function F , there exists a unique probability measure
on (R,B) such that P([a, b]) = F (b)− F (a).

Proof The proof would take several class and it is therefore suggested you
take Advanced Probability. Recall that B = σ((a, b], a ≤ b).

The generator E = {(a, b] : a ≤ b} is ∩-stable. That is

E1, E2 ∈ E ⇒ E1 ∩ E2 ∈ E .

Nevertheless, here are two important results from measure theory.

• If P is specified on E , then P can be extended to a probability measure
on σ(E)10

• If E is ∩-stable and P1,P2 are probability measures on σ(E) such that
P1(E) = P2(E) for all E ∈ E , then P1 = P2( or, in other words,
P1(A) = P2(A) ∀ A ∈ σ(E)).11

9This means limh→0,h≥0 F (x+ h) = F (x) for all x ∈ R.
10Under suitable assumptions on E(it need to be a ring of sets)
11If you are interested to look further, the book Measure and integration by Heinz Bauer

is recommended
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�

Remark
The theorem 5.2 holds also for functions G : R → R such that (1) & (2)
holds (from Definition 5.1). Then, there exists precisely one measure µG
so that µG((a, b]) = G(b) − G(a). In particular, if G(x) = x, x ∈ R then
µG((a, b]) = b− a (the identity mapping). µG is called a Lebesque measure
(denoted λ).
Theorem 5.3
If P is a probability measure on (R,B), then the function F given by F (x) =
P((−∞, x]), x ∈ R is a distribution function.

Proof Consider F : R→ R.

1. F increasing, for x ≤ y then (−∞, x] ⊆ (−∞, y] and

F (y) = P((−∞, ]) ≤ P((−∞, x]) = F (x)

2. F is right-continuous: hn, hn → 0, hn ≥ 0 ∀ n ∈ N and w.l.o.g. is
monotone. Then (−∞, x + hn] ⊆ (−∞, x + hn+1] ⊆ . . .. We have a
decreasing sequence of sets so

∞⋂
n=1

(−∞, x+ hn] = (−∞, x]

and

F (x) = P((−∞, x]) = P(
∞⋂
n=1

(−∞, x+ hn])

= lim
n→∞

P((−∞, x+ hn]) = lim
n→∞

F (x+ hn)

3. Consider the interval [−∞, xn] ⊃ [−∞, xn+1] ⊃ . . . and without loss
of generality xn decreasing; xn → −∞. Then ∩∞n=1(−∞, xn] = ∅. So

P((−∞, xn)) = 0 = lim
n→∞

P((−∞, xn]) = lim
n→∞

F (xn)
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Then, if we have another sequence yn →∞ increasing and (−∞, yn] ⊆
(−∞, yn+1] ⊆ . . . so ∪∞n=1(−∞, yn] = R so P(∪∞n=1(−∞, yn]) = 1 and
P = limn→∞ F (yn).

�

Corollary 5.4
If F is a distribution function, then there exists a unique probability measure
on (R,B) such that P((a, b]) = F (b)−F (a). Conversely, if P is a probability
measure on (R,B), then F : R→ R and F (x) = P((−∞, x]) is a distribution
function and such that P((a, b]) = F (b)− F (a).

Proof There is a one-to-one correspondence between the Probability mea-
sure on (R,B) and the distribution function: everything is encoded in F .
Consider (a, b] = (−∞, b] \ (−∞, a] for a ≤ b. We have

P((−∞, b] \ (−∞, a]) = P((−∞, b])− P((−∞, a]) = F (b)− F (a)

�

Lemma 5.5 (Properties of F )
Let F be a distribution function of a probability measure P on (R,B). Then

1. P((−∞, x)) = F (x−)

2. P({x}) = F (x)− F (x−)

3. F is continuous ⇔ P({x}) = 0 ∀ x ∈ R

4. P((a, b]) = 0⇔ F (b)− F (a)

Proof We prove (1) and (2), the others follow directly.

(1) (−∞, x) =
⋃∞
n=1(−∞, x− 1

n ], so we have

P((−∞, x)) = lim
n→∞

P
((
−∞, x− 1

n

))
= lim

n→∞
F

(
x− 1

n

)
= F (x−)
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Figure 12: The cadlag function F

(2)
P({x}) = P((−∞, x])− P((−∞, x)) = F (x)− F (x−)

�

Remark
F is a cadlag function (i.e. “continue à droite, limite à gauche”)

Example 5.2
If P is a discrete probability measure on (R,B) with support S and PMF f .
To observe this, P(B) =

∑
x∈S∩B f(x).

F (x) = P((−∞, x]) =
∑
s∈S
s≤x

f(s)

where f is the jump function. Here is a concrete example: S = {1, 2, 4}
with f(1) = 0.5, f(2) = 0.3 and f(4) = 0.2.

In general

1. F is a jump function;

2. The jumps occur at points in S;

3. The size of a jump at s ∈ S is f(s).
Remark
A probability measure is called continuous if its distribution function is con-
tinuous. In general, F has at most countably many discontinuities (jump).
The proof is in the book. [1] p.44
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In general,
F = p1F1 + p2F2 + p3F3

where p1, p2, p3 ≥ 0 are weight and p1 + p2 + p3 = 1 and where F1 is a
DF of a discrete PM, F2 is continuous, but such that F ′2(x) = 0 for almost
all x ∈ R or equally λ{x : F ′2(x) = 0} = 0. Examples of such functions
include the Devil’s staircase or the Cantor function. Finally, F3 is the DF of
probability measure that are absolutely continuous. Note that the above is
a difficult result (decomposition of measure) from measure theory. We look
at the case p3 : p1, p2 = 0 in the next section.
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Chapter 6

Probability measures on (R,B) with (Riemann)
density

Recall that the function f : [a, b]→ R is Riemann integrable if and only if

1. f is bounded;

2. f is almost everywhere continuous, i.e.

λ{x : f is discontinuous in x} = 0.

We make the following observation
Definition 6.1 ((R) probability density)
A function f : R→ R is called a R probability density function ((R) PDF)
if

1. f(x) ≥ 0, x ∈ R;

2. f is R-integrable on R and
∫∞
−∞ f(t)dt = 1.

Theorem 6.2 (Continuous distribution function)
Let f be a (R)PDF, then F : R → R given by F (x) =

∫ x
−∞ f(t)dt is a

continuous distribution function. Furthermore, F ′(x) = f(x) whenever f is
continuous at x (the density is the derivative of the distribution function).
In addition,

P((a, b]) = F (b)− F (a) =
∫ b

a
f(t)dt

It is easily seen that this is a probability.
Remark
If F has a (R) PDF f , id est for all x ∈ R, F (x) =

∫ x
−∞ f(t)dt, then

F is continuous, but not conversely! However, it can be shown that F is
absolutely continuous if it has (R) PDF. If a distribution function is AC,
then ∃f∗ such that

F (x) =
∫ x

−∞
f∗tdλ
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Heuristic interpretation of f

Recall that if P is discrete with PMF f , then P({x}) = f(x). If P has a
(R) density f , then F is continuous and hence P({x}) 6= f(x),P({x}) =
0 ∀ x ∈ R, implying no outcome is favoured. But

P((x− ε, x+ ε]) =
∫ x+ε

x−ε
f(t)dt MV T≈ f(xε) · 2ε ≈ f(x) · 2ε.

Example 6.1 (Uniform distribution)
U [a, b] on [a, b] : a ≤ b on R. The density is given by

f(x) = 1
b− a

1(a≤x≤b).

Indeed,
∫∞
−∞ f(t)dt =

∫ b
a

1
b−adt = 1. The corresponding DF is

F (x) =


0 if x < a∫ x

a

dt

b− a
= x− a
b− a

if x ∈ [a, b)

1 if x ≥ b

with the special case a = 0 and b = 1 is called the standard uniform distri-
bution.

F (x) =


0 if x < 0

x if x ∈ [0, 1)

1 if x ≥ 1

Example 6.2 (Exponential distribution)
Consider a rate λ > 0. We say the random variable X has exponential
distribution (denoted X ∼ E) if the (R) density is

f(x) = λe−λx1(x>0).

given that ∫ ∞
−∞

f(t)dt =
∫ ∞

0
λe−λtdt = −e−λt

∣∣∣∞
0

= 1
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is clearly non-negative. The corresponding distribution function is

F (x) =


0 if x < 0∫ x

0
λe−λtdt = 1− e−λx if x ≥ 0

Suppose that we have the following situation. Waiting for an event of a
certain type (insurance claims, earthquake,etc.)

The probability of exactly one such event will happen in an interval
of length h is λh+ o(h), where o(h) = g(h)

h → 0 as h→ 0.

The probability that there are two or more events occurring in an
interval of length h is o(h).

The number of events in disjoint intervals are independent.

We will make it more precise and show it follows a Poisson. Let N(t) . . .
the number of events in [0, t]. Chop in n intervals of equal length n and let
n→∞. Then P({N(t) = k}) = P(A) + P(B), where A . . . there are exactly
k intervals

[
(i−1)t
n , itn

]
with 1 event and (n − k) intervals with no events.

B . . . (N(t) = k) and there exists at least one interval with 2 or more events.
Therefore A ∩B = ∅ and

P(B) ≤ P
(

n⋃
i=1

Bi

)
⊆

n∑
i=1

P(Bi) =
n∑
i=1

o

(
t

n

)
=
o

(
t

n

)
t(

t

n

)
so limn→∞ P(B) = 0 and B is negligible and we have

P(A) =
(
n

k

){
λ
t

n
+ o

(
t

n

)}k {
1− λ

(
t

n

)
− o

(
t

n

)}n−k
.

nλ
t

n
+
o

(
t

n

)
t

t

n

−−−→
n→∞

λt −→ lim
n→∞

P(A) = 1
k!e
−λt(λt)k
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We had derived this goes to Poisson so

P({N(t) = k}) = 1
k!e
−λt(λt)k

Now, suppose you wait until the first event. If T is the time at which the
first event occurred,

P(T ≤ t) = P([0, t]) = 1− P(T > t) = 1− (P(N(t) = 0)) = 1− e−λt

for t > 0. In other words, the exponential distribution describes the waiting
time for the first occurrence in a Poisson process.

The other interpretation of the exponential distribution is the lifetime of a
component. Note that

lim
ε→0

1
ε

P((x, x+ ε])
P((x,∞)) = lim

ε→0

1
ε

1− e−λ(x+ε) − 1 + e−λx

e−λx
= lim

ε→0

1− e−λε

ε
= λ

or in a more transparent way

F (x+ ε)− F (x)
ε

· 1
1− F (x) = f(x)

1− F (x) = λe−λx

e−λx
= λ

Here, λ is the hazard rate which is the probability of an event just after x
given that nothing happened in [0, x]. The exponential distribution describes
a lifetime of an object that does not age.

Definition 6.3 (Absolutely continuous)
F is absolutely continuous on [a, b] if for k = 1, . . . , n

(
∀ ε > 0

) (
∃δ > 0

) (
∀ xk ≤ yk, [xk, yk] ⊆ [a, b]

)
(

n∑
k=1
|yk − xk| < δ ⇒

n∑
k=1
|F (xk)− F (yk)| < ε

)

In other words, F is AC if it is AC on any [a, b]⇔ F (x) =
∫ x
−∞ fdλ
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Example 6.3 (Weibull distribution)
Let α, β > 0. Then

f(x) = αβxβ−1e−αx
β1(x>0)

which integrates to 1 by a change of variable. The hazard rate is given by

f(x)
1− F (x) = αβxβ−1.

This distribution can describe components that age or are in the so called
“burn-in” phenomenon. For different values of β, we have

β > 1 . . . hazard rate is increasing in x

β = 1 . . . exponential distribution, hazard rate is constant

β < 1 . . . hazard rate is decreasing in x.

Example 6.4 (Normal (Gaussian) distribution)
Perhaps one of the best known, the Normal distribution has

f(x) = 1√
2π

e−
x2
2

for x ∈ R. The fact that the function integrate to one is a consequence of
the gamma function. Indeed,∫ ∞

−∞

1√
2π

e−
x2
2 dx = 2

∫ ∞
0

1√
2π

e−
x2
2 dx

using the symmetry of the bell curve. By a change of variable t = x2/2 ⇒√
2t = x and dt = xdx, we get

= 2
∫ ∞

0

1√
2π
e−t

1√
2t
dt = 1√

π

∫ ∞
0

t
1
2−1e−tdt = 1√

π
Γ
(1

2

)
=
√
π√
π

= 1

Remember that the gamma function is defined to be

Γ(a) =
∫ ∞

0
ta−1e−tdt.
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Figure 13: Gaussian bell curve with standard parameters and µ = 1, σ =
0.75

The Gaussian distribution may be viewed as the limit of a (rescaled) Bi-
nomial distribution (from the Central Limit theorem). It is worth noting
that ∫ x

−∞

1√
2π

e−
x2
2 dx

is not in closed form.

The general normal distribution N (µ, σ2) has parameters µ ∈ R, σ > 0 and
a probability distribution function

f(x) = 1√
2π

1
σ
e−

(x−µ)2

2σ2 , x ∈ R.
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Chapter 7

Random variables and their distributions
Recall that (Ω,A) is called a measurable space. Suppose another measurable
set (X ,B). We first start with a little motivation. Consider a toss with 2
distinguishable dice. The sample space is Ω = (i, j); i, j ∈ {1, . . . , 6} and
P(Ω), but this time we are interested in the sum of the face values.

With our knowledge of the dice toss, Ω∗ = {2, . . . , 12} and A∗ = P(Ω∗) is a
new probability that we recognize to be not anymore a Laplace experiment.
In fact, P∗({2}) = P({(1, 1)}) = 1/36 and P∗({3}) = P({(1, 2), (2, 1)}) =
1/18. We will introduce a mapping X : Ω→ Ω∗ or (i, j)→ i+ j and

P∗({k}) = P({i, j) : i+ j = k}) = P({i, j) : X(i, j) = k})

In general, X : Ω → X . We could consider for example a conversion from
canadian dollars to euros. We have for any such mapping

P∗(B) = P(ω ∈ Ω : X(ω) ∈ B)

notice that we have by definition of probability that P : A → R, which leads
to the following problem.

{ω ∈ Ω : X(ω) ∈ B} = X−1(B)

may not be in A, i.e. we may not be able to compute P(X−1(B)).
Definition 7.1 (A− B measurable mapping)
A mapping X : Ω → X where (Ω,A) and (X ,B) are measurable spaces is
called A− B measurable if

∀ B ∈ B : X−1(B) ∈ A.

The common notation is X : (Ω,A) → (X ,B) although it is confusing.
Whether B is measurable depends on A and B.12

12This concept is linked to continuity on topological spaces.
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Example 7.1 (Coin toss)
Ω = {(0, 0), (1, 0), (0, 1), (1, 1)} and X : Ω→ R, (i, j)→ i+ j. We are inter-
ested in the number of tails, so 0 =“heads” and 1 =“tails”. Now some re-
marks before we proceed. The measurability depends on the σ-field. Hence,
X is P(Ω)−B measurable. A = {∅,Ω, {(1, 0), (0, 1)}}, is a σ-field on Ω, but
X is NOT A − B measurable, that is X−1({2}) = {(1, 1)} /∈ A. However,
B = {∅,R, {1},R \ {1}} is a σ-field on R, but sufficiently core so that X is
A− B measurable

X−1(∅) = ∅ ∈ A

X−1(R) = Ω ∈ A

X−1({1}) = {(1, 0), (0, 1)} ∈ A

X−1(R \ {1}) = {(0, 0), (1, 1)} ∈ A

So measurability depends on the mapping and the σ-field.

Terminology
If X : Ω→ R is A− B measurable, then X is called a random variable and
for X : Ω→ Rd and A− Bd measurable, then X is called a random vector.

(X1, . . . , Xd) : Ω→ Rd ω → (X1(ω), . . . , Xd(ω))

Theorem 7.2 (Conditions for measurability)
Let Ω,A) and (X ,B) be measurable spaces and B = σ(E) for E ⊆ P(X ).
Then

X is A− B measurable ⇔ ∀ E ∈ E : X−1(E) ∈ A

Proof

⇒ We have ∀ E ∈ E : X−1(E) ∈ A hold if X is A − B measurable
because E ⊆ σ(E) = B.

⇐ We will use the good sets principle.

A good set is
B∗ = {B ⊆ X : X−1(B) ∈ A}
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By assumption E ⊆ B∗ and need to show that B ⊆ B∗. To do this, we will
show that B∗ is a σ-field.

1. X ∈ B∗, X−1(X ) = Ω ∈ A

2. B ∈ B∗ ⇒ B{ ∈ B∗.

X−1(B{) = {ω ∈ Ω : X(ω) /∈ B}

= {ω ∈ Ω : X(ω) ∈ B}{

= {X−1(B)}{

is in A because B ∈ B∗ and A is a σ-field.

3. B1, B2 . . . ∈ B∗ ⇒
⋃∞
i=1X

−1(Bi) ∈ B∗.

We claim that
X−1

( ∞⋃
i=1

(Bi)
)

=
∞⋃
i=1

X−1(Bi).

First,

ω ∈ X−1
( ∞⋃
i=1

(Bi)
)
⇔ X(ω) ∈

∞⋃
i=1

(Bi)

⇔ X(ω) ∈ Bi for at least one i

⇔ ω ∈ X−1(Bi) for at least one i

Hence we have
X−1

( ∞⋃
i=1

(Bi)
)

=
∞⋃
i=1

X−1(Bi)︸ ︷︷ ︸
∈A

given that Bi is a good set and hence the union is in A because A is a σ-field.

Hence E ⊆ B∗, B∗ is a σ-field and therefore σ(E) ⊆ B∗. �

Corollary 7.3
X : Ω→ R is A− B measurable if and only if

X−1((a, b]) = {ω ∈ Ω : X(ω) ∈ (a, b]} ∈ A
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for all a < b ∈ R

Note that the Borel σ-field generated by open-closed sets can arise from any
of the following:

B : σ((a, b), a < b ∈ R) = σ((−∞, a), a ∈ R

= σ((−∞, a], a ∈ R)

= σ((a,∞), a ∈ R)

= σ([a,∞), a ∈ R).

Example 7.2
Suppose that X : Ω→ R is A− B measurable and such that

X−1({0}) = {ω : X(ω) = 0} = ∅.

Then
Y : Ω→ R;ω → 1

X(ω)

is also a random variable (i.e. A− B measurable). This is because if a ∈ R
is arbitrary, Y −1((−∞, a]) ∈ A. To handle this expression, we deal with it
in subcases. So Y −1((−∞, a]) is equal to

Indeed,

= {ω : 1
X(ω) ≤ a}

=
{
ω : 1

X(ω) ≤ a & X(ω) > 0
}
∪
{
ω : 1

X(ω) ≤ a & X(ω) < 0
}

= {ω : 1 ≤ a & X(ω) > 0} ∪ {ω : 1 ≥ aX(ω) & X(ω) < 0}

which is equal to either of these if respectively a = 0, a > 0 and a < 0
{ω : X(ω) < 0}(
ω : 1

a
≤ X(ω)} ∩ {ω : X(ω) > 0}

)
∪
(
ω : 1

a
≥ X(ω)} ∩ {ω : X(ω) < 0}

)
(
ω : 1

a
≥ X(ω)} ∩ {ω : X(ω) > 0}

)
∪
(
ω : 1

a
≤ X(ω)} ∩ {ω : X(ω) < 0}

)
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are all in A and A being a σ-field, it is closed under unions and intersection,
so we are good.

Lemma 7.4
Suppose X : Ω → X and Y : X → Y is B − C measurable. Then, the
convolution Y ◦X : Ω→ Y , ω 7→ Y (X(ω)) is A− C measurable.

Proof ∀ C ∈ C, (Y ◦X)−1(C) ∈ A, but

(Y ◦X)−1 = {ω : Y (X(ω)) ∈ C}

= {ω : X(ω) ∈ Y −1(C)}

Given that Y −1(C) ∈ B because Y is B − C measurable, we get that {ω :
X(ω) ∈ Y −1(C)} ∈ A because X is A− B measurable. �

Lemma 7.5
Let f : Rd → R be continuous. Then f is Bd − B measurable.

Lemma 7.6
Let X = (X1, . . . , Xd) : Ω → Rd and ω → (X1(ω), . . . , Xd(ω)), then X is
A − Bd measurable if and only if Xi is A − B measurable for i = 1, . . . , d
The proof is left as an exercise.
Hint: use the fact that X1 is a projection and that projection are continuous.

Definition 7.7
Let (Ω,A,P) and (X ,B) be respectively a probability space and a measur-
able space. Let also X : Ω→ X be A− B measurable. Then

PX : B → R, B → PX(B) = P(X−1(B)) = P({ω : X(ω) ∈ B})

is a probability measure on (X ,B). It is called the image measure of P or
distribution of X.

Let us stop a moment to do a reality check:

• PX is well-defined because X is A− B measurable;
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• PX(X ) = P({ω : X(ω) ∈ X}) = P(Ω) = 1;

• for B1, B2, . . . disjoint,

PX
( ∞⋃
i=1

Bi

)
= P(X−1(

∞⋃
i=1

Bi))

= P(
∞⋃
i=1

X−1(Bi)) =
∞∑
i=1

P(X−1(Bi)) = PX(Bi)

given that X−1(Bi) are pairwise-disjoint.

Notation
• PX is also denoted by L(X) (“law” of X);

• If Q is a probability measure on (X ,B) such that PX = Q, then X ∼ Q
(X has distribution Q). For example, X : Ω→ R, X ∼ N (0, 1) means
that PX is the standard normal distribution.

Example 7.3
Let (Ω,A,P) be a probability measure and A ∈ A an event with

X : Ω→ R, ω 7→

0 if ω /∈ A

1 if ω ∈ A

In other words, X = 1A. Clearly, X is a random variable since

∅ if B ∩ {0, 1} = ∅

A if B ∩ {0, 1} = {1}

A{ if B ∩ {0, 1} = {0}

Ω if B ∩ {0, 1} = {0, 1}

is in A and

PX({0}) = P(ω : X(ω) = 0) = P(A{) = 1− P(A)

PX({1}) = P(ω : X(ω) = 1) = P(A)

and X ∼ B(P(A)) (Bernoulli).
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Important observations

1. X : Ω→ X measurable. Then X describes a new random experiment
(X ,B,PX). For example,

Ω =
{

(i, j), i, j ∈ {1, . . . , 6}
}

A = P(Ω)

P({i, j}) = 1/36

 X : Ω→ {2, . . . , 12}; (i, j)→ i+ j

The new random experiment describes the sum of face values X :
{2, . . . , 12},B = P(X ),

PX({k}) = P((i, j) : i+ j = k) = |(i, j) : i+ j = k|
36 .

2. Every random experiment (Ω,A,P) can be described by some X: X =
Ω,B = A, X(ω) = ω (X is the identity map) and

PX(A) = P(ω : X(ω) ∈ A) = P(ω : ω ∈ A) = P(A)

3. Consequently, we will describe random experiments by mappings.
With the old way, we would specify for example Ω = [0,∞),B and
P ∼ N (150, 4). With the new way, the above would just be X a
random variable (r.v. ), X : Ω→ R and X ∼ N (150, 4).13

We can deal with many r.v. at the time.
Note
A measurable mapping X : Ω → X is also called a random variable in the
context where we are interested in PX . A real-valued random variable is a
measurable mapping Ω→ R.
Notation
A random variable is called discrete if X can take only countably many
values i.e. ran(X) = {X(ω), ω ∈ Ω} is countable. Then PX is discrete with
support range(X) or ran(X).

13Capital letters are reserved for random variables exclusively.
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Notation
A real-valued random variable is continuous if its distribution PX has a den-
sity14. The distribution PX of a real-valued random variable X is uniquely
described by its distribution function FX15:

FX(x) = PX((−∞, x]) = P({ω : X(ω) ≤ x}) = P(X ≤ x).

By continuity, also note about FX

1. If X is a real-valued r.v. , then the following probabilities

P(X < x), P(X > x), P(X ∈ [a, b]), P(X ∈ B), . . . , P(X ≥ x)

are to be understood in an analogous fashion:

P(X ∈ (a, b]) = PX((a, b]) = P(ω : a < X(ω) ≤ b).

2. In statistics and probability, it is not X that is of interest, but rather
PX (namely, its distribution) Therefore

• X = Y ⇔ X(ω) = Y (ω) ∀ ω ∈ Ω;

• X = Y almost surely ⇔ P(ω : X(ω) = Y (ω)) = 1. This is a
fairly strong assumption, but is often useful.

• X d= Y or X L= Y ⇔ PX(B) = PY (B) ∀ B ∈ B. In other words,
X is equal to Y in distribution.

14It is important to note that it has nothing to do with continuity of X as a mapping
15The last expression is an abbreviation of P({ω : X(ω) ≤ x})
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Chapter 8

Functions of random variables
Let X be a r.v. , X : Ω→ R. if g : R→ R is measurable (B−B measurable),
then Y = g(X) is also a real valued r.v. . The most important examples of
measurable function g’s are the continuous functions (there are others, such
as g(x) = sign(x).) The distribution of Y , PY , is given by its distribution
function (DF). Hence

FY (y) = PY ((−∞, x]) = P(ω : Y (ω) ≤ y)

= P(ω : g(X(ω)) ≤ y) = P
(
ω : X(ω) ∈ g−1((−∞, y])

)
= PX(x : g(x) ≤ y)

Notation
For a real-valued r.v. X: if X is discrete, then PX is uniquely determined
by its PMF fX . If X is continuous, PX has density fX .

Consider X : Ω→ R, g : R→ R. What is then the distribution of g(x)?

P(g(x) ≤ y) = PX(x : g(x) ≤ y) = P(ω : g(X(ω)) ≤ y)

where PX is on R and P on Ω.
Example 8.1
X is discrete and takes values {−2,−1, 0, 1, 2}. For each value, we have
fX(i) = P(X = i) = P(ω : X(ω) = i).

We have the following: fX(−2) = 1/5, fX(−1) = 1/6, fX(0) = 1/5, fX(1) =
1/15, fX(2) = 11/30. Now let Y = X2 = g(X) and g(X) : R → R, x 7→ x2.
We have {Y (ω) : ω ∈ Ω} = {0, 1, 4}

fY (0) = P(Y = 0) = P(X2 = 0) = P(X = 0) = 1/5

fY (1) = P(Y = 1) = P(X ∈ {−1, 1}) = 1/6 + 1/15 = 7/30
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fY (4) = P(Y = 4) = PX({−2, 2} = 1/5 + 11/30 = 17/30.

Example 8.2
X ∼ P(λ) and Y = ex = g(X), g : R→ R, x→ ex and

{Y (ω) : ω ∈ Ω} = {eX(ω), ω ∈ Ω} = {e0, e1, e2, . . .}

is the support. Now fY (ek) = P(Y = ek) = P(X = k) = λk

k! e
−λ since the

transformation this time is injective.

Observation
If X is a discrete real-valued random variable and g : R → R measurable,
then Y = g(x) is also discrete and its PMF can be computed as follows :

fY (y) = P(Y = y) = P(g(X) = y) =
∑

x:g(x)=y
fX(x) = P(X = g−1(y))

if g is one-to-one. Note that the sum involves countably many summands.

Example 8.3
Let X a real-valued r.v. with DF FX . We are interested in a new r.v.
Y = aX + b, b ∈ R, a > 0. This is referred to as a change in location and
scale.

FY (y) = P(Y ≤ y) = P(aX + b ≤ y)

= P(ω ∈ Ω : aX(ω) + b ≤ y) = P
(
X ≤ y − b

a

)
= FX

(
y − b
a

)

When X has a density fX , then Y also has a density fY (y) = fX
(
y−b
a

)
1
a .

In the special case when X ∼ N (0, 1), then Y ∼ N (b, a2) since

fY (y) = 1√
2πa

e−
(y−b)2

2a2

Example 8.4 (Chi-square distribution)
X ∼ N (0, 1), Y = X2, y ≥ 0. P(Y ≤ y) = P(X2 ≤ y) = P(−√y ≤ x ≤ √y)
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so X has a density

∫ √y
−√y

1√
2π
e−

x2
2 dx = 2

∫ √y
0

1√
2π
e−

x2
2 dx

with a change of variable, x2 = t, 2xdx = dt so

= 2
∫ y

0

1√
2π
e−

t
2

1
2
√
t
dt =

∫ y

0

1√
2πt

e−
t
2dt

So P(Y ≤ y) =
∫ y
−∞ fY (t)dt. If y < 0, then

P(Y ≤ y) = (X2 ≤ y) = 0 =
∫ y

−∞
fY (t)dt

Put together, Y has density fY . This distribution of Y is called the chi-
square distribution with one degree of freedom (denoted Y ∼ χ2

1).

Example 8.5
Consider X with density fX which has the property that

fX(x) = fX(−x) ∀ x ∈ R

(i.e. fX is symmetric around 0). Y = |x| so P(Y ≤ y) = P(|X| < y) = 0 if
y < 0. Now, if y ≥ 0,

P(Y ≤ y) = P(|X| ≤ y) = P(−y ≤ x ≤ y)

=
∫ y

−y
fX(t)dt =

∫ 0

−y
fX(t)dt+

∫ y

0
fX(t)dt

which by symmetry is just
2
∫ y

0
fX(t)dt

so fY (y) = 2fX(x)1(x>0) so ∀ y,

P(Y ≤ y) = 2
∫ y

−∞
fY (t)dt, y ∈ R

hence Y has density fY .
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Observation
If X has density, say fX , then

P(g(x) ≤ y) =
∫
{x:g(x)≤y}

fX(t)dt.

Example 8.6
Let X ∼ N (0, 1), Y = max(x, 0) = x+ cannot be discrete and we will show
that it cannot have density. The probability P(Y ≤ y) = P max(X, 0) ≤ y).
Let us exhaust the possible cases:

y < 0: P(x+ ≤ y) = 0

y = 0: P(x+ ≤ 0) = P(x ≤ 0) =
∫ 0

−∞

1√
2π
e−

x2
2 dx = 1

2 = P(x+ = 0)

y > 0: P(x+ ≤ y) = P(x ≤ y) = FX(y)

The morale is that you should think first before looking at such problems.
Y is neither discrete nor continuous since by the left FY is not continuous.

fY

FX

1
2

Theorem 8.1 (Transformation theorem for a random variable)
Let X be a real-valued r.v. with density fX and such that there exists
(a, b), a, b ∈ R so that

1. P(X ∈ (a, b)) = 1;

2. fX is continuous on (a, b).

Then if g : (a, b) → R is strictly monotone and its inverse g−1 : {g(x) : x ∈
(a, b)} → (a, b) is continuously differentiable, the random variable Y = g(X)
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has density

fY (y) = fX
(
g−1(y)

) ∣∣∣∣ ddyg−1(y)
∣∣∣∣ 1y∈ range g(x)

Proof Assume that g is increasing (the other side is left as an exercise).
We have g : (a, b)→ (α, β) the range of g which by assumption is continuous
and strictly increasing. We want to show that P(Y ≤ y) =

∫ y
−∞ fY (t)dt for

y ∈ R.

1. First case: y ∈ (α, β) so

P(Y ≤ y) = P(g(x) ≤ y) = P(g(x) ≤ y, x ∈ (a, b))

= P(x ≤ g−1(y)) =
∫ g−1(y)

−∞
fX(x)dx

=
∫ g−1(y)

a
fX(x)dx x=g−1(t)−−−−−−→

=
∫ y

g(a)=α
fX
(
g−1(t)

) ∣∣∣∣x (g−1(t)
)′∣∣∣∣ dt

=
∫ y

−∞
fY (t)dt

2. Second case y ≤ α so

P(Y ≤ y) = P(g(x) ≤ α) = P(g(x) ≤ α, x ∈ (a, b)) = 0

=
∫
−∞

yfY (t)dt

3. Third case y ≥ β

P(Y ≤ y) = P(g(x) ≤ y, x ∈ (a, b)) = P(X ∈ (a, b)) = 1

=
∫ b

a
fX(x)dx =

∫ β

α
fY (t)dt

=
∫ y

−∞
fY (t)dt
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if g is decreasing, the proof is analogous, we are only doing changes of
variables. �

Example 8.7
X ∼ E(α) so fX(x) = αe−αx1(x>0). Fix β > 0, X

1
β = Y where (a, b) =

(0,∞). The mapping g(0,∞) → (0,∞), is defined x 7→ x
1
β and the inverse

map g−1(0,∞)→ (0,∞), y 7→ yβ so (g−1)′(y) = βyβ−1 > 0. and

fY (y) = αe−αy
β
βyβ−11(y>0)

Notice that Y ∼Weibull. Also note that we must watch out for the absolute
value |(g−1)′(y)|.

Example 8.8 (Log-normal distribution)
X ∼ N (µ, σ2), ex. The interval of (a, b) = (−∞,∞) and g : (−∞,∞) →
(0,∞), e 7→ ex. Now, g−1(0,∞) → (−∞,∞), y 7→ log y, g−1(y) = 1

y . The
distribution function of Y is

fY (y) = 1√
2π

1
σ
e−

(log y−µ)2

2σ2
1
y

1(y>0)

and Y ∼ log-normal distribution, a distribution used in actuarial science. It
has certain interesting settings, notably in the case one wants to study the
number of claim that we want non-negative, but meanwhile close to normal.

Example 8.9
X ∼ Uniform(0,1),Y = − log(X).

For this example, fX(x) = 1(x∈[0,1]), the interval (a, b) = (0, 1). The map-
pings are g : (0, 1)→ (0,∞), x 7→ − log(x) and the inverse map g−1(0,∞)→
(0, 1), y 7→ e−y and the derivative (g−1)′ = −e−y

fY (y) = 1| − e−y|1(y>0) = e−y1(y>0)

so Y ∼ E(1).
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Chapter 9

Moments of a distribution
Suppose a dice is toss in a game. If you toss k, then your gains are 10× k$.
Then the expected win is

35 =
6∑

k=1
k · 10 · 1

6 = 10
6

6∑
k=1

k,

estimated by the arithmetic mean of the dice toss.

Definition 9.1 (Expected value)
Let X be a discrete real-valued r.v. with PMF fX . The expected value of
X is given by

EX =
∑

x∈{X(ω):ω∈Ω}
xfX(x)

provided ∑
x∈{X(ω):ω∈Ω}

|x|fX(x) <∞.

If the above is not finite, then EX does not exist.

Let us revisit our example: X ∈ {10, 20, . . . , 60} and

P(X) =

1/6, k ∈ {10, 20, . . . , 60}

0 otherwise
.
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Example 9.1
If X ∼ B(n, p), then

EX =
n∑
k=0

k

(
n

k

)
pk(1− p)n−k

=
n∑
k=0

k
n!

(n− k)!(k − 1)!p
k(1− p)n−k

= np
n∑
k=0

k
(n− 1)!

(n− 1− (k − 1))!(k − 1)!p
k(1− p)n−1−(k−1)

Let now k∗ = k − 1; we recover the binomial so this is just equal to np.
If X ∼ P(λ)

fX(k) =


λk

k! e
−λ k ∈ {0, 1, . . .}

0 otherwise

and

EX =
∞∑
k=0

λk

k! e
−λ = e−λ

∞∑
k=1

λk

k − 1! = λe−λ
∞∑

k∗=0

λk
∗

k∗! = λe−λeλ = λ

If X ∼ Geo (p), fX(k) = pk(1− p) for k ∈ {0, 1, . . .} and 0 otherwise. Then
EX =

∑∞
k=0 kp

k(1 − p) by taking the geometric distribution and differenti-
ating term by term, hence EX = p

1−p . We will see later that in such a case,
the arithmetic mean converge to the expected value by the Law of large
numbers.
Example 9.2
Suppose X is a random variable such that

ffX =

(−1)k+1 3k

k
= 2

3k k = 1, 2, . . .

0 otherwise

and look at ∞∑
k=1

2
3k = 2

3

∞∑
k=0

1
3k = 2

3
1

1− 1
3

= 1
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We could think a moment that EX is equal to

∞∑
k=1

(−1)k+1 2
3k

3k

k
= 2

∞∑
k=1

−1k+1

k
= 2 log 2

but
∑∞
k=1

3k
k

2
3k diverges. So EX is undefined. Note that since it is not

absolutely convergent, we can always rearrange as we wish the summation .

Note
EX depends only on the distribution of X.

Motivation
∑
xP(X = x) makes no sense if X is not discrete. Fix ε > 0

and let the sum be

≈
∞∑

i=−∞
iεP(iε < X ≤ (i+ 1)ε).

If X has a (R) density,

fX =
∞∑

i=−∞
iε

∫ (i+1)ε

iε
fX(x)dx ≈=

∫ ∞
−∞

xfX(x)dx.

Definition 9.2 (Expected value of random variables with R density)
Let X be a r.v. with R density fX . Then the expected value of X is given
as EX =

∫∞
−∞ xfX(x)dx provided

∫∞
−∞ |x|fX(x)dx <∞, otherwise EX is not

defined.
Example 9.3
Let X ∼ E(λ), fX(x) = λe−λx1(x:>0). In this case, integrating by parts

EX =
∫ ∞

0
x

u,u′=1
e−λxλdx
v′,v=e−λx

= −xeλx
∣∣∣∞
0

+
∫ ∞

0
e−λxdx = 1

λ

∫ ∞
0

λe−λxdx = 1
λ

since this is a PDF fX(x). It is worth noting this trick as it will come often
in practise.

Let now X ∼ N (µ, σ2) so fX = 1√
2πσe

− (x−µ)2

2σ2 . First, we verify that expec-
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tation is defined, that is∫ ∞
−∞
|x| 1√

2πσ
e−

(x−µ)2

2σ2 dx <∞.

By a change of variable. t = x−µ
σ , dt = dx

σ and from the triangle inequality
|σt+ µ ≤ σ|t|+ |µ| so
∫ ∞
−∞
|σt+ µ| 1√

2πσ
e−

t2
2 dt ≤ σ

∫ ∞
−∞

|t|√
2πσ

e−
t2
2 dt+ |µ|

∫ ∞
−∞

1√
2πσ

e−
t2
2 dt

=1

.

Using symmetry, this is just

= 2σ√
2π

∫ ∞
0

te−
t2
2 dt = 2σ√

2π

∫ ∞
0

e−ydy + |µ|

by setting y = t2

2 . Since this integral is the one of the density of the expo-
nential distribution with λ = 1, we obtain a finite result. Indeed,

EX =
∫ ∞
−∞

x
1√
2πσ

e−
(x−µ)2

2σ2 dx =
∫ ∞
−∞

(σt+ µ) 1√
2πσ

e−
t2
2 dt

which by linearity is just

σ

∫ ∞
−∞

t√
2πσ

e−
t2
2 dt

=0

+µ
∫ ∞
−∞

1√
2πσ

e−
t2
2 dt

=1

= µ

since density is symmetric around µ.

Lemma 9.3 (Expectation of symmetric distributions)
Suppose that X has R density fX such that

1.
∫∞
−∞ |x|fX(x)dx <∞;

2. ∃ a ∈ R such that ∀ x ∈ R, fX(x+ a) = fX(a− x)

Then EX = a
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Proof∫ ∞
−∞

xfX(x)dx =
∫ a

−∞
xfX(x)dx

t=a−x

+
∫ ∞
a

xfX(x)dx

t=x−a

=
∫ 0

−∞
(a− t)fX(a− t)dt+

∫ ∞
0

(a+ t)fX(a+ t)dt

= a

{∫ 0

−∞
fX(a− t)dt+

∫ ∞
0

fX(a+ t)dt
}

−
{∫ 0

−∞
tfX(a− t)dt+

∫ ∞
0

tfX(a+ t)dt
}

Now, we can use the assumption to cancel the second part, revert the change
of variable to get the probability density and

a

∫ ∞
−∞

fX(x)dx = a

�

Example 9.4
Let X ∼ Cauchy and fX = 1/π(1 + x2), x ∈ R. It is well-known indeed that
the Cauchy distribution is a heavy-tail distribution and indeed∫ ∞

−∞
|x| 1
π

1
1 + x2dx = 2

π

∫ ∞
0

x

1 + x2dx

is divergent. One can easily see this using R to generate random values;
we get outliers that are way off zero. As a matter of fact, the Cauchy
distribution is simply the Student’s t distribution with 1 degree of freedom.
The Student’s t resemble very much the Normal distribution, except that it is
more heavy-tailed and that the number of its existing moments is determined
by the number of degrees of freedom: only the m − 1 first moments exist.
Hence, for m = 2, only the expectation exists and in the case of the Cauchy,
the distribution has no moments. As m→∞, the Student’s distribution is
seen to converge to the Normal.16

16The Student’s t is in fact the ratio between two independent r.v., one that is normal
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Remark
Later, when we see the Law of large numbers, we will see that X1, X2, X3, . . .

a sequence of independent random variable, then the arithmetic mean

1
n

n∑
i=1

Xi
p−−−→

n→∞
EX.

Theorem 9.4 (Expectation of functions of random variables)
Let X be a random variable and g : R → R Borel-measurable. Then if
Y = g(X)

(i) If X is discrete and EY exists, EY = Eg(x) =
∑
g(x)fX(x).

(ii) If X has (R) density fX and (using the monotone density transforma-
tion result) g is strictly monotone and continuously differentiable on
(a, b) = {x : fX(x) > 0}, then if Eg(X) exists,

EY = Eg(X) =
∫ ∞
−∞

g(x)fX(x)dx.

Proof

(i) Denote by S = {X(ω), ω ∈ Ω} = {s1, s2 . . .} (countable) and by T =
{g(X(ω)), ω ∈ Ω} = {t1, t2, . . .}. Then, by definition,

EY =
∞∑
k=1

tkfY (tk) =
∞∑
k=1

tk P(g(X) = tk)︸ ︷︷ ︸
P(X=g−1(tk))

=
∞∑
k=1

tk
∑

i:g(s)i)=tk

si

=
∞∑
k=1

∑
i:g(s)i)=tk

g(si)fX(si)

which is nothing but the sum of all si =
∑∞
i=1 g(si)fX(si).

and one that follows a χ2(m) distribution.
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(ii)

EY =
∫ β

α
yfX

(
g−1(y)

) ∣∣∣∣(g−1(y)
)′∣∣∣∣ dy

where (α, β) = {g(X), x ∈ (a, b)}. We note that the derivative is
monotone (up or down) and that (α, β) is continuous and strictly
monotone. Replacing g−1(y) = x, we obtain

=
∫ b

a
g(x)fX(x)dx

�

Example 9.5
Let X ∼ Weibull(α, β) and X d= Y

1
β , Y ∼ E(α). Then

EX = EY
1
β =

∫ ∞
o

y
1
βαe−αydy = 1

α
1
β

∫ ∞
0

t
1
β

+1−1
e−tdt = α

− 1
β Γ( 1

β
+ 1)

Let X ∼ N (0, 1) and Y ∼ N (µ, σ2). Then, given that EX = 0, Y d= µ +
σX . . .EY = µ which entails that EY = E(µ + σX) = µ + σEX = µ using
linearity.

Lemma 9.5 (Properties of the expectation)
In the context of 9.4 (X r.v. , g : R→ R,Eg(X) exists), then

i) E(g1(X)+ . . .+gd(X)) = Eg1(X)+ . . .+Egd(X) provided each Egi(X)
exists. This is just the linearity property of the expectation.

ii) EaX = aEX

iii) E(a) = a, for a ∈ R

Definition 9.6 (Moments of a distribution)
Let X be a r.v. , n ∈ N, α ∈ R. If they exist, the following expectations
have special names.
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1. EXn is the nth moment of X

2. E|X|α is the αth absolute moment of X.

Example 9.6 (Pareto distribution)
Consider a r.v. with density

fX(x) =


0 x ≤ 1
β

Xβ+1 otherwise, β > 0

which is the Pareto distribution . Then E|X|α = β
∫∞

1 xα−β−1dx <∞ only
if β > α, i.e. the first moment exists if β > 1, second moment if β > 2, etc.

The question that arises is: under what conditions do moments exist?

Example 9.7 (Standard Gaussian distribution moments)
Consider the random variable X ∼ N (0, 1). Then E(Xk) = 0 if k is odd and
E(Xk) = 1 · 3 · 5 · · · (k − 1) if k is even. We know that for σ > 0,∫ ∞

−∞

1√
2πσ2

e−
X2

2
1
σ2 dx = 1

since this is the PDF of N (0, σ2). Suppose a > 0, then∫ ∞
−∞

1√
2π

1√
1
a

e−
X2

2 adx⇒
∫ ∞
−∞

1√
2π
e−

X2
2 adx = 1√

a
= a−

1
2

Differentiate both sides w.r.t a. This is legit as both terms inside have
majorant so we can differentiate inside

⇒
∫ ∞
−∞

1√
2π

X2

2 e−
X2

2 adx = −1
2a
− 3

2

This holds for any a, so set a = 1, then

⇒
∫ ∞
−∞

1√
2π
X2e−

X2
2 dx = 1
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so EX2 = 1. Differentiate again

⇒
∫ ∞
−∞

1√
2π

(
X2

2

)(
X2

2

)
e−

X2
2 adx =

(−1
2

)(−3
2

)
a−

3
2

so
∫∞
−∞

1√
2πX

4e−
X2

2 dx = 3 so EX4 = 3.

Let’s make a small observation: let X r.v. with P(|X| < M) = 1 for M > 0.
In this case, E|X|t <∞, 0 < t <∞ since |X|t < M t <∞.

Theorem 9.7
Suppose X is a random variable such that E|X|t <∞. Then |X|s <∞ ∀ 0 <
s < t.

Proof For the continuous case, the discrete case is analogous

E|X|s =
∫ ∞
−∞
|x|sf(x)dx =

∫
x:|x|<1

|x|sf(x)dx+
∫
x:|x|≥1

|x|sf(x)dx

≤
∫
x:|x|<1

1f(x)dx+
∫
x:|x|≥1

|x|tf(x)dx

≤
∫ ∞
−∞

f(x)dx+
∫ ∞
−∞
|x|tf(x)dx

= 1 + E|X|t <∞

�

Observation
Suppose E|X|t <∞ :

∫∞
−∞ |x|tf(x)dx <∞. We can rewrite this as

lim
n→∞

∫ ∞
−∞
|x|tf(x)dx <∞.

This implies
∫
x:|X|>n |x|tf(x)dx→ 0 as n→∞. Furthermore, we can say

∫
x:|X|>n

|x|tf(x)dx ≥ nt
∫
x:|X|>n

f(x)dx = ntP(|X| > n)→ 0 as n→∞.
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Theorem 9.8
Let X be a r.v. such that E|X|t <∞ for some 0 < t <∞. Then ntP(|X| >
n) → 0 as n → ∞. The converse does not hold in general. Consider X
such that P(X = n) = c

n2 logn , for n = 2, 3 . . .. and
∑∞
k=2

c
n2 logn = 1 (c is a

normalizing constant). Take

P(X > n) ≈
∫ ∞
n

c

n2 logndx ≈
c

n logn ⇒ nP(X > n)→ 0

as n → ∞ Here, by ≈, we mean that the ratio of both sides go to 1 as
n→∞. However, EX =

∑∞
k=2

c
n logn =∞.

Theorem 9.9
Let X be a r.v. with CDF F . Then E|X| < ∞ if and only if

∫ {
−∞ F (x)dx

and
∫∞

0 (1−F (x))dx both converge. In that case, E(X) =
∫∞

0 (1−F (x)dx−∫ {
−∞ F (x)dx.

Proof We consider again only the continuous case, proceeding by integra-
tion by parts.
(⇒) If E|X| < ∞, then by a change of variables u = x, du = dx, dv =
f(x)dx, v = F (x), we obtain∫ n

0
xf(x)dx = nF (n)−

∫ n

0
F (x)dx = nF (n)− n+

∫ n

0
(1− F (x))dx

by adding and subtracting n to obtain −n(1−F (n))+
∫ n

0 (1−F (x))dx. Now
consider

n(1− F (n)) = n

∫ ∞
n

f(x)dx ≤
∫ ∞
n

xf(x)dx→ 0

as n → ∞ and F (n) = P(X ≤ n) and 1 − F (n) = P(X > n). Take the
limits:

∫∞
0 xf(x)dx =

∫∞
0 (1−F (x))dx. For the other part, we use the same

trick again, namely a change of variables.∫ 0

−∞
xf(x)dx = lim

n→∞

∫ 0

−n
xf(x)dx = lim

n→∞

[
nF (−n)−

∫ 0

−n
F (x)dx

]
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Consider the part nF (−n)

= n

∫ −n
−∞

f(x)dx ≤
∫ −n
−∞
|x|f(x)dx <∞

So nF (−n)→ 0 as n→∞ hence by combining both parts, we get

∫ 0

−∞
xf(x)dx+

∫ ∞
0

xf(x)dx = EX =
∫ ∞

0
(1− F (x))dx−

∫ 0

−∞
F (x)dx

(⇐) Observe that, from (⇒)

∫ n

0
xf(x)dx ≤

∫ n

0
(1− F (x))dx ≤

∫ ∞
0

(1− F (X))dx−
∫ 0

−∞
F (x)dx

Similarly, ∫ 0

−n
|x|f(x)dx ≤

∫ 0

n
F (x)dx ≤

∫ 0

−∞
F (x)dx <∞

and taken together, E|X| <∞. �

Corollary 9.10
Let X be a non-negative r.v. . Then, EX exists if and only if

∫∞
0 (1 −

F (x))dx <∞. In that case, EX =
∫∞

0 (1− F (x))dx.

Example 9.8
X ∼ E(α), f(x) = αe−αx, x > 0, α > 0. So

1− F (X) =
∫ ∞
x

αe−αydy = e−αx

⇒ EX =
∫ ∞

0
e−αxdx = 1

α

∫ ∞
0

αe−αxdx = 1
α
.

Theorem 9.11
Let X be a random variable such that xtP (|X| > x)→ 0 as x→∞. Then
E|X|s <∞ for 0 < s < t.
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Proof Fix ε > 0. Then, ∃ x0 such that ∀ x ≥ x0 then

xtP (|X| > x) < ε

if and only if P (|X| > x) < ε
x2 . We have

E|X|s =
∫ ∞

0
P (|X|s > x) dx =

∫ ∞
0

P
(
X > x

x
s

)
dx

Now, using a change of variable y = x
1
s ⇔ ys = x, sys−1dy = dx. Recall

that we had for the expectation of Y ≥ 0, EY =
∫∞

0 (1− FY (y)) dy where
(1− FY (y)) = P(Y ≥ y).

=
∫ ∞

0
sys−1P (|X| > y) dy

=
∫ x0

0
sys−1P (|X| > y) dy +

∫ ∞
x0

sys−1P (|X| > y) dy

≤
∫ x0

0
sys−1dy +

∫ ∞
x0

sys−1 ε

yt
dy

= xs0 + εs

∫ ∞
x0

ys−t−1 ε

yt
dy <∞

by assumption, since the integral is finite. �

Lemma 9.12
For a r.v. X, with E|X|t <∞⇔

∑∞
n=1 P

(
|X| > n

1
t

)
<∞. The proof is in

the book.

The fact we had this only defined for discrete of Riemann density and since
the definition was ad hoc, we introduce the Lebesgue integral . Here is an
optional section.
Remark
If g ≥ 0 and measurable, and E(g(x)) = 0, or

∑
x g(x)fX(x) = 0, then

P(g(x) = 0) = 1.
Definition 9.13 (Central moments)
Let X be a random variable such that EX exists. then, E(X − EX)k is
called the kth central moment and E|X − EX|k is the kth absolute central
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moment. In particular, for k = 2, E(X − EX)2 is called the variance of X
and

√
E(X − EX)2 is the standard deviation.

Example 9.9
Let X ∼ N (µ, σ2). For this example, we can compute the variance as follow:

Var(X) =
∫ ∞
−∞

(x− µ)2 1
σ
√

2π
e−

(x−µ)2

2σ2

let now y = −µ
σ . Then

= σ2
∫ ∞
−∞

y2 1√
2π
e−

y2
2 = σ2

Figure 14: Normalcurvisaurus sp.

0
0.
1

0.
2

0.
3

0.
4

x

P
D
F

(x
)

−3σ −2σ −σ µ σ 2σ 3σ

Example 9.10
Let X ∼ P(λ), EX = λ. If we look at the variance, we see that

∞∑
k=0

(k − λ)2λ
k

k! e
−λ.

76



If we look at
k(k − 1)

∞∑
k=2

λk

k! e
−λ = e−λλ2 λk−2

(k − 2)!

which by shifting is eλ and λ2.

E(X2 −X) = EX2 − EX = EX2 − λ

hence EX2 = λ2 + λ. Now, using the next theorem (2), we have Var(X) =
λ2 + λ− λ2 = λ.

Theorem 9.14 (Properties of the variance)
Let X be a r.v. with E|X| <∞. Then

1. VarX exists if and only if EX2 <∞;

2. VarX = EX2 − (EX)2 (if EX2 <∞);

3. VarX = 0⇔ P(X = c) = 1 for some c ∈ R.

4. Var(aX + b) = a2VarX

5. minc∈R E(X − c)2 = VarX = E (X − EX)2

Proof

1. X2 = (X − EX + EX)2 ≤ 2(X − EX)2 + 2(EX)2 since
(a− b)2 ≤ 2a2 + 2b2 and so E(X − EX)2 ≤ 2X2 + 2(EX)2.

2. The following is an equivalent way to obtain the variance.

E (X − EX)2 = E
(
X2 − 2XEX + (EX)2

)
= EX2 + E {−2EXX}+ E

(
(EX)2

)
= EX2 − 2EXEX + (EX)2

= EX2 − (EX)2
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3. If fx(c) = 1, then EX = c and EX2 = c2 so by (2) VarX = c2− c2 = 0.
Sufficiency of the condition. EX2 − (EX)2 = E(g(X)), g(X) ≥ 0 ⇒
P
(
(X − EX)2 = 0

)
= 1⇔ P(X = EX = c) = 1. It is readily seen that

c is the mean of X

4. E(aX + b−E(aX + b))2 = E(aX + b+ aEX + b)2 = a2E(a2(X + EX))2

5.

E(X − c)2 = E(X − c+ EX − EX)2

= E
(
(X − EX)2 − 2(X − EX)(EX − c) + (EX − c)2

)
= E(X − EX)2 − 2E(X − EX)(EX − c) + (EX − c)2

= VarX + (EX − c)2 ≥ VarX.

�

Definition 9.15 (Quantile function and median)
Let X be a random variable with distribution function F . Then, the gener-
alized inverse of F (or the quantile function) is given buy, for all u ∈ [0, 1]

F−1(u) = inf(x : F (x) ≥ u)

note that at 0 inf = −∞ and at 1, inf = ∅ if 1 is not reached. The median
of X is given by mX = F−1(1/2) and F (mX) ≥ 1/2, F (x) < 1/2 if x < mX .

Another definition is as follow: A median is any m ∈ R s.t. F (m) ≥ 1/2
and P(X ≥ m) = 1 − F (m−) ≥ 1/2. If you take this last one, the median
may not be uniquely defined.

We also have E|X − c| is minimized if c = mX . The proof of this fact is left
as an exercise. If it is finite, E|X −mX | is more robust if the first moments
are finite. It is not so easy to compute, but the advantage is that the median
always exists.
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x

FX(x)

u1

u2

1
2

F−1(u1) F−1(u2)

mX

mX

Figure 15: Example of generalized inverse for an arbitrary function.

One can remark the two definitions of the median are used in the figure,
illustrating the non-uniqueness of the second definition.
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Example 9.11
Let X ∼ Cauchy, fX(x) = 1/π(1 + x2) for x ∈ R and

FX(x) =
∫ x

−∞

dy

π(1 + y2) = 1
π

(
arctan x+ π

2

)

and clearly by inspection FX(0) = 1/2.

−π
2

π
2

x

FX(x)

Figure 16: Distribution function of the Cauchy distribution

Example 9.12
X takes the values 1, 2, 3, 108 and P(X = 1) = P(X = 2) = P(X = 3) =
0.3333. We have that the expectation is 10001.998, but the median mX is
2.
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Lebesque integration
We aim at defining EX for any random variable, with the idea that EX =∫
XdP. Recall that for (Ω,A), a mapping µ : A → R is called a measure if

1. µ(A) ≥ 0 ∀ A ∈ A;

2. µ(∅) = 0;

3. For Ai, Aj , i 6= j, i, j ∈ [1,∞), then µ (
⋃∞
i=1Ai) =

∑∞
i=1 µ(Ai).

The idea is if X = 1A for any A ∈ A, then what is
∫

1Adµ =
∫
A dµ = µ(A).

We go with a

Definition 9.16
X is called simple if the range of X is finite, i.e. {X(ω), ω ∈ Ω} is finite.
This condition is actually more restrictive than discrete random variables.

Remark
If X is simple, then X =

∑k
i=1 ai · 1A where a1, . . . , ak ∈ R̄ and Ai are

pairwise disjoint and such that
⋃∞
i=1Ai = Ω. To see this, set {X(ω), ω ∈

Ω} = {a1, . . . , ak}; then X(ω) =
∑k
i=1 ai1(X(ω=ai) = 1ω∈X−1({ai}) = 1Ai(ω)

where Ai = {ω : X(ω) = ai} = X−1({ai}) with ai > 0 ∀ i.

Definition 9.17
Let X be a non-negative simple function , i.e. X =

∑
i=1 6kai1Ai . Then∫

Xdµ =
∑k
i=1 aiµ(Ai), with the convention that ∞ · 0 = 0. Let us go

through the different steps

1. X = 1A and
∫
Xdµ = µ(A);

2. X =
∑k
i=1 ai1Ai and

∫
Xdµ =

∑
aiµ(Ai);

3. Chop the range with

An = X−1
([
i− 1
2n ,

i

2n
))

, i = 1, . . . , n · 2n
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and Bn = X−1([n,∞)) Now set X − n =
∑n2n
i=1

i−1
2n 1Ain + n1Bn . If

X(ω) < ∞, then for n sufficiently large, there exists i0 with X ∈[
i0−1
2n , i02n

)
and Xn(ω)−X(ω)| ≤ 1

2n
n→∞−−−→ 0 and X(ω) =∞, Xn(ω) =

n→∞ as n→∞.

Note
If X is a discrete random variable with finite support

EX =
∑

X∈{X(ω):ω∈Ω}
xP(X = x) =

∑
x

xP
(
X−1{x}

)
=
∫
XdP

Here is an amazing

Lemma 9.18
Let X be a non-negative random variable(∗) 17. Then, there exist simple
functions 0 ≤ X1 ≤ X2 ≤ . . . such that ∀ ω,X(ω) = limn→∞Xn(ω)

Definition 9.19
IfX ≥ 0 is an arbitrary rv(∗), then forX+ = max(X, 0) andX− = min(X, 0)
we have X = X+ − X− and

∫
Xdµ =

∫
X+dµ −

∫
X−dµ provided that∫

X+dµ <∞ or
∫
X−dµ <∞. If

∫
X+dµ <∞ and

∫
X−dµ <∞, then the

integral
∫
Xdµ is finite and X is called µ−integrable.

Note
X is µ−integrable,

∫
|X|dµ =

∫
X+ + X−dµ

∗=
∫
X+dµ +

∫
X−dµ < ∞,

where the last step is the hardest to prove.

Definition 9.20
EX =

∫
XdP provided that X is P−integrable.

Here are some interesting properties of the Lebesque integral.

Theorem 9.21 (Monotone convergence theorem)
If 0 ≤ X1 ≤ X2 ≤ . . . be a sequence of non-negative rv∗.
Then, limn→∞Xn = sup{Xn, n ≥ 1} = X is a random variable∗ and∫
Xdµ = limn→∞

∫
Xndµ

17Generalized random variable with ±∞)
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Theorem 9.22
Let X and Y be µ-integrable. Then

1.
∫
AXdµ =

∫
X1Adµ is well-defined for any A ∈ A.

2.
∫
Xdµ ≤

∫
Y dµ if X ≤ Y [EX ≤ EY ]

3. |
∫
Xdµ| ≤

∫
|X|dµ[|EX| ≤ E|X|]

4.
∫
aXdµ = a

∫
Xdµ [EaX = aEX]

5.
∫

(X + Y )dµ =
∫
Xdµ+

∫
Y dµ [E(X + Y ) = EX + EY ]

6. If X1, X2 are non-negative,

∫ ∞∑
i=1

Xidµ =
∞∑
i=1

∫
Xidµ

by the Monotone Convergence theorem

Theorem 9.23
let (Ω,A) and (X , c) be sample spaces and X : Ω→ X measurable, g : X →
R measurable. Then

Eg(X) =
∫
g(X)dP =

∫
gdPX

provided that g(X) is integrable.

Observation (Lebesque vs Riemann integral)
f is non-negative and measurable, f : Ω→ R. Define ν : A→

∫
A fdµ, where

f is called a µ−density. Then ν is a (new) measure on (Ω,A) and such that
for any measurable g ∫

gdν =
∫
g · fdµ

by the chain-rule.

If X is discrete with PMF fX and support S = {s1, s2 . . .} and we let µ be
given by µ(B) = |B ∩ S| for B ∈ B, then µ is indeed a measure. It is called
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the counting measure and

P(X ∈ A) = PX(A) =
∑

s∈S∩A
fX(s) =

∫
A
fXdµ

EX =
∫
xdPX =

∫
xfXdµ =

∑
s∈S

sfX(s)

If f ≥ 0 is measurable and A 7→
∫
A fdµ is a new measure. If F is absolutely

continuous, then there exists f ≥ 0 measurable such that F (B) − F (A) =∫ b
a fdλ or in other words F (X) =

∫ x
−∞ fdλ and EX =

∫
xdPX =

∫
xfdλ.

� � �
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Chapter 10

Generating functions
Moments of higher orders are often complicated to compute, furthermore
some distributions are not available in closed form, even though they are
often encountered (Gaussian distribution). We tackle the problem with mo-
ment generating functions.18

Definition 10.1
Let X be a random variable. The moment generating function (MGF) of X
is given as

MX(s) = Eesx =


∫ ∞
−∞

esxfX(x)dx if X has a density∑
x

esxfX(x) if X is discrete

provided that MX(s) exists in a neighbourhood (−ε, ε) for some ε > 0 such
that it is finite and defined.
Example 10.1
Let X ∼ N (µ, σ2). Then, the moment generating function is given by

MX(s) = Eesx =
∫ ∞
−∞

esx
1√
2π

1
σ
e−

(x−µ)2

2σ2 dx

=
∫ ∞
−∞

es(σy+µ) 1√
2π

e−
y2
2 dy

= esµ
∫ ∞
−∞

1√
2π
e−

y2−sσy
2 dy

where the second equality is obtained by making the change of variable
y = x−µ

σ , dy = dx
σ . By completing the square, y2 − 2σsy = (y − σs)2 − σ2s2

18There also exist probability generating function, but they are not that useful and only
work in the discrete case. The characteristic functions involve complex arguments and will
not be dealt with in the course.
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hence

= esµ+σ2s2
2

∫ ∞
−∞

1√
2π
e−

(y−sσ)2
2 dy

= esµ+σ2s2
2

for s ∈ R, since we have recovered the distribution function of a normal
variable.

Example 10.2
Let X ∼ P(λ)

Eesx =
∞∑
k=0

esk
λk

k! e
−λ = e−λ

∞∑
k=0

(λes)k

k! = eλe
s−1

for s ∈ R since the sum is eλes .

Example 10.3
Let X ∼ Geo, P(X = k) = pk(1− p), k = 0, 1 . . ..

MX(s) =
∞∑
k=0

eskpk(1− p) = (1− p)
∞∑
k=0

(esp)k

converge if esp < 1⇔ es < 1/p⇔ s < log(1/p). so p ∈ (0, 1). MX(s) exists
for all

s < log(1/p) = (1− p) 1
1− esp

Other examples will arise in the assignment, for the negative binomial, the
double exponential, etc.

Example 10.4
Let X ∼ Cauchy, fX(x) = 1/π(1 + x2) for x ∈ R. The MGF

∫ ∞
−∞

esx

π(1 + x2)dx

is not finite. Even though the MGF is easy to compute, it is not well-defined
for all distribution functions.
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Heuristic calculation

Eesx = E
( ∞∑
k=0

skxk

k!

)
(∗)=

∞∑
k=0

skExk
k!

can be differentiated if in the radius of convergence.

(Eesx)(l) (∗)=
∞∑
k=0

Exk
k!

sk−lk!
(k − l)!

∣∣∣
0

= Exl

Suppose X is a r.v. such that MX(s) exists in (−ε, ε) for ε > 0 Then, for
any l ∈ N,

(MX(s))(l)
∣∣∣
0
Exl

can be shown to converge absolutely. More can be found in Widder book
The Laplace transform (1946).

Theorem 10.2
If X,Y are r.v. whose MGF exists in (−ε, ε) for ε > 0 (the smallest interval
of X and Y around 0) and MX(s) = MY (s) ∀ s ∈ (−ε, ε), then X

d= Y ,
id est there is a one-to-one correspondence between the moment generating
function and the distribution function (if it exists).

Example 10.5
Let X ∼ N (µ, σ2). Then MX(s) = eµs+σ

2s2/2, s ∈ R,

M ′X(s) =
(
eµs+

σ2s2
2

)
(µs+ σ2s)

then M ′X(0) = µ = EX. Similarly, by the product rule

M ′′X(x) =
(
eµs+

σ2s2
2

)
(µs+ σ2s)2 +

(
eµs+

σ2s2
2

)
σ2

imply M ′′X(0) = µ2 + σ2 = EX2 → VarX = σ2. If the MGF exists, all
moments exist.

Observation
If MX(s) exists on (−ε, ε), then EXk < ∞ ∀ k ∈ N. examples include the
Student’s t, the Cauchy and the Pareto distributions.
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Question: If all moments are finite, i.e. i EXk < ∞ ∀ k ∈ N, does the
MGF MX(s) =

∑∞
k=0 s

kExk/k! exist on (−ε, ε)? The answer is no.

Example 10.6
Let X ∼ fx(x) = ce−|x|

α for 0 < α < 1, x ∈ R.

E|X|k =
∫ ∞
−∞
|x|kce−|x|αdx = 2

∫ ∞
0

xkce−x
α
dx

which by the change of variables y = xα, dy = αxα−1dx

= 2c
α

∫ ∞
−∞

y
k+1
α
−1e−ydy = 2c

α
Γ
(
k + 1
α

)
<∞

Thus MX(s) =
∫∞
−∞ e

sxce−|x|
α
dx ≥ c

∫∞
0 ex(s−1/xt−α)dx =∞.

Example 10.7
Consider X with density

f(x) =


0 x ≤ 0

1
x
√

2π
e−

(log x)2
2 otherwise

hence X ∼ lognormal (0,1). This distribution arise as follows: for

Z ∼ N (µ, σ2) ∴ eZ ∼ LN (µ, σ2).

Let Y have density g(y) = f(y)(1 = θ) sin(2π log y)), |θ| ≤ 1. You can show
g is indeed a density. If we look at the moments of our two distributions:

EY k =
∫ ∞

0
ykf(y) + ykf(y)θ sin(2π log y)dy

= EXt +
∫ ∞

0
+ykf(y)θ sin(2π log y)dy

and the later is 0 because the sine function is an odd function. Indeed,
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log y = t and

=
∫ ∞
−∞

ekt
1√
2π
e
t2
2 θ sin(2πt)dt

= θ√
2π

∫ ∞
−∞

e(t−k)22ek22 sin(2π + t)dt

= θ√
2π
e−k

22
∫ ∞
−∞

e−z
22 sin(2πz + k)dz = 0

The second equality comes from completing the square and the last from
the fact we are integrating sin(2πz). All moments are finite and exists, but
the distribution is not the same and furthermore by Exercise 10.6, we know
exp−(log x)2/2 is even slower then the previous example.

Theorem 10.3
Let X be a random variable such that EXk <∞ ∀ k ∈ N. If

∑∞
k=0 s

kExk/k!
is absolutely convergent for some s > 0 (interchanging the limit and the
integral is possible and our heuristic calculation works.). then X has a
MGF and the {EXk, k ∈ N} determines the distribution of X uniquely.

Observation
If X has a bounded support, then

E|X|k =
∫ ∞
−∞
|x|kfx(x)dx ≤Mk

∫ ∞
−∞

fx(x)dx = Mk <∞

Here is a generalization of the moment generating function.

Definition 10.4 (Characteristic function)
Let X be a r.v. The characteristic function of X is given by φX(t) = Eeitx

for t ∈ R. The advantage of this is that is it always defined.

Remark
1. The characteristic function always exists:

Eeitx = E cos tx+ i sin tx = E cosxt+ Ei sin tx

and both are bounded. Now, |E cos tx| ≤ E| cos tx| ≤ E1 = 1 and
similarly, |E sin tx| ≤ 1;
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2. φX(t) is continuous in t;

3. φX(t) determines the distribution of X uniquely. The convergence of
the random variable can be characterized by the convergence of their
characteristic function. Some random variables are even defined by
their characteristic function; examples such as the elliptical distribu-
tions which have application in finance and are nothing but general-
ization of a more heavy-tailed version of the multinormal distribution.
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Chapter 11

Moments inequalities
Theorem 11.1
Let X be a r.v. and h : R → R, h measurable and non-negative. Further-
more, assume that Eh(X) <∞. Then, for all M > 0,

P(h(X) ≥M) ≤ Eh(X)
M

Contrary to analysis, we are interested by large values of M rather than
small ones.

Proof We first prove for X discrete and show from right to left.

Eh(X) =
∑

h(x)fX(x) =
∑

x:h(x)≥M
h(x)fX(x) +

∑
x:h(x)<M

h(x)fX(x)

≥M
∑

x:h(x)≥M
fX(x) = M · P(h(X) ≥M)

We first split the sum in two in the first equality, then drop the smallest
part of the summation and use M as a lower bound for the second. In full
generality now:

Eh(X) =
∫
h(x)dPX(x)

=
∫

1x:h(x)≥Mh(x)dPX(x) +
∫

1x:h(x)<Mh(x)dPX(x)

≥M
∫

1x:h(x)≥MdPX(x) = M · P(h(X) ≥M)

remarking that x : h(x) ≥M is measurable, so a Borel set. �

Corollary 11.2 (Markov inequality)
Let X be a random variable such that E|X|s <∞ for some s > 0. Then

P(|X| ≥M) ≤ E|X|s
M s
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∀M > 0. This gives a bound on the probability of the tail of the distribu-
tion.

Proof For P(|X| ≥M) = P(|X|s ≥M s). Apply Theorem 11.1 on h(X) =
|X|s to get the result. �

Corollary 11.3 (Chebichev-Bienaymé inequality)
If X is a random variable with EX2 <∞, then

P
(
|X − EX| ≥M

√
VarX

)
≤ 1
M2

We will use the preceding in the proof of the Law of large numbers.

Proof

P
(
|X − EX| ≥M

√
VarX

)
= P

(
(X − EX)2 ≥M2VarX

)
Applying Theorem 11.1 on h(X) = (X−EX)2 yields the ratio VarX

M2VarX = 1
M2 .

�

x

−3σ −2σ −σ σ 2σ 3σ

σ
34%34%

14%14% 2%2% 0.1%0.1%

Figure 17: Normal distribution

Example 11.1
Let X ∼ N (µ, σ2). The probability

P(|X − µ| ≤Mσ) = P(−Mσ ≤ X − µ ≤Mσ)

= P
(
−M ≤ X − µ

σ
≤M

)
= Φ(M)− Φ(−M)
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where Φ is the DF of the standard normal. We can implement Φ(M) in
R using pnorm(M). The Gaussian curve has 68.27 % of the density in the
interval [µ−σ, µ+σ], 95.45% between [µ−2σ, µ+2σ] and 99.73% within three
standard deviation. Now, if we do this calculation using the Chebychev 19

inequality, we get.

P(|X − µ| ≤Mσ) = 1− P(|X − µ| ≥Mσ) ≥ 1− 1
M2

For M = 1 . . .P ≥ 0, M = 2 . . .P ≥ 3/4 and for M = 3 . . .P ≥ 8/9, which
is not impressive. We can look yet at another example that is artificial, but
gives a very sharp bound.

Example 11.2
Fix M > 0 and let P(X = 0) = 1− 1/M2, P(X = ±1) = 1/2M2. Then, for
this r.v.

EX = (−1) 1
M2 + (0)

(
1− 1

M2

)
+ (1) 1

M2 = 0

entails VarX = EX2. The probability P
(
|X| ≥ M

M

)
= P(|X| ≥ 1) = 1

M2

which is precisely the Chebychev inequality bound.

Theorem 11.4
Let X be a r.v. with EX = 0 and VarX = σ2. Then P(X ≥M) ≤ σ2

σ2+M2 if
M > 0 and P(X ≤ −M) ≤ σ2

σ2+M2 which entails since these are disjoint sets

P(|X| ≥M) = P(X ≥M or X ≤ −M) ≤ 2σ2

σ2 +M2

Note that the assumption that EX = 0 is actually not very restrictive since
|X − EX| = |Y |, Y = X − EX ⇒ EY = 0. It will make calculations much
easier in a sense.

19It is also found under the name Tchebychev in the literature.
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Proof

P(X ≥M) = P(X + c ≥M + c) ∀ c > 0

≤ P(|X + c| ≥M + c) = P
(
(X + c)2 ≥ (M + c)2

)
≤ E (X + c)2

(M + c)2 = EX2 + 2cEX + c2

(M + c)2

= σ2 + c2

(M + c)2 = f(c)

If we minimize this with respect to c, ie minc f(c), we get that the minimum
is attained if c = σ2/M. In particular,

P(X ≥M) ≤
σ2 + σ4

M2(
M2 + σ2

M

)2 = M2σ2 + σ4

(M2 + σ2)2 = σ2

M2 + σ2

For the other inequality, you can play with it in a similar fashion

P(X ≤M) = P(X − c ≤ −M − c) . . . ≤ P((X − c)2 ≤ (M + c)2)

and do the same trick as before. IfM is large, we get a more accurate result.
�

Theorem 11.5
Let E|X|4 <∞, EX = 0, and VarX = σ2. Then for any M > 1,3

P(|X| > Mσ) ≤ EX4 − σ4

EX4 + σ4M4 − 2M2σ4
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Proof Let Y = x2 − σ2

M2σ2 − σ2 ⇒ EY = 0,VarY also exists. Then

P(Y ≥ 1) ≤ VarX
1 + VarX =

1
(M2σ2 − σ2)2 VarX2

1 + 1
(M2σ2 − σ2)2 VarX2

= EX4 − σ4

M4σ4 + 2σ4M2 + σ4 − σ4 − EX4

�

Theorem 11.6 (Lyapunov inequality)
Let X be a r.v. with E|X|n <∞ for some n ∈ N. Then, for any 2 ≤ k ≤ n,
we have (

E|X|k−1
) 1
k−1 ≤

(
E|X|k

) 1
k

Proof Consider the quadratic form

Q(u, v) =
∫ ∞
−∞

(
u|x|

k−1
2 + v|x|

k+1
2
)2
dPX(x) = E

(
u|X|

k−1
2 + v|x|

k+1
2
)2
≥ 0

This means that for all u, v ∈ R, it is non-negative. We now require k < n

for the quadratic form; if we expand the square

u2E|X|k−1 + 2uvE|X|k + v2E|X|k+1 ≥ 0

⇔
(
u v

)(E|X|k−1 E|X|k

E|X|k E|X|k+1

)(
u

v

)
≥ 0

is a positive semi-definite matrix. This implies that the determinant∣∣∣∣∣E|X|k−1 E|X|k

E|X|k E|X|k+1

∣∣∣∣∣ = E|X|k+1E|X|k−1 −
(
E|X|k

)2
≥ 0
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and equal by taking the kth power(
E|X|k+E|X|k−1

)k
≥
(
E|X|k

)2k

Now by induction on k. If k = 2,

EX ≤
(
E|X|2

) 1
2 ⇔ (E|X|)2 ≤ E|X|2 ⇔ VarX ≥ 0

which is true. Suppose that for k < n,(
E|X|k−1

)k
≤
(
E|X|k

)k−1
.

At the same time (
E|X|k

)2k
≤
(
E|X|k+1E|X|k−1

)k
If we multiply the two inequalities, then(

E|X|k
)2k

������(
E|X|k−1

)k
≤
(
E|X|k

)k−1 (
E|X|k+1

)k
������(

E|X|k−1
)k
.

If E|X|n = 0, it will be degenerate (almost everywhere zero). Assuming it
is not the case, we get (

E|X|k
)k+1

≤
(
E|X|k+1

)k
�
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Chapter 12

Multivariate random vectors
Definition 12.1 (Random vector)
A random vector X = (X1, . . . , Xn) is a measurable function from (Ω,A,P)
to Rd.

Definition 12.2
A (multivariate) distribution function f is defined by

F (X1, . . . , Xn) = P(X1 ≤ x1, X2 ≤ x2, . . . , Xd ≤ xd)

∀ x1, . . . , xn ∈ R.20 F is a function F : Rd → [0, 1].

Properties of F
F characterizes the random behaviour of x. Any distribution function F

has the following properties:

(i)

lim
x1→∞

. . . lim
xd→∞

F (x1, . . . , xn) = 1;

in other words, all components go to 1. We have increasing sequences
of events on which we put less and less constraints on Ω.

(ii)

lim
xi→−∞

F (x1, . . . , xn) = 0 ∀ xi

since the intersection of ∅ with any set is again the emptyset, which
has probability zero.

(iii) F is non-decreasing and right continuous in each of its d components.
For example, fix x2, . . . , xd ∈ R, then t 7→ F (t, x2, . . . , xd) is right-
continuous and non-decreasing. The proof is essentially the same as

20The commas denote intersection of sets.
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in one dimension. Note that the three are sufficient in 1-d, but the
essential property to construct a distribution function is

(iv) F is d−monotone. When d = 2, this means for x1 < x∗1 and x2 < x∗2

F (x∗1, x∗2)− F (x1, x
∗
2)− F (x∗1, x2) + F (x1, x2) ≥ 0

Figure 18: Viewing 2−monotonicity with sets
x∗2

x2

x1 x∗1

A C

B D

The above express P(A∪B ∪C ∪D)−P(A∪C)−P(A∪B) + P(A) since they are
disjoint sets. In terms of areas, this is (A+B+C+D)−(A+C)−(A+B)+A = D
hence P(x1 < X < x∗

1, x2 < X2 < x∗
2). Without (iv), we could build F and get a

defective d.

The case of d = 3 yields

F (x∗1, x∗2, x∗3)− F (x1, x
∗
2, x
∗
3)+F (x1, x2, x

∗
3)− F (x1, x2, x3) ≥ 0

− F (x∗1, x2, x
∗
3)+F (x1, x

∗
2, x3)

− F (x∗1, x∗2, x3)+F (x∗1, x2, x3)

and in higher dimensions

∑
ci∈{xi,x∗i }
i∈{1,...,d}

(−1)v(c) × F (c1, . . . , cd)
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where v(c) is the number of ci’s that have no stars. Conversely, any function
F : Rd → [0, 1] that satisfies (i) → (iv) is a valid distribution function i.e.
there exists a probability measure that yields F . The proof are exactly as in
the univariate case; the key element is that (x1, x

∗
1]×(x2, x

∗
2]×· · ·×(xd, x∗d] are

precisely the sets of form that generate the Borel class in Rd. Multivariate
distributions are the bread and butter of statistician, but let us focus for
now however on the bivariate case (X = X1, Y = X2).

Definition 12.3
A random vector (X,Y ) has a discrete distribution if there exists a countable
set S such that P{(X,Y ) ∈ S} = 1, that is X and Y takes countably
many values with probability 1. S is often expressed as a cartesian product
S = SX × SY .

The joint probability mass function is defined by f(X,Y ) = P(X = x, Y = y)
for x, y ∈ R. Since SX = {x1, x2, . . .} and SY = {y1, y2, . . .}, we have

f(X,Y )(x, y) =


0 if x /∈ SX
0 if y /∈ SY
pij when x = xi, y = yj

where pij ∈ [0, 1] and
∑∞
i=1

∑∞
j=1 pij = 1.

Example 12.1 (Bivariate Poisson)
Let X ∼ P(λ) if and only if P(X = x) = e−λλx/x! for x ∈ N, λ > 0. This
variable could be the intensity of phone call at 911 in Montreal. We may
wish to compare with the number of phone calls on the south shore, which
follow another Poisson: we have Y ∼ P(µ) iff P(Y = y) = e−µµy/y! for
y ∈ N, µ > 0. Then the joint probability is

P(X = x, Y = y) = e−(λ+µ)λxµy

x!y! ∀ (x, y) ∈ N× N

or we could also write it as

P(X = i, Y = j) = e−(λ+µ)λiµj

i!j! ∀ (i, j) ∈ S
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Example 12.2 (Multinomial distribution)
Suppose a random event can result in d+ 1 different outcomes. This could
be classification of the quality of an object, or more simply the distribution
of grades. So X1 is the number of items in bin 1, Xd the number of items
in bin D, etc. Assume there are n items in all. (X1, . . . , Xn) is said to have
a multinomial distribution with parameters n ∈ N and p1, . . . , pd ∈ [0, 1] if
and only if

P(X1 = x1, . . . , Xd = xd) =(
n

X1 ·X2 · · ·Xd

)
pX1

1 pX2
2 · · · p

Xd
d

{
1−

d∑
i=1

pi

}Xd+1

where
(
n−

∑d
i=1 pi

)
= Xd+1 and we have that 0 ≤ p1 + · · · pd ≤ 1 so that

1−
∑d
i=1 pi ∈ [0, 1], X1, X2, . . . , Xd+1 ∈ N,

∑d+1
i=1 Xi = n and pi = probability

of falling in bin i.

Remark
In a discrete (bivariate) model, the choice of pij ’s determines the joint dis-
tribution.

P{(X,Y ) ∈ A} = P
{

(X,Y ) ∈
⋃
{i, j}, (i, j) ∈ A

}
=

∑
(i,j)∈A

pij .

Definition 12.4
A random vector (X1, . . . , Xn) is said to have a continuous distribution if
and only if there exists a function f : Rd → [0,∞) such that

F (X1, . . . , Xn) = P(X1 ≤ x1, . . . , Xd ≤ xd)

=
∫ xd

−∞
· · ·
∫ x1

−∞
f(t1, . . . , td)dt1 . . . dtd

If F is absolutely continuous, then

f(x1, . . . , xn) = ∂

∂x1 . . . ∂xd
F (X1, . . . , Xn).
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The function f is called the multivariate density function of X. The follow-
ing properties defines a multivariate probability density function:

(i) f(X1, . . . , Xn) ≥ 0;

(ii)
∫∞
−∞· · ·

∫∞
−∞ f(x1, . . . , xn)dx1 . . . dxd = 1.

Example 12.3 (A bivariate exponential distribution)
Consider the time between two Poisson, says the waiting time between two
calls at 911.

X ∼ E(λ)→ fX(x) = λe−λx, x ∈ [0,∞), λ > 0

Y ∼ E(µ)→ fY (y) = µe−µy, y ∈ [0,∞), µ > 0

Here is a possible f(X,Y )(x, y) = λµe−λx−µy ∀ (x, y) ∈ [0,∞)2. “This is
called stochastic independence, but as French Canadian, I am not allowed
to talk about independence”, dixit Pr. Christian Genest.

Example 12.4
Define

F (x, y) =



0 if x < 0 or y < 0

min(x, y) if x ∈ [0, 1) & y ∈ [0, 1)

x if x ∈ [0, 1) & y ≥ 1

y if x ≥ 1 & y ∈ [0, 1)

1 if x ≥ 1 & y ≥ 1

For this example, we see that both random variables are uniform on (0,1),
that is X = U and Y = U and P(X ≤ x, Y ≤ y) = P(U ≤ x,U ≤ y). If
we look at the partial derivatives however, we note ∂F/∂x∂y = 0 almost
everywhere and (X,Y ) is neither discrete nor does it have a density. Note
that F is continuous! Recall the exotic cases we had in 1-dimension; they
are much more frequent for higher dimensions and we really must verify it
integrates to 1.
Morale Check that ∫ ∞

−∞

∫ ∞
−∞

∂F (x, y)
∂x∂y

dxdy = 1
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It could happen that points cluster on the line and the volume is zero. Con-
sider now a random vector (X1, . . . , Xn) is provided in joint distribution
function F (X1, . . . , Xn) = P(X1 ≤ x1, . . . , Xd ≤ xd). if we wanted to recon-
struct the distribution FX1(x1) = P(X1 ≤ x1), we let all xi, i 6= 1 tend to
infinity and this entails
Definition 12.5 (Marginal distribution functions of F)
Let (X1, . . . , Xn) be a random vector with distribution function F . Then,
the marginal distribution functions (margins) of F are FXi for i = 1, . . . , d
where for each i ∈ {1, . . . , d}

FXi(xi) = lim
xj→∞
j 6=i

F (X1, . . . , Xn), xi ∈ R

Let us continue our example.

FX(x) = lim
y→∞

F (x, y) =


0 if x < 0

x if x ∈ [0, 1)

1 if x ≥ 1

and we recover X ∼ U(0, 1) and similarly Y ∼ U(0, 1). Remember that even
though X,Y have density, the bivariate distribution does not. We’ll stress
this a little latter.
Example 12.5
F (X,Y ) = (1−e−x)(1−e−y) for x > 0, y > 0. Then limy→∞ F (x, y) is equal
to 0 if x < 0 and 1− e−x if x ≥ 0. In this case, X ∼ E(1) and Y ∼ E(1)s.

Example 12.6
Suppose a vector (X,Y ) ∼M(p1, p2, n). The support

S = {(k, l) : k ∈ {0, . . . , n}, l ∈ {0, . . . , n}, k + l ≤ n}

The support of X is the projection on the X axis X ∈ {0 . . . 4} and P(X =
0) = P((X,Y ) ∈ {(0, x), x ∈ R}.
Lemma 12.6
Let (X1, . . . , Xn) be a discrete random vector with PMF f and support S.
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Then for all i ∈ {1, . . . , d}, Xi is discrete with support

SXi = π + i(S) = {x ∈ R : ∃s ∈ S such that si = x}

Furthermore, for all x ∈ SXi ,P(Xi = x) =
∑
s∈S,si=x P(Xi = si, . . . , Xd =

sd). We could also make it more general.
Remark

fXi(x) =
∑

(X1,...,Xn)∈Rd
xi=x

f(x1, . . . , xi−1, x, xi+1, . . . , xd) for i ∈ {1, . . . , d}

Let us continue our example. If we look at P(X = k), k = {0, . . . , n}, this is
fx(k) which equals

P(X = k) =
n−k∑
l=0

(
n

k, l, (n− k − l)

)
pk1p

l
2(1− p1 − p2)n−k−l

Recall that the multinomial coefficient
( n
k,l,(n−k−l)

)
= n!

k!l!(n−k−l)! which en-
tails

= n!
k!(n− k)!p

k
1

n−k∑
l=0

(n− k)!
l!(n− k − l)!p

l
2(1− p1 − p2)n−k−l

=
(
n

k

)
pk1(p2 + 1− p1 − p2)n−k

=
(
n

k

)
pk1(1− p1)n−k

Hence X ∼ B(n, p1) and Y ∼ B(n, p2).
Lemma 12.7
Let (X1, . . . , Xn) be a random vector with density f . Then, for all i ∈
{1, . . . , d}, Xi has a density given by

fXi(x) =
∫ ∞
−∞
· · ·
∫ ∞
−∞

d−1

f(x1, . . . , xi−1, x, xi+1, . . . , xd) dx1, . . . , dxd
d−1
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Proof For the case d = 2. Consider wlog X1. We have

FX1(x1) = lim
x2→∞

∫ x1

−∞

∫ x2

−∞
f(s, t)dtds

=
∫ x1

−∞

∫ ∞
−∞

f(s, t)dtds =
∫ x1

−∞
f(x1)(s)ds

If we wanted X2, swap the integral (since the function integrate to 1 and is
positive). �

Example 12.7
Let f(x, y) = e−y−x, x > 0 & y > 0. If y ≤ 0, fY (y) =

∫∞
−∞ f(x, y)dx = 0.

Else, ∫ ∞
0

e−x−ydx = e−y
∫ ∞

0
e−xdx = e−y

if y is positive.

Example 12.8 (Margins of Multinormal distribution)
Let (X1, . . . , Xn) and define X = (X1 . . . Xd)>, the expectation vector µ =
(µ1 . . . µd)>, and the covariance matrix Σ ∈ Rd×d positive definite and sym-
metric. The density is given by

f(x1, . . . , xn) = 1
(2π)

d
2

1
|Σ| exp

(
−1

2(x− µ)>Σ−1(x− µ)
)

Suppose we consider a simple case with µ =
(
µ1
µ2

)
and Σ =

(
σ12 ρσ1σ2
ρσ1σ2 σ22

)
,

where ρ ∈ (−1, 1) and σ1, σ2 > 0. The joint probability density is f(x, y) is

= 1
(2π)

1
σ1σ

√
1− ρ2 e

− 1
2(1−ρ2)

(
(x−µ1)2

σ12 + (y−µ2)2

σ22 − 2ρ(x−µ1)(y−µ2)
σ1σ2

)

If we begin to play with the integral, we can obtain fX(x) =
∫∞
−∞ f(x, y)dy
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which is

= 1√
2πσ1

exp
(
− 1

2(1− ρ2)
(x− µ1)2

σ12

)

×
∫ ∞
−∞

1√
2π

1
σ2
√

1− ρ2 exp
(
− 1

2(1− ρ2)σ22

(
y − µ2 −

ρσ2
σ1

(x− µ1)
))

.

Thus, by completing the square on(
y − µ2 −

ρσ2
σ1

(x− µ1)
)
,

we get that this part is equal to
y − µ2 −

ρσ2
σ1

(x− µ1)︸ ︷︷ ︸
constant


2

− ρ2σ2
2

σ12 (x− µ1)2 = y − µ∗

The final result will be

fX(x) = 1√
2π

1
σ1

exp
(
− 1

2(1− ρ2)(x− µ1)2 + ρ2σ2
2

2(1− ρ2)σ22 (x− µ1)2
)

×
∫ ∞
−∞

1√
2π

1
σ∗

exp
(
− 1

2σ∗2 (y − µ∗)
)
dy

= 1√
2π

1
σ1

exp
(
−1

2
(x− µ1)2

σ1

2)

where σ∗ = σ2√1− ρ2. Note that the second term in the product inte-
grated to 1 as we recovered a density function (namely that of the normal
distribution).

Example 12.9

f(x, y) =

1 if x ∈ (0, 1) and y ∈ (0, 1)

0 otherwise.
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Then the margin

fX1(x) =


0 if x /∈ (0, 1)∫ 1

0
dy if x ∈ (0, 1)

Hence X ∼ U(0, 1) and similarly Y ∼ U(0, 1).

Remark
Careful! The joint distribution determines the marginal distribution, but not
conversely, id est the knowledge of the marginal distribution is not enough
to reconstruct the joint distribution (an illustration of this fact is to compare
Examples 12.4 and 12.9).
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Chapter 13

Independence of random variables
Recall that in the case of events, we had independence if P(A∩B) = PAPB.
For two random variables X,Y , we need something of the form

P(X ∈ B1, Y ∈ B2) = P(X ∈ B1)P(Y ∈ B2)

for any B1, B2 ∈ B.

Definition 13.1 (Independence)
The random variables X1 and X2 are called independent if their joint dis-
tribution function F (X1, X2) is of the form

F(X1,X2)(x,1 , x2) = FX1(x1)FX2(x2) ∀ x1, x2 ∈ R

Example 13.1
Recall the examples of bivariate exponential distribution we had earlier. It
is clear that

F (x, y) = (1− e−x)(1− e−y)1(x≥0,y≥0) = FX(x)FY (y)

Observation If we have B1 = (a, b], B2 = (c, d], then

P(X ∈ (a, b], y ∈ (c, d]) = F (b, d)− F (b, c) + F (a, d) + F (a, c)

= (FX(b)− FX(a)) (FY (d)− FY (c))

= P(X ∈ (a, b])× P(Y ∈ (c, d])

if X and Y are independent. That is, if X and Y are independent, then
P(X ∈ B1, Y ∈ B2) = P(X ∈ B1)P(Y ∈ B2). If B1 = (−∞, x) and
B2 = (−∞, y], then we get the converse.

Definition 13.2
The variables Xi, i ∈ I where I is an arbitrary index set, are called indepen-
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dent if for any k ∈ N and any collection i1, . . . , ik ∈ I, then

F(Xi1 ,...,Xik )(xi1 , . . . , xik) =
k∏
j=1

FXij (xij), (xi1 , . . . , xik) ∈ Rk (13.1)

Proof Independence clearly implies 13.1 (it is only a special case). We
need to show the equation is equivalent to independence.
Let k ∈ {2, . . . , d}, i1, . . . , ik ∈ {1, . . . , d}. Then P(Xi1 ≤ xi1 , . . . , Xik ≤ xik)

= lim
xj→∞

j /∈{i1,...,ik}

P(X1 ≤ x1, . . . , Xd ≤ xd)

= lim
xj→∞

j /∈{i1,...,ik}

d∏
j=1

FXi(xi)

= lim
xj→∞

j /∈{i1,...,ik}

∏
j /∈{i1,...,ik}

FXj (xj)

 ∏
j∈{i1,...,ik}

FXj (xj)


�

Example 13.2 (Farlie-Gumbel-Morgenstein distributions)
Let F1, F2, F3 be some fixed univariate distribution functions.
For α ∈ (−1, 1), we have F (x1, x2, x3)

= F1(x1)F2(x2)F3(x3) + αF1(x1) (1− F1(x1)) (1− F2(x2)) (1− F3(x3))

which is a valid trivariate distribution function. The margins of F are
F1, F2, F3, and they are not independent unless α = 0. However, if we look
at the distribution of (X1, X2), it has distribution function F1(x1)F2(x2),
that is X1 and X2 are independent. This holds for all pairs Xi and Xj , for
i, j in{1, 2, 3}, i 6= j.

Theorem 13.3 (Conditions for independence)
Let (X1, . . . , Xn) be a random vector. Then
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1. X1, . . . , Xn are independent if and only if

f(X1,...,Xn)(x1, . . . , xn) = fX1(x1)× · · · × fXd(xd) (13.2)

for x1, . . . , xn ∈ R provided (X1, . . . , Xn) has a probability mass func-
tion fX1,...,Xn .

2. X1, . . . , Xn are independent if and only if 13.2 holds almost everywhere
provided (X1, . . . , Xn) has density f(X1, . . . , Xn).

Proof Necessity. We have f(X1,...,Xn)(x1, . . . , xn)
∫ x1

−∞
· · ·
∫ xd

−∞
f(X1,...,Xn)(t1, . . . , td)dtd . . . dt1

=
∫ x1

−∞
· · ·
∫ xd

−∞
fXi(ti)dti

=
d∏
i=1

∫ xi

−∞
fXi(ti)dti

=
d∏
i=1

FXi(xi)

Sufficiency.

F(X1,...,Xn)(x1, . . . , xn)
∂x1 . . . ∂xd

= FX1(x1)
∂x1

· · · FXd(xd)
∂xd

f(X1,...,Xn)(x1, . . . , xn) = fX1(x1) · · · fXd(xd)

and

f(X1,...,Xn)(x1, . . . , xn) = lim
ε→0

P
(
X1 ∈ [x1, X1 + ε), . . . , Xd ∈ [xd, Xd + ε)

)
�
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Example 13.3
1. (X,Y ) with density

e−x−y1(x>0)1(y>0) = e−x1(x>0) · e−y1(y>0)

Clearly, X and Y are independent exponential.

2. (X,Y ) ∼ N
((

µ1
µ2

)
,
(

σ12 ρσ1σ2
ρσ1σ2 σ22

))
. If ρ = 0, then X and Y are indeed

independent.
3.

f(X,Y )(x, y) =
(

n

x, y, (n− x− y)

)
px1p

y
2(1− p1 − p2)n−x−y

and 0 otherwise if x, y ∈ {0, . . . , n} and x+y ≤ n. Then X ∼ B(n, p1)
and Y ∼ B(n, p2) are not independent x, y ∈ {0, . . . , n} and x, y ≤ n.
X and Y are not independent because the support of (X,Y ) is not
{0, . . . , n} × {0, . . . , n}.

4. Let (X,Y ) as in picture have joint distribution in the circle. They
cannot be possibly independent.

1

-1

1-1

Theorem 13.4
X1, . . . , Xn are independent if and only if for any Borel sets B1, Bd, we have
that

P(X1 ∈ B1, . . . , Xd ∈ Bd) =
d∏
i=1

P(Xi ∈ Bi)
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Corollary 13.5
Suppose X1, . . . , Xn are random variables and g1, . . . , gd are (Borel) mea-
surable functions, gi : R → R. Then, if X1, . . . , Xn are independent,
g1(X1), . . . , gd(Xd) are also independent. To see this, look at

P (g1(X1) ∈ B1, . . . , gd(Xd) ∈ Bd)

= P
(
X1 ∈ g1

−1(B1), . . . , Xd ∈ gd−1(Bd)
)

remarking that each g−1(Bi) is again a Borel set. For this intersection of
events, we apply Theorem 13.4 to get that the above is equal to

=
d∏
i=1

P
(
Xi ∈ gi−1(Bi)

)
=

d∏
i=1

P (g(Xi) ∈ (Bi))

Example 13.4
Consider (X,Y ) with density f(x, y) = 1+xy

4 1(|x|<1)1(|y|<1). The marginal

fX(x) =
∫ 1

−1

1 + xy

4 dy = 1
4

2 + x

∫ 1

−1
ydy

odd function

 = 1
21(x∈(−1,1))

so X ∼ U(−1, 1) and by symmetry Y ∼ U(−1, 1) and the two are not
independent. If we look however at the transformation X2 and Y 2, we will
see that they are independent.

P
(
X2 ≤ u

)
= P(−

√
u ≤ x ≤

√
u) =



∫ √u
−
√
u

1
2dt =

√
u if u ∈ [0, 1]

1 if u ≥ 0

0 if u < 0

and

P
(
X2 ≤ v

)
=


√
v if v ∈ [0, 1]

1 if v ≥ 0

0 if v < 0

.

111



Thus,

P
(
X2 ≤ u, Y 2 ≤ v

)
=

0 if u < 0, v < 0

P(−
√
u ≤ x ≤

√
u,−
√
v ≤ y ≤

√
v) ♦

where ♦ is the following:

♦ =


1 if u ≥ 1 and v ≥ 1∫ √u
−
√
u

∫ √v
−
√
v

1 + xy

4 dydx = 1
4(2
√
u2
√
v +

���������∫ √u
−
√
u

∫ √v
−
√
v
xydydx =

√
u
√
v.

If u ∈ [0, 1) and v ≥ 1, then P(X2 ≤ u) =
√
u. If v ∈ [0, 1) and u ≥ 1, then

P(Y 2 ≤ v) =
√
v. Hence,

P(
(
X2 ≤ u, Y 2 ≤ v

)
=



0 if u < 0 or v < 0
√
u
√
v if u ∈ [0, 1) and v ∈ [0, 1)

√
u if u ∈ [0, 1) and v ≥ 1
√
v if u ≥ 1 and v ∈ [0, 1)

1 if u ≥ 1, v ≥ 1

which indeed equals P(X2 ≤ u)P(Y 2 ≤ v) for all u, v ∈ R. The morale of the
story: X1, . . . , Xn independent imply g1(x1), . . . , gd(xd) independent, but if
X1, . . . , Xn are dependent, then g1(x1), . . . , gd(xd) may or not be indepen-
dent.

Definition 13.6 (Independently and identically distributed r.v.)
A sequence of random variables X1, X2, X3 . . . is called independent and
identically distributed (i.i.d.) sequence if {Xi, i ∈ N} are independent and
Xi has the same distribution for every i.
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Chapter 14

Transformation of random vectors
Let (X1, . . . , Xn) be a random vector. If we consider a measurable mapping
g : Rd → Rm measurable, then g(X1, . . . , Xn) = (Y1, . . . , Ym) is again a
random vector.
Example 14.1
Suppose that X1 ⊥⊥ . . . ⊥⊥ Xd, where ⊥⊥ is the notation for mutually inde-
pendent. We could be interested in the convolution X1 +X2 + · · ·+Xd; this
could arise for example in the insurance (the sum of all loses due to claims.)
If (X1, . . . , Xn) is discrete, then in this case (Y1, . . . , Ym) is also discrete
(since g(X) takes at most countably many values). Hence, the distribution
of (Y1, . . . , Ym) is given by its probability mass function.
Example 14.2
Consider the example from earlier of a toss of two dice. We have (X1, X2)
and Y = X1 +X2. Thus, the probability of obtaining a sum of k is given by
P (Y = k) =

∑
(i,j):i+j=k P(X1 = i,X2 = j). The probability mass function

of (Y1, . . . , Ym) is given by

fY(y1, . . . , ym) =
∑

(X1,...,Xd)∈Rd:
g(X1,...,Xd)=(y1,...,ym)

fX(x1, . . . , xd)

where fX is the PMF of X = (X1, . . . , Xd) and

fY = P(Y1 = y1, . . . , Ym = ym)

but we are really running through the support of X of

fY(y1, . . . , yd) =
∑

(X1,...,Xd)∈{(x1,...,xd)>0}
s.t. g(x1,...,xd)=(y1,...,ym)

fX(x1, . . . , xd)

Example 14.3
Convolution of two binomial: X1 ∼ B(n, p), X2 ∼ B(n, p) and X1 ⊥⊥ X2,
Y = X1 + X2. We would like to see Y ∼ B(2n, p). To prove this, consider
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the support of Y , which is {0, . . . , 2n}. Hence fY (x) = 0 if x /∈ {0, . . . , 2n}.
If however x ∈ {0, . . . , 2n},

fY (x) = P(Y = x) = P(X1 +X2 = x)

=
∑

(i,j):i,j∈{0,...,n}
i+j=x

fX1(i)fX2(j)

=
x∑
i=0

fX1(i)fX2(x− i)

=
x∑
i=0

(
n

i

)
pi(1− p)n−i ·

(
n

x− i

)
px−i(1− p)n−x+i

= px(1− p)2n−x
x∑
i=0

(
n

i

)(
n

x− i

)

= px(1− p)2n−x
(

2n
x

)
x∑
i=0

n!n!x!(2n− x)!
i!(n− i)!(x− i)!(n− x+ i)!2n!

⇒ px(1− p)2n−x
(

2n
x

)
x∑
i=0

(x
i

)(2n−x
n−i

)(2n
n

)
where the sum is the PMF of the hypergeometric distribution(number of
defectives in n sample of size 2n hence

fY (x) = px(1− p)2n−x
(

2n
x

)

Example 14.4
Say X1 ∼ B(n, p), X2 ∼ B(n, p) and (X1, X2) ∼M(n, p1, p2). Then P(X1 +
X2 = k) = 0 if k /∈ {0, . . . , n}. Note that the support of Y is not anymore
the same as before; we look at balls in category 1 and 2). If k ∈ {0, . . . , n}
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For, P(X1 +X2 = k)

=
k∑
i=0

fX1,X2(i, k − i) =
k∑
i=0

n!
i!(k − 1)!(n− k)!p

ipk−i(1− 2p)n−k

= pk(1− 2p)n−k
(
n

k

)
k∑
i=0

(
k

i

)
⇒ (1 + 1)k

= 2kpk(1− 2p)n−k
(
n

k

)

= (2p)k(1− 2p)n−k
(
n

k

)

and X1 +X2 ∼ B(n, 2p). The second case arise if (X1, . . . , Xn) has density
fX . We must be careful as (Y1, . . . , Ym) = g(X1, . . . , Xn) may be arbi-
trary (it may have a density, be discrete or neither). Computing P(Y1 ≤
y1, . . . , Ym ≤ ym) could be done in the following fashion:∫

· · ·
∫

(x1,...,xn)∈Rd:
g(X1,...,Xn)∈Πdi=1[−∞,yi)

fbX(x1, . . . , xn)dx1 . . . dxd

Example 14.5
(X1, X2) has f(X1, X2) = e−X11(0<X2≤X1<∞) and let Y = X1 − X2. We
look at the distribution function of Y

P(Y ≤ y) =
∫∫

(X1,X2):X1−X2≤y

e−x11(0<x2≤x1≤∞)dx1dx2

=
∫ ∞

0

∫ x1

x1−y
e−x1dx2dx1

will be zero if x1 ≤ x2− y ⇔ y ≥ 0. If y > 0, two possibilities: either x1 < y
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or x1 ≥ y ∫ y

0

∫ x1

0
e−x1dx2dx1 +

∫ ∞
y

∫ x1

x1−y
e−x1dx2dx1

=
∫ y

0
ex1x1dx1 +

∫ ∞
y

ex1(x1 − x1 + y)dx1

=
∫ y

0
ex1x1dx1 + y

∫ ∞
y

ex1dx1

=− x1e
−x1

∣∣∣y
0

+
∫ y

0
e−x1 + ye−y

=− ye−y + ye−y + 1− e−y

and Y ∼ E(1).

Theorem 14.1 (Transformation theorem)
Let (X1, . . . , Xn) and g : A ∈ Rd → b ∈ Rd (dimensionality of spaces must
match) measurable. If

1. (X1, . . . , Xn) has density fX ;

2. A ∈ Rd open and such that
∫
·· ·
∫

A
fXdx1 . . . dxd = P((x1, . . . , xd) ∈

A) = 1;

3. The function

g(x1, . . . , xn) 7→ (g1(x1, . . . , xn), . . . , gd(x1, . . . , xn))

is one-to-one.

4. h : B → A and (y1, . . . yd) 7→ h1(y1, . . . yd), . . . , hd(y1, . . . yd), namely
the inverse mapping of g is such that ∀ i ∈ {1, . . . , d}, the partial
derivative ∂hi

∂xj
exist and are continuous ∀ j ∈ {1, . . . , d}; h is continu-

ously partially differentiable.
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5. The Jacobian is not identically zero∣∣∣∣∣∣∣∣∣
∂h1
∂y1

. . . ∂h1
∂yd... . . . ...

∂hd
∂y1

. . . ∂hd
∂yd

∣∣∣∣∣∣∣∣∣ 6= 0

Then Y = g(X1, . . . , Xn) has density fbY (y1, . . . yd)

=


0

fX
(
h1(y1, . . . yd), . . . , hd(y1, . . . yd)

)
|J |

if respectively if (y1, . . . yd) /∈ B and (y1, . . . yd) ∈ B where |J | is the absolute
value of the Jacobian.

Proof P(Y1 ≤ y1, . . . , Yd ≤ yd)

= P((X1, . . . , Xn) ∈ g(−∞, y1]× . . .× (−∞, yd])

=
∫
fX(t1, . . . , td)dt1 . . . dtd

=
∫ y1

−∞
. . .

∫ yd

−∞
fY (s1, . . . , sd)ds1 . . . dsd

=
∫ y1

−∞
. . .

∫ yd

−∞
fX(h1(s1, . . . , sd), . . . , hd(s1, . . . , sd))|J |ds1 . . . dsd

by using in the third step the transformation ti = h1(s1, . . . , sd) �

Example 14.6
X1, X2, X3 independent and Xi ∼ E(1).

fX(x1, x2, x3) = e−x1−x2−x31(x1>0,x2>0,x3>0)

and

Y = (Y1, Y2, Y3) =
(
X1 +X2 +X3,

X1 +X2
X1 +X2 +X3

,
X1

X1 +X2

)
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and g : (0,∞)3 → R3 and

(x1, x2, x3) 7→
(
x1 + x2 + x3,

x1 + x2
x1 + x2 + x3

,
x1

x1 + x2

)
The inverse function

h : (y1, y2, y3) 7→ (y1y2y3, y1y2 − y1y2y3, y1 − y1y2)

and the Jacobian is given by

J = det


y2y3 y1y3 y1y2

y2 − y2y3 y1 − y1y3 −y1y2

1− y2 −y1 0

 , |J | = −y2
1y2

and using the Transformation theorem fY (y1, y2, y3)

= e−y1y2y3−y1y2+y1y2y3−y1+y1y2 | − y2
1y2|1(y1y2y3>0,y1y2y3<y1y2,y1y2<y1)

= e−y1y2
1y21(y1>0)1(y2∈(0,1))1(y3∈(0,1))

can be factored in three parts

1
2e
−y1y2

11(y1>0) 2y21(y2∈(0,1)) 1(y3∈(0,1))

so Y1 ⊥⊥ Y2 ⊥⊥ Y3 and Y1 ∼ Γ(3), Y2 ∼ Beta(2,1) and Y3 ∼ Uniform(0,1).

Example 14.7
Let X1 ∼ U(0, 1), X2 ∼ U(0, 1), X1 ⊥⊥ X2 and we are interested in the
convolution Y = X1 + X2 is not from R2 → R2, but we could invent a
mapping g : (0, 1)2 → (0, 1) × (0, 2) and g satisfies the conditions of the
theorem and could look at the margin Y = (Y1, Y2) = (X1, X1 + X2) and
the inverse mapping h : (y1, y2) 7→ (y1, y2 − y1). The Jacobian is given
by

(
1 0
−1 1

)
and |J | = 1 hence fY (y1, y2) = 1(y1∈(0,1))1y2−y1∈(0,1). We have

fY2 = fX1+X2(y)

=
∫ 1

0
1y−y1∈(0,1)dy1 =

y ∈ (0, 1) fX1+X2(y) = y

y ∈ [1, 2) fX1+X2(y) = 2− y
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More examples can be found in the book. Let us examine a bit convolutions.
Let X,Y be random variables with X ⊥⊥ Y and Z = X + Y . This is
encountered in insurance; consider the sum of claims. If (X,Y ) is a discrete
random vector, then P(Z = z)

∑
x P(X = x)P(Y = Z−X) = fX(c)fY (z−x)

and there are only countably many such. If (X,Y ) has density fXfY , we
could invent a mapping g : R2 → R2, (x, y) 7→ (x, x+ y) and g−1 : R2 → R2

has (u, v) 7→ (u, v−u) and the Jacobian is
(

1 0
−1 1

)
and |J | = 1. The density

of (X,X + Y ) is

f(X,X+Y )(u, v) = fX(u)fY (v − u) · 1

However, our goal is the distribution of X + Y is

fX+Y (z) =
∫ ∞
−∞

fX(u)fY (z − u)du.

We could have looked at the mapping Y,X + Y =
∫∞
−∞ fY (u)fX(z − u)du.

Is this the end of the story? Not really, since we could get a ugly integral.
Here is a great trick. If we look at the moment generating function of the
characteristic function

MX+Y (t) = Eet(X+Y ) = EetX · etY = EetXEetY = MX(t)My(t)

which is 
∑
x

∑
y

etxetyfX(x)fY (y)∫ ∞
−∞

∫ ∞
−∞

etxetyfX(x)fY (y)dxdy

Example 14.8
The moment generating function of B(n, p) is (1−p+pet)n. If we are looking
at the sum of two independent variables X and Y with X +Y,X ⊥⊥ Y,X ∼
B(n, p) and similarly Y ∼ B(n, p), then the MGF of X+Y is (1−p+pet)2n,
which is the MGF of B(2n, p) and hence X + Y ∼ B(2n, p) (note that we
need the p to be the same to get this result).
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Example 14.9
X ∼ P(λ), Y ∼ P(µ) and X ⊥⊥ Y . The MGF of X is MX(t) = eλ(et−1) for
t ∈ R and that of Y is MY (t) = eµ(et−1). Thus

MX+Y (t) = e(µ+λ)(et−1)

and the convolution X = Y ∼ P(µ+ λ).

Example 14.10
Let X ∼ N (µ, σ2) and Y ∼ N (ν, τ2), with X ⊥⊥ Y . Then, for t ∈ R

MX(t) = eµt+
σ2t2

2

MY (t) = eνt+
τ2t2

2

MX+Y (t) = e(µ+ν)t+ t2
2 (σ2+τ2)

and X + Y ∼ N (µ+ ν, τ2 + σ2).

Remark
If X1, . . . , Xn are independent and MXi(t) exists for |t| < ε ∀ i = {1, . . . , d}
or the minimum satisfies tis condition, then

MX(t) =
d∏
i=1

MXi(t)

This hold for general random variables, however we need to work with the
Lebesque integral. Furthermore, if the moment generating function does not
exist, we can do a similar trick with the characteristic function

CX1,...,Xn(t) = Eeit(X1,...,Xn) =
d∏
i=1

CXi(t)

Here are some more examples

Example 14.11
Suppose that X ∼ P(λ); we have seen before that MX(t) = eλ(et−1) for
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t ∈ R. But this is also

MX(t) = eλ(et−1) = en
λ
n

(et−1) =
d∏
i=1

e
λ
n

(et−1)

which is the MGF of the P
(
λ
n

)
so X D−→ X1 + · · · + Xn where X1, . . . , Xn

are i.i.d. P
(
λ
n

)
. This sum is precisely what the Central Limit theorem is

approximating. The same trick works for the Negative binomial. This is
called infinite divisibility.

Example 14.12
Let X ∼ E(1), Y ∼ E(1) and X ⊥⊥ Y . We want to look at Z = max(X,Y ).
In this case, we cannot use the transformation theorem since the mapping
is not differentiable and we cannot find a continuously differentiable inverse.
Also bad is Z = XY 1(xy>1) which does not have a density. So we need to
look at the distribution

P(Z ≤ z) = P(max(X,Y ) ≤ z) = P(X ≤ z, Y ≤ Z)

= P(X ≤ z)P(Y ≤ z) = (1− e−z)2

for z > 0 and 0 otherwise. There is no universal recipe.
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Chapter 15

Correlation and moments
Consider (X1, . . . , Xd) = X, g : Rd → R a measurable function (in the Borel
sense). g(X) is a random variable. We first go with a

Definition 15.1
Let X and g be as above. Then the expectation E(g(X1, . . . , Xd)

=


∑

X1,...,Xd

g(x1, . . . , xd)fX(x1, . . . , xd) if X is discrete

∫
· · ·
∫ ∞
−∞

g(x1, . . . , xd)fX(x1, . . . , xd)dX1 . . . dXd if X has density .

provided that E|(g(X1, . . . , Xd)| <∞. To be specific

Definition 15.2 (Moments and central moments)
Suppose d = 2 and let (X,Y ) be a random vector. Then

1. For j, k ∈ N,EXjY k is called the moment of (X,Y ) of order (j + k),
provided E|X|j |Y |k <∞. Note this is not unique for a moment of one
and the same order.

2. For j, k ∈ N,E(X − EX)j(Y − EY )k is called the central moment of
(X,Y ) of order (j + k), provided E|X − EX|j |Y − EY |k <∞. Expec-
tations must be finite; we will see this a little later.

Example 15.1
Suppose the random vector (X,Y ) ∼ N

(
0
0

)
,
(

1 ρ
ρ 1

)
, ρ ∈ (−1, 1) and recall

fX,Y (x, y) = 1
2π

1√
1− ρ2 exp

(
−x

2 − 2ρxy + y2

2(1− ρ)2

)
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and therefore the second moment

EXY =
∫ ∞
−∞

∫ ∞
−∞

xy
1

2π
1√

1− ρ2 exp
(
−x

2 − 2ρxy + y2

2(1− ρ)2

)
dxdy

=
∫ ∞
−∞

y
1√
2π
e−

y2
2

∫ ∞
−∞

x
1√

2π
√

1− ρ2 e
− (x−ρy)2

2(1−ρ2) dxdy

density of N (ρy,1−ρ2)

=
∫ ∞
−∞

y√
2π
e−

y2
2 ρydy

= ρ

∫ ∞
−∞

y2 1√
2π
e−

y2
2

Var of N (0,1)

= ρ

and we get the second line by completing the square.

Example 15.2
Say (X,Y ) ∼M(n, p1, p2), that is they follow a Multinomial distribution.

EXY =
∑ ∑

k,l∈{0,...,n}
k+l≤n

kl

(
n

k, l, n− k − l

)
pk1p

l
2(1− p1 − p2)n−k−l

= . . . = n(n− 1)p1p2

The computation will be done in the assignment.

Theorem 15.3 (Hölder inequality)
Let p, q > 1 and such that 1

p + 1
q = 1. Then, if E|X|p < ∞ and E|Y |q < ∞

then
E|XY | ≤ (E|X|p)

1
p (E|Y |q)

1
q

and in particular for the case p = q = 2 the so-called Cauchy-Schwartz
inequality if E|X|2 <∞ and E|Y |2 <∞

E|XY | ≤
√

EX2
√

EY 2

Proof If E|X|p = 0 ⇒ x = 0 almost surely (P(X = 0) = 1). This entail
E|XY | = 0 and similarly if E|Y |q = 0. If E|X|p > 0 and E|Y |q > 0, then
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recall the Young inequality

|xy| ≤ |X|
p

p
+ |y|

q

q
∀ x, y ∈ R

We used something similar to show that variance existed if the second mo-
ments was finite. Let ω ∈ Ω∣∣∣∣∣∣ X(ω)Y (ω)

(E|X|p)
1
p (E|Y |q)

1
q

∣∣∣∣∣∣ ≤ |X(ω)|p

pE|X|p + |Y (ω)|q

qE|Y |q

⇔ E

∣∣∣∣∣∣ X(ω)Y (ω)
(E|X|p)

1
p (E|Y |q)

1
q

∣∣∣∣∣∣ ≤ E
( |X(ω)|p

pE|X|p + |Y (ω)|q

qE|Y |q
)

by first taking expectation of both sides. Now,

E |X(ω)|p

pE|X|p + E |Y (ω)|q

qE|Y |q

= E|X|p
pE|X|p + E|Y |q

qE|Y |q

= 1
p

+ 1
q

= 1

and noting that the denominator of the left hand side of the equation is fixed
because Lebesque integral are monotone and the term is constant; hence we
can by linearity take it out of the expectation to get our result since

E|XY |
(E|X|p)

1
p (E|Y |q)

1
q

≤ 1

�

Definition 15.4 (Covariance)
Let (X,Y ) be a random vector. Then E(X − EX)(Y − EY ) is called the
covariance of (X,Y ), denoted Cov(X,Y ) provided it exists.

Lemma 15.5
1. Cov(X,Y ) exists if EX2 <∞ and EY 2 <∞;
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2. Cov(X,Y ) = EXY − EXEY.

Proof

1. Using the Cauchy-Schwartz inequality,

E|X − EX||Y − EY | ≤
√

E(X − EX)2
√

E(Y − EY )2

= VarXVarY

so VarX <∞⇔ EX2 <∞.

2.

Cov(X,Y ) = E
(
X − EX)(Y − EY )

)
= E(XY − Y EX −XEY + EXEY )

=
∫∫

xy − Y EX −XEY + EXEY fX,Y (x, y)dxdy

=
∫∫

xyfx,y(x, y)dxdy − EX
∫∫

yfx,y(x, y)dxdy

− EY
∫∫

xfx,y(x, y)dxdy + EXEY
∫∫

fx,y(x, y)dxdy

= E(XY )− EXEY − EXEY + EXEY

�

Example 15.3
(X,Y ) ∼ N

(
0
0

)
,
(

1 ρ
ρ 1

)
, ρ ∈ (−1, 1), then Cov(X,Y ) = EXY − EXEY = ρ.

On a computer illustration, we can see that if ρ > 0, X and Y are positively
correlated and are said to be concordant. For ρ < 0, we say that X and Y
are discordant.
Definition 15.6 (Pearson linear correlation coefficient)
Let (X,Y ) be a random vector such that EX2 <∞ and EY 2 <∞. Then,

Cov(X,Y )√
VarXVarY

= ρ(X,Y )
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Figure 19: Illustration of discordant and concordant random variables

is called the Pearson linear correlation coefficient. Our motivation is that ρ
is a one number summary of the dependence between X and Y.

Lemma 15.7 (Properties of correlation)
Let (X,Y ) be such that EX2 <∞ and EY 2 <∞. Then

1. |ρ(X,Y )| ≤ 1;

2. If X and Y are independent, ρ(X,Y ) = 0;

3. ρ(−X,Y ) = −ρ(X,Y );

4. ρ(X,Y ) = ρ(Y,X); symmetry of the covariance.

5. ρ = ±1 ⇔ X = aY + b almost surely where b ∈ R, a 6= 0 ∈ R and if
a > 0⇒ ρ = 1, else a < 0⇒ ρ = −1.

The proofs are left as exercises.

Downsides of ρ

1. ρ is not always well-defined.

2. ρ(X,Y ) = 0 9 X,Y are independent.

Example 15.4
X ∼ N (0, 1), Y = X2. Then

Cov(X,Y ) = EXY − EXEY = EX3 − EXEX2 = 0⇒ ρ(X,Y ) = 0.
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3. If ρ is close to 0, you cannot argue that X and Y are close to being
independent.

4. If the marginal distributions of X and Y are given ρ(X,Y ) may not
attain all values in [−1, 1].

Example 15.5
This is drawn from the instructor work as a postdoc at ETH Zurich.
A client, Swiss RE, which does refinancing for insurance company,
asked for some information about possible values of the coefficient of
correlation. Here is a possible reason for what is likely to be seen.
Suppose as it is often the case in insurance that X,Y ∼ Log-normal,
X ∼ LN(0, 1), X = eZ , Z ∼ N (0, 1) and Y ∼ eW ,W ∼ N (0, σ2).
Then, their correlation coefficient. Then, the result is something of
the form even though they are “strongly linked”.

Figure 20: Approximate form of the dependence in insurance claim

1

-1

ρ

1σ 2σ 3σ 4σ

Remark
If we are interested in Cov(X + Y,Z) = Cov(X,Z) + Cov(Y,Z). Also,
Cov(a,X) = EaX − aEX = 0 ∀ a ∈ R

Example 15.6
LetX,Y ∼ E(1) andX and Y are independent. We are looking at ρ

(
X

X+Y ,
Y

X+Y

)
.
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They don’t have a density since X
X+Y = 1− Y

X+Y and would have covariance

Cov
(

X
X+Y , 1−

X
X+Y

)
√

Var
(

X
X+Y

)√
Var

(
1− X

X+Y

) = −
Cov

(
X

X+Y ,
X

X+Y

)
Var

(
X

X+Y

) = −1

Definition 15.8
Let (X1, . . . , Xn) be a random vector such that EXi < ∞ ∀ i = 1, . . . , d.
Then

E(X1, . . . , Xn) = E(X) =


EX1
...

EXd


Here X = (X1 . . . Xd)>.

Theorem 15.9
Let (X1, . . . , Xn) such that EXi < ∞ ∀ i = 1, . . . , d. Then. for any a =
(a1 . . . ad)> ∈ Rd×1

E(a>X) = E(a1X1 + · · ·+ adXd) = a>EX = a1EX1 + · · ·+ adEXd

Proof Suppose (X1, . . . , Xn) has a density. Starting with the LHS,

E(a>X) =
∫ ∞
−∞
· · ·
∫ ∞
−∞

(a1x1 + . . . adxd)f(x1, . . . , xn)dx1 . . . dxd

=
d∑
i=1

∫ ∞
−∞
· · ·
∫ ∞
−∞

aixif(x1, . . . , xn)dx1 . . . dxd

=
d∑
i=1

∫ ∞
−∞

aixi

∫ ∞
−∞
· · ·
∫ ∞
−∞

aixif(x1, . . . , xn) dx1 . . . dxd
not i

dxi

fXi (xi)

=
d∑
i=1

aiEXi

�
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Theorem 15.10
If (X1, . . . , Xn) are such that E|Xi| < ∞, i = 1, . . . , d and X1, . . . , Xn are
independent, then

E
(

d∏
i=1

Xi

)
=

d∏
i=1

EXi

Proof Starting with the LHS

∫ ∞
−∞
· · ·
∫ ∞
−∞

x1, . . . , xnfx1,...,xndx1 . . . dxd =
d∏
i=1

∫ ∞
−∞

xifXi(xi)dxi =
d∏
i=1

EXi

�

Remark
If X ⊥⊥ Y and EX2 <∞ and EY 2 <∞, then

Cov(X,Y ) = EXY − EXEY = EXEY − EXEY = 0

Suppose that (X,Y ) is a random vector such that Cov
(
g(X), f(Y )

)
= 0 for

any f and g measurable such that E|g(X)| < ∞ and E|f(Y )| < ∞, then
X ⊥⊥ Y . Simply take g = 1B1 , f = 1B2 for B1, B2 ∈ B. Then

Cov
(
g(X), f(Y )

)
= P(X ∈ B1, Y ∈ B2)− P(X ∈ B1)P(Y ∈ B2) = 0.

Remark
As a rule of thumb

· E(X1, . . . , Xn) =
∑d
i=1 EXi always hold if well-defined

· E(X1, . . . , Xn) =
∏d
i=1 EXi only if X1, . . . , Xn independent is suffi-

cient, but not necessary.

Definition 15.11 (Variance-covariance matrix)
Let (X1, . . . , Xn) such that EX2

i <∞. Then, the variance-covariance matrix
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Σ is a d× d matrix given by Σi,j = Cov(Xi, Xj) and

Σ =
(

Var(X1) Cov(Xi, Xj)
Cov(Xj , Xi) Var(Xj)

)

Since Cov(Xi, Xj) = Cov(Xj , Xi), the matrix is symmetric. An interesting
feature of this is that the matrix Σ is positive semi-definite.

Theorem 15.12
Let (X1, . . . , Xn) be a random vector such that EXi < ∞, i = 1, . . . , d.
Then, for any a = (a1 . . . ad)⊥⊥∈ Rd×1

Var(a1X1 + · · ·+ adXd) = Var(a>X) = a>Xa

Remark
Σ is symmetric and positive semi-definite because

a>Xa = Var(a>X) ≥ 0.

Proof

Var(a1X1 + · · ·+ adXd) = E((a1X1 + · · ·+ adXd − a1EX1 − · · · − adEXd)2

= E
(

d∑
i=1

ai (Xi − EXi)
)2

= E

 d∑
j=1

d∑
i=1

aiaj(Xi − EXi)(Xj − EXj)


=

d∑
j=1

d∑
i=1

aiajCov(Xi, Xj)

=
d∑
i=1

a2
iVarXi +

∑
i 6=j

aiajCov(Xi, Xj)

In particular, if Xi ⊥⊥ Xj , the second sum vanish. �
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Corollary 15.13 (Bienaymé identity)
Let (X1, . . . , Xn) be such that EX2

i < ∞, i = 1, . . . , d and X1, . . . , Xn are
independent.

Var(X1, . . . , Xn) =
d∑
i=1

vaXi = trΣ

Example 15.7
This is useful in random sample. Suppose we have a collection of X1, . . . , Xn

random variables having Bernoulli distribution where Xi ∼ B(p) How do we
guess the p?

p̂n = # heads
n

= 1
x

(X1 + · · ·+Xn)

and for the expectation

E (p̂n) = E
( 1
n

(X1 + · · ·+Xn)
)

= 1
n

n∑
i=1

EXi = 1
n

n∑
i=1

p = p

Then,

Var(p̂n) = Var
( 1
n

(X1 + · · ·+Xn)
)

= 1
n2

n∑
i=1

VarXi

= 1
n2np(1− p) = p(1− p)

n
n→∞−−−→ 0
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Chapter 16

Conditional distribution
Correlation ρ(X,Y ) may be a good idea to capture the dependence between
two random variables, but is is a bit simplistic. We could look at some-
thing else, called conditional distributions. Recall the conditional probabil-
ity, P(A ∪ B) = P(A)P(B) if A ⊥⊥ B and if P(B) > 0, then P(A|B) = PA.
If we convey this idea to random variables X,Y with as our goal to define a
conditional distribution of X given Y = y.
If (X,Y ) is discrete, with probability mass function fX,Y ,

P(X = x|Y = y) = P(X = x, Y = y)
P(Y = y)

In terms of PMF, it is just

fX,Y (x, y)
fY (y)

Observe that the above ratio is never zero ∀ x ∈ R and we have

∑
x∈R

fX,Y (x, y)
fY (y) = 1

fY (y)
∑
x

fX,Y (x, y) = fY (y)
fY (y) = 1

is itself a probability mass function if viewed as a function of X. This
deserves a proper definition.

Definition 16.1 (Conditional distribution)
Let (X,Y ) be discrete random variables with PMF fX,Y . Then, for any
y ∈ R such that P(Y = y) = FY (y) > 0, the conditional distribution of X
given Y is discrete again with PMF given by

fX|Y (x) = fX,Y (x, y)
fY (y) , x ∈ R.

Similarly, one can define the conditional distribution of Y given X = x.
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Remark
If X and Y are independent, then ∀ y ∈ R such that fY (y) > 0

fX|Y (x) = fX(x)fY (y)
fY (y) = fX(x), x inR

and also conversely.

Example 16.1
Suppose (X,Y ) ∼M(n, p1, p2). We have seen that Y ∼ B(n, p2) and

FX|Y=y(x) =
n!

x!(n−x−y)!y!
n!

y!(n−y)!

px1p
y
2(1− p1 − p2)n−x−y

py2(1− p2)n−y+x−x

for y ∈ {0, . . . , n} and x ∈ {0, . . . , n− y}. If we cancel things, we get

(n− y)!
x!(n− y − x)!

(
p1

1− p2

)x (1− p1 − p2
1− p2

)n−y−x
= (n− y)!
x!(n− y − x)!

(
p1

1− p2

)x (
1− p1

1− p2

)n−y−x

and we conclude that given Y = y,X ∼ B
(
n− y, p1

1−p2

)
. Here is a “dirty

calculation”. If we are interested in the following P(X = x|Y = y) supposing
(X,Y ) has a density fX,Y . We can look at

P(X = x|Y ∈ (y − ε, y + ε) ε→0−−−→ = P(X < x, Y ∈ (y − ε, y + ε])
P(Y ∈ y − ε, y + ε])

=
∫ x
−∞

∫ y+ε
y−ε fX,Y (s, t)dt ds/2ε∫ y+ε
y−ε fY (t)dt/2ε

≈
∫ x
−∞ fX,Y (s, y)ds

fY (y)

if all necessary conditions are fulfilled, then by the Mean Value Theorem,
the denominator is “precisely” 1. Let now ε → 0. Then, P(X ≤ x|Y = y)
kind of has like a density ∫ x

−∞ fX,Y (s, y)ds
fY (y)
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Definition 16.2 (Conditional distribution)
If (X,Y ) has density fX,Y , then for any y ∈ R such that fY (y) > 0, the
conditional distribution of X given Y = y is defined by its density

fX|Y=y(x) = fX,Y (x, y)
fY (y) , x ∈ R

Example 16.2
Building on our previous example, suppose that we have that the random
vector (X,Y ) ∼M(n, p1, p2), then

• X|Y = y ∼ B
(
n− y, p1

1−p2

)
, y ∈ {0, . . . , n}

• Y |X = x ∼ B
(
n− x, p2

1−p1

)
, x ∈ {0, . . . , n}

• E(X|Y = y) = (n− y) p1
1−p2

is a function of y

• E(Y |X = x) = (n− x) p2
1−p1

is a function of x

Example 16.3
We have (X,Y ) ∼ N

((
0
0

)
,
(

1 ρ
ρ 1

))
and

fX|Y=y(x) =
1

2π
1√

1−ρ2
exp

(
−x2−2ρxy+y2

2(1−ρ2)

)
1√
2π exp

(
−y2

2

)
= 1√

2π
1√

1− ρ2 exp
(
−x2 − 2ρxy + y2 − y2 + ρ2y2

2(1− ρ2)

)

and X|Y = y ∼ N (ρy, 1 − ρ2),E(X|Y = y) = ρy (function of y) and
E(Y |X = x) = ρx (function of x).

Definition 16.3 (Conditional expectation)
Let X,Y be some random variables (not necessarily independent). The
conditional expectation E(X|Y ) is defined as Ψ(Y ),Ψ measurable and

Ψ(y) = E(X|Y = y) =


∑
x

xP(X = x|Y = y) in the discrete case∫
xfX|Y=y(x)dx in the continuous case
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We can think of this as a projection on the space SY . In Advanced prob-
ability, you will see that one can make Y into a σ−field. Examples of
applications and of use include time series; if we want to predict tomorrow
stock market, they are likely to depend on today. For E(g(X)|Y )) = Ψ(Y )
where

Ψ(Y ) = E(g(X)|Y = y) =


∑
x

g(x)P(X = x|Y = y)∫
g(x)fX|Y=y(x)dx

Example 16.4 (Hierarchical model)
Recall that if Y ∼ P(λ), then EY = Var Y = λ. Consider an example
involving car accidents. Not all have the same probability: some are bad
drivers, some have summer tires (on ice), etc. Consider Λ ∼ Γ

(
r, 1−p

p

)
,

r ∈ N, p ∈ (0, 1) where Γ(x) =
∫∞

0 tx−1e−tdt. We are given

fΛ(λ) = 1
Γ(r)λ

r−i exp

− λ
1−p
p

(1− p
p

)r
and X|Λ = λ ∼ P(λ). X will be discrete again P(X = x), for x ∈ {0, 1, . . .}
and P(X = x|Λ = λ) = λxe−λ

x! . Before computing this, we need a little more
about conditional expectation.

Lemma 16.4 (Properties of conditional expectations)
The following properties hold (provided the expectations exist).

1. E(c|Y ) = c;

2. E(X|Y ) = EX when X ⊥⊥ Y ;

3. E(a1 · g1(X) + a2 · g2(X)|Y ) = a1E(g1(X)|Y ) + a2E(g2(X)|Y );

4. If X ≥ 0 almost surely, then E(X|Y ) ≥ 0 almost surely;

5. E(g(Y )Ψ(X,Y )|Y ) = g(Y )E(Ψ(X,Y )|Y );

6. E(Ψ(X,Y )|Y = y) = E(Ψ(X, y)|Y = y);

7. E(X) = E(E(X|Y )); the iterative expectation formula.
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Proof We prove the Law of Iterated expectation, starting from the right
hand side.

Ψ(y) = E(X|Y = y) =
∫
xfX|Y=y(x)

=
∫
x
fX,Y (x, y)
fY (y) dy

=
∫ ∞
−∞

∫ ∞
−∞

x
fX,Y (x, y)dx

fY (y) fY (y)dy

=
∫ ∞
−∞

∫ ∞
−∞

xfX,Y (x, y)dxdy

=
∫ ∞
−∞

x

∫ ∞
−∞

fX,Y (x, y)dydx

fX(x)

=
∫ ∞
−∞

xfX(x)dx = EX

and in particular, Eg(X) = E(E(g(X)|Y )) �

Example 16.5 (Hierarchical model (part 2))
Back to our example.

P(X = x) = E(1(X=x)) = E(E(1(X=x)|Λ))

if we look at the inside, this is

E(1(X=x)|Λ = λ) = P(X = x|Λ = λ) = e−λλx

x!

and it is even continuous; we can replace this inside with Λ random. There-
fore

E
(
e−ΛΛx

x!

)
=
∫ ∞

0
e−λ

λx

x!
1

Γ(r)λ
r−1e

− λ
1−p
p

1(
1−p
p

)r dλ
=
(

p

1− p

)−r 1
x!

1
Γ(r)

∫ ∞
0

λx+r−1e−λ
(
1+ p

1−p

)
dλ

=
(

p

1− p

)−r 1
x!

1
Γ(r)

∫ ∞
0

tx+r−1e−t(1− p)x+rdt
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where the last step follow from the transformation λ
1−p = t and therefore,

we obtain from the hierarchical model

= pr(1− p)xΓ(x+ r)
x!Γ(r) = (x+ r − 1)!

x!(r − 1)! p
r(1− p)x, x ∈ {0, 1, . . .}

is a Negative Binomial and therefore EX = E(E(X|Γ)) = Eλ = r (1−p)
p .

Example 16.6
For X ⊥⊥ Y , P(X ≤ Y ) = P(X − Y ≤ 0). If we adapt (7), E(g(X,Y )) =
E(E(g(X,Y )|Y )), we can condition and get

E(1(X ≤ Y )) = E(E(1(X ≤ Y )|Y ))

E(E(1(X ≤ Y )|Y = y)) = E(1(X ≤ y)|Y = y)

= P(X ≤ y|Y = y) = P (X ≤ y) = FX(y)

so P(X ≤ y) = E(Fx(Y )). In particular, if X,Y have densities, we have∫∞
−∞ FX(y)fY (y)dy.

Example 16.7
Again, suppose X ⊥⊥ Y . We are interested in
P(X + Y ≤ z) = E(E(1(X + Y ≤ z|Y )) where

E(1(X + Y ≤ z|Y = y) = P(X + Y ≤ z|Y = y)

= P(Z ≤ z − y|Y = y)

= P(X ≤ z − y) = FX(z − y)

by independence so P(X + Y ≤ Z) =
∫∞
−∞ FX(z − y)fY (y)dy if Y has a

density. If X ⊥⊥ Y , but this time (X,Y ) is discrete, if we look at

P(X + Y ≤ z) = E(E(1(X + Y = z|Y = y)
P(X=z−y)

) =
∑
y

P(X = z − y)P(Y = y)

by making Y a random variable and conditioning. The result is the same
we had derived with the Law of total probability.
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Theorem 16.5
Let X,Y be random variables such that EX2 <∞. Then

Var(X) = E(Var(X|Y )) + Var(E(X|Y )) (16.3)

Example 16.8 (Hierarchical model (part 3))
We return to our example with the Negative binomial. X|Λ = λ ∼ P(λ),
Λ ∼ Γ

(
r 1−p

p

)
. and

VarX = E(Var(X|Λ)) + Var(E(X|Λ))

= E(λ+ Var(λ)

= r

(1− p
p

)
+ r

(
(1− p)2

p2

)

= r
1− p
p2

Proof We now go to the proof of 16.5. Starting with the right hand side:

E(Var(X|Y )) = E
(
E(X2|Y )− {E(X|Y )}2

)
=
∫
x2fX|Y=y(x)dx−

(∫
xfX|Y=yxdx

)2

and from this, we decompose the terms from 16.5

Var (E(X|Y )) = E
(
{E(X|Y )}2 − {E(E(X|Y ))}2

)
and

E(Var(X|Y )) + Var(E(X|Y )) = E(E(X2|Y ))− (EX)2

= E
(
E(X2|Y )

)
− EX2 = EX2 − (EX)2

�

Suppose r = 1−p
p = λ∗ such that EX = λ∗, Y ∼ P(λ∗). This is easily

seen by plotting the distribution on the computer (the negative binomial is
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more spread). By conditioning, we increase the variability. These kind of
examples arise in Bayesian statistic, a field that takes parameters as random
variables.

Example 16.9 (Compound sum)
This is used in actuarial science. Suppose that we have claims for insurance.
We have some degree of knowledge of the magnitude of the claims, yet we
don’t know the number of claims per year. We invent a sequence of i.i.d.
random variables X1, X2, X3, . . . (claim size), where Xi ∼ Γ or Lognormal or
Pareto (if claims are high). We are interested in the total amount required
to pay at the end of the year, namely SN =

∑N
i=1Xi and N is an integer

random variables independent of Xi ∀ i. This is a reasonable assumption if
we have no catastrophe. Thus, if we want to learn about P(SN ≤ z), we can
look at

E(SN ) = E(E(SN |N))

and the inside term is

⇒ E(SN |N = n) = E
(

n∑
i=1

Xi|N = n

)

= E
(

n∑
i=1

Xi

)
= nEX1

so
E(SN ) = E(NEX1) = ENEX1

We can also look at the variance using 16.5

Var(SN ) = E(Var(SN |N)) + Var(E(SN |N))

and looking at each term individually, we get

Var(SN |N = n) = Var
(

n∑
i=1

Xi|N = n

)
= nVar(X1)
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by plugging back,

Var(SN ) = (NVarX1) + Var(NEX1) = VarXEN + (EX1)2 VarN.

In particular, if N ∼ P(λ), we obtain

λ
(
EX2

i − (EXi)2 + (EXi)2
)

= λEX2
i

The moment generating function is an expectation

EetSN = E
(
E
(
etSN |N

))
=

n∏
i=1

E
(
etXi

)
= E

(
{MX(t)}N

)
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Chapter 17

Stochastic convergence and Laws of large numbers
LetX1, . . . , Xn be a sequence of i.i.d. random variables distributedN (µ, σ2).
We want to find a mean. One possibility is to take the arithmetic mean

Xn = 1
n

(X1 + · · ·+Xn)

in order to get

E
(
Xn

)
= µ and Var

(
Xn

)
= 1
n2 · nVar(X1) = σ2

n

such that Xn
n→∞−−−→ µ. Recall that Xn is a random variable, so the above is a

mapping. Say Y1, Y2, Y3, . . . is another sequence of random variables and we
have another rv Y such that Yn → Y , then Yn : Ω→ R ∀ n and Y : Ω→ R.
Recall that we have pointwise convergence if ∀ ω ∈ Ω, Yn(ω)→ Y (ω). Since
we know little about ω, this type of convergence is not really realistic. But
we know the distribution and instead, we consider these different type of
convergence as n→∞, we have

1. Yn
a.s.−−→ Y : convergence almost surely;

2. Yn
p−→ Y : convergence in probability;

3. Yn  Y or Yn
D−→ Y ; convergence in distribution

Definition 17.1 (Convergence in probability and convergence almost surely)
Let Y1, Y2, . . . be an arbitrary sequence of random variables. Let Y be an
arbitrary random variable. Then

1. Yn → Y almost surely ⇔ P (ω : limn→∞ Yn(ω) = Y (ω)) = 1.

2. Yn
p−→ Y ⇔ ∀ ε > 0, limn→∞ P(|Yn − Y | < ε) = 1.

Example 17.1 (Marching mountains)
Let Ω = [0, 1],B ∪ [0, 1],P the uniform distribution on [0, 1].
Define X(ω) = ω ∀ ω ∈ [0, 1] and Xn(ω) = ω + ωn, ω ∈ [0, 1], n ≥ 1. We
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have

lim
n→∞

Xn(ω) =

ω if ω ∈ [0, 1)

2 if ω = 1

and notice 2 6= ω for ω = 1. We have that Xn → X almost surely because
P(ω : Xn(ω)→ X(ω)) = P([0, 1)) = 1. If we look at the sequence, we have

Y1(ω) = ω + 1(ω∈[0,1))

Y2(ω) = ω + 1(ω∈[0, 1
2 ))

Y3(ω) = ω + 1(ω∈[ 1
2 ,1))

Y4(ω) = ω + 1(ω∈[0, 1
4 ))

. . .

Y2n+k(ω) = ω + 1(ω∈[ k2n , k+1
2n ))

If you want to show it converge almost surely, you will find (almost surely)

Figure 21: Marching mountains
Y1

Y3Y2
Y4 Y5 Y6 Y7

Y8 Y9 Y10 Y11 Y12 Y13 Y14 Y15

that it doesn’t hold since

Yn(ω) =

ω ∞ often

ω + 1 ∞ often
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for ω ∈ [0, 1) so it doesn’t converge. Yn 9 X almost surely, but for ε < 1,

lim
n→∞

P(|Y2n+k −X| ≥ ε) = lim
n→∞

P
[
k

2n ,
k + 1

2n
)

= lim
n→∞

1
2n = 0

and Yn
p−→ X.

Observation
Convergence in probability does not imply convergence almost surely? What
about the converse? It indeed is true, but to show it we must investigate
further. Consider X1, X2, . . . and X random variables. For ε > 0, define
An(ε) = {|Xn(ω)−X(ω)| > ε}. To have Xn

p−→ X means that

P(An(ε)) n→∞−−−→ 0 ∀ ε > 0.

Convergence almost surely means

P
(

lim sup
n→∞

An(ε)
)

= 0 ∀ ε > 0 (17.4)

Set A = {ω : Xn(ω) 9 X(ω)} (for Xn
a.s.−−→ X means P(A) = 0. Hence,

Xn(ω) 9 X(ω)⇒ ∃ε > 0 such that |Xn(ω)−X(ω)| > ε infinitely often, i.e.

A =
⋃
ε>0

lim sup
n→∞

An(ε) =
⋃
ε>0

∞⋂
m=1

∞⋃
n=m

An(ε)

= {ω : ω ∈ An(ε) for infinitely many n’s

⇒
∞⋃
k=1

lim sup
n→∞

An

(1
k

)

and
P(A) = P

( ∞⋃
k=1

lim sup
n→∞

An

(1
k

))

First, P(lim supn→∞An(ε)) ≤ P (A) = 0. Conversely, if (17.4) holds, then

P (A) = P
( ∞⋃
k=1

lim sup
n→∞

An

(1
k

))
≤
∞∑
k=1

P
(

lim sup
n→∞

An

(1
k

))
= 0
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Observation
By definition, lim supn→∞An(ε) =

⋂
n = 1∞

⋃∞
m=nAm(ε) ≡

⋂∞
n=1Bn(ε). If

I have 0, these Bn(ε) build a decreasing sequence since we are building a
union of less and less sets and

P
(

lim sup
n→∞

An(ε)
)

= lim
n→∞

P(Bn(ε)) ≥ lim
n→∞

P (An(ε))

Therefore, if Xn → X almost surely, ∀ ε > 0 P(lim supn→∞An(ε)) = 0 ⇒
limn→∞ P(An(ε)) = 0⇒ Xn

p−→ X.

Theorem 17.2
Let X1, X2, . . . be a sequence of random variables and X another random
variable. Then, if Xn → X almost surely, then Xn

p−→ X as n → ∞, but
not conversely. Note it is often simpler and nicer to show convergence in
probability.

Theorem 17.3
Let X1, X2, . . . be a sequence of random variables and X another random
variable. Then,

1. Xn → X a.s. and Xn → Y a.s, then P(X = Y ) = 1.

2. Xn
p−→ X and Xn

p−→ Y , then P(X = Y ) = 1.

The limit is almost surely unique.

Proof We prove the second statement. We will show

P(X 6= Y ) = 0 = P
({

ω : ∃k > 0, |X(ω)− Y (ω)| > 1
k

})
= P

( ∞⋃
k=1

{
ω : |X(ω)− Y (ω)| > 1

k

})

= lim
n→∞

P
(
|X − Y | > 1

k

)
since these sets here build a monotone sequence and therefore, we want to
show that all probabilities are equal to zero. Fix some k = k0. By the
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triangle inequality,

P
(
|X − Y | > 1

k0

)
= P

(
|X −Xn +Xn − Y | >

1
k0

)
= P

(
|Xn −X|+ |Xn − Y | >

1
k0

)
≤ P

({
|Xn −X| >

1
2k0

}
∪
{
|Xn − Y |+ >

1
2k0

})
≤ P

(
|Xn −X| >

1
2k0

)
+ P

(
|Xn − Y |+ >

1
2k0

)
for every n. Let n → ∞ and hence P(|X − Y | > 1/k0) ≤ 0. Consequently,
P(X 6= Y ) = limn→∞ 0 = 0 hence limn→∞ P(|X − Y | > 1/k) = 0. �

Theorem 17.4 (Weak Law of Large Numbers)
Let X1, X2, . . . be a sequence of i.i.d. random variables such that EX1 =
µ <∞ and Var(X1 = σ2 <∞. Then

Xn = 1
n

(X1 + · · ·+Xn) p−−−→
n→∞

µ

Proof By Chebychev inequality; fix ε > 0,

P
(
|Xn − µ| > ε

)
≤

Var
(
Xn

)
ε2 = σ2

n · ε2
n→∞−−−→ 0

�

Example 17.2
Suppose that we have X1, . . . , Xn ∼ N (µ, σ2), then Xn

p−→ µ. However,
this trick does not always hold; here is a counterexample. If X1, . . . , Xn ∼
Cauchy(0,1), then Xn ∼ Cauchy(0,1).
Remark
The Weak Law of Large Numbers (WLLN) can be weakened

1. WLLN holds if E(X1) <∞. It is however hard to prove (follows from
Markov inequality).
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2. IF X1, X2, . . . is a sequence of integrable random variables, then Xn →
EX1 almost surely. This is call the Strong Law of Large Numbers and
can be proved with a bit of struggle.

3. WLLN holds if Cov(Xi, Xj = 0 ∀ i 6= j (and EX1 < ∞,VarX1 <

∞, Xi
d= Xj).

Example 17.3 (Monte-Carlo integration)
Here is a crucial example used in numerical analysis. Suppose g : [0, 1]→ R,
g is continuous and u ∼ U(0, 1). We are interested by the integral

∫ 1
0 g(x)dx.

We introduce a new variable X = g(U).

Eg(Y ) =
∫ 1

0
g(u)du <∞ ≤ ‖g‖

since it is continuous on a closed and bounded interval, but also

Var(g(u)) =
∫ 1

0
g2(u)du−

(∫ 1

0
g(u)du

)2
≤ 2‖g‖2

Then, we can simply have a sequence to approximate our integral. We have
for n large U1, . . . , Un a sequence of independent Uniform(0,1) and compute
the approximation

∫ 1
0 g(u)du

1
n

n∑
i=1

g(Ui)
p−→
∫ 1

0
g(u)du

by Chebychev, we could get an idea of distance and the level of precision.

Theorem 17.5 (Continuous mapping theorem)
Let g be a continuous function and {Xn}, X be random variables. Then

1. If Xn → X almost surely, then g(Xn → g(X) almost surely;

2. If Xn
p−→ X. then g(Xn) p−→ g(X).

Proof
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1. Given that P({ω : Xn(ω) → X(ω)}) = 1, once you fix ω, you get a
sequence of numbers and continuity of the mapping
P({ω : g(Xn(ω))→ g(X(ω))}) = 1 if continuous on R.

2. ∀ k > 0, g is uniformly continuous on [−k, k] by definition if

(
∀ ε > 0

)(
∃ δ(ε,k) > 0

)(
∀ x ∈ [−k, k]

)
(
|x− y| < δ(ε,k) ⇒ |g(x)− g(y)| < ε

)
equivalent to saying that |g(x)− g(y)| ≥ ε⇒ |x− y| ≥ δ(ε,k). For all ε
positive, we have by the Law of total probability

P
(
|g(Xn)− g(X)| ≥ ε

)
= P

(
|g(Xn)− g(X)| ≥ ε, |X| ≤ k

)
+ P

(
|g(Xn)− g(X)| ≥ ε, |X| > k

)
≤ P

(
|Xn −X| ≥ δ(ε,k), |X| ≤ k

)
+ P

(
|X| > k

)
≤ P

(
|Xn −X| ≥ δ(ε,k)

)
+ P

(
|X| > k

)
by first enlarging the probability and secondly using the fact that
P(A∩B) ≤ P(B). Since both probabilities are non-negative, we obtain

0 ≤ lim
n→∞

P
(
|g(Xn)− g(X)| ≥ ε ≤ 0 + P

(
|X| > k

) k→∞−−−→ 0

as n→∞ so the limit must indeed be zero.

�

A simple application of the continuous mapping theorem is the following

Lemma 17.6
If {Xn}, {Yn}, X, Y are random variables. Then

1. Xn
p−→ X and Yn

p−→ Y , then Xn + Yn
p−→ X + Y ;

2. Xn
p−→ X and Yn

p−→ Y , then Xn · Yn
p−→ X · Y .

Proof
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1. ∀ ε > 0, P (|Xn + Yn −X − Y | > ε) → 0 as n → ∞. By the triangle
inequality, this is less than P (|Xn −X|+ |Yn − Y | ≥ ε) . If we look at
the event

P
(
|Xn −X| ≥

ε

2 or |Yn − Y | ≥
ε

2

)
≤ P

(
|Xn −X| ≥

ε

2

)
+ P

(
|Yn − Y | ≥

ε

2

)
→ 0

since P(A ∪B) ≤ PA+ PB.

2. Left as an exercise. Hint: use an ε/3 argument using that

|XnYn −XY | ≤ |Xn −X||Yn − Y |+ |X||Yn − Y |+ |Y ||Xn −X|

and the case distinction with |X| ≤ k and |X| > k.

�

Example 17.4
Let X1, . . . , Xn be i.i.d. N (µ, σ2). Recall from your basic intro to statistics
that just as we found µ using the arithmetic mean, the sample variance Sn2

was found as

Sn
2 = 1

n− 1

n∑
i=1

(
Xi −Xn

)2
(17.5)

and ESn2 = σ2 which entails that we can rewrite the above (17.5)

n

n− 1
1
n

n∑
i=1

Xi
2 − n

n− 1
(
Xn

)2

and n
n−1 converge in probability to 1, hence

1
n

n∑
i=1

Xi
2 p−−−−→

WLLN
EXi

2 Xn
p−−−−→

WLLN
EXi
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− 1
n

1
n

0

0.5

1

and by the continuous mapping theorem,(
Xn

)2 p−−→ (EXi)2

hence Sn2 p−→ EX2
i − (EXi)2 = VarXi = σ2 and

√
Sn

2 p−→ σ (even if this is a
little messier). We say the estimator is weakly consistent.

Definition 17.7 (Convergence in distribution)
Let {Xn} be a collection of random variables and X be a r.v. Then Xn  

X(Xn converge in law or in distribution toX as n→∞) if for any continuity
point x of Fx,

FXn(x) n→∞−−−→ FX(x).

In other words, we have pointwise convergence of the distribution function.

Example 17.5
Suppose that we have P(Xn = 1

n) = P(Xn = − 1
n) = 1

2 . If we draw the
distribution function of Xn, recalling that FXn(x) = P(Xn ≤ x) . If we
draw the distribution function of Xn, we have

FXn(x) =


0 x < 0
1
2 x = 0

1 x > 0

and this cannot be a distribution function. But P(X = 0) = 1, then
FXn(x) → FX(x) ∀ x ∈ R if x 6= 0 hence by definition Xn  X. This
type of distribution is actually the weakest of all three.
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Theorem 17.8
Let {Xn} be a collection of random variables and X be a r.v. Then Xn

p−→ X

imply that Xn  X, but not conversely.

Proof (⇒) Let x be a continuity point of FX . If ε > 0 is sufficiently
small. Then

P(Xn ≤ x) = P(Xn ≤ x,X ≤ x+ ε) + P(Xn ≤ x,X > x+ ε)

≤ P(X ≤ x+ ε) + P(|Xn − x| > ε)

Let now n→∞ to get limn→∞ FXn(x) ≤ FX(x+ ε) + 0.
For the lower bound,

FX(x− ε) = P(X ≤ x+ ε)

= P(X ≤ x− ε,Xn > x) + P(X ≤ x− ε,Xn ≤ x)

≤ P(|Xn −X| > ε) + FXn(x)

≤ lim
n→∞

FXn(x) ≤ P(X ≤ x+ ε) = FX(x+ ε)

Let ε→ 0 and by continuity

FX(x) ≤ lim
n→∞

FXn(x) ≤ FX(x).

(⇐) We go with a counterexample. Suppose we have a random variable
X ∼ B(1, 1/2) and Xn is defined as

Xn =

X if n is odd;

1−X if n is even.

We have for all n ≥ 1 and Xn ∼ B
(

1
2

)
. Clearly, FXn(x) → FX since

FXn(x) = FX ∀ x ∀ n and Xn  X. But

|Xn −X| =

0 for n odd

|1− 2X| if n is even

150



is equal to 1 almost surely if n is even and P(|Xn −X| ≥ ε) 9 0 as n→∞
and hence Xn does not converge in probability to X. �

Convergence in distribution is a mild concept, but because we are often
given the distribution function, this is a fundamental concept.
Remark
Xn  X and Xn  Y , then X

L= Y . This is an appealing result if we
have weak convergence, we can construct a probability space and random
variable such that it converge almost surely. This is not practical, yet useful
for proofs.
Theorem 17.9
Let {Xn} be random variables and a constant c ∈ R. Then, if Xn  c, then
Xn

p−→ c.

Proof Let ε > 0 be given. We have

P(|Xn − c| > ε) = P(Xn > c+ ε) + P(Xn < c− ε)

≤ 1− P(Xn ≤ ε+ c)︸ ︷︷ ︸
→1

+ P(Xn ≤ c− ε)︸ ︷︷ ︸
→0

→ 0

�

Example 17.6 (Order statistics: maximum)
Let U1, . . . , Un ∼ U(0, 1) and identically and independently distributed. Let
us look at a new series of random variable Mn = max(U1, . . . , Un) to get an
upper bound to know what are bounds of the uniforms to get an approxi-
mation of the highest values that can be encountered.

P(Mn ≤ x) = P(U1 ≤ x, . . . , Un ≤ x)

=
n∏
i=1

P(Ui ≤ x)

=


0 if x < 0

xn if x ∈ [0, 1]

1 if x > 1.
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Hence the probability that Mn ≤ x is given by

P(Mn ≤ x)→

0 if x < 1

1 if x ≥ 1.

and Mn  1 → Mn
p−→ 1. But what is the error you make by choosing the

maximum instead? n(1−Mn) E(1) since

P(n(1−Mn) ≤ x) = P
(

1− x

n
≤Mn

)
= 1− P

(
Mn ≤ 1− x

n

)

=


0 if x ≤ 0

1−
(

1− x

n

)n
if x ∈ (0, n)

n if x ≥ n

n→∞−−−→

0 if x ≤ 0

1− e−x if x > 0

Theorem 17.10 (Central limit theorem)
We saw that Xn

p−→ µ. Consider the proper rescaling
√
n(Xn − µ), where

{Xn} is a sequence of i.i.d random variables such that EX1 = µ < ∞, and
that Var(X1) = σ2 < ∞.21 By the Weak law of large numbers, we have
Xn

p−→ µ. Then
√
n

(
Xn − µ
σ

)
 N (0, 1)

for n large.

Proof We need to resort to one thing. If we look at our object of interest,
we can rewrite in a little different way. Consider

√
n

(
Xn − µ
σ

)
=
√
n

(
1
n

n∑
i=1

(
Xi − µ
σ

))
21Without loss of generality, we consider X1 since all variables have the same distribu-

tion.
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is such that
(
Xi−µ
σ

)
are independently and identically distributed and

E
(
Xi − µ
σ

)
= EYn = 0 Var

(
Xi − µ
σ

)
= VarYn = 1.

for Y1, Y2 i.i.d.. Since we have no info as in the example, we need to call on
the following result which go beyond the scope of what we can prove here.
If we have a sequence {Zn}, Z be such that MZn(t) → MZ(t) (convergence
of the moment generating function) for all t ∈ (−ε, ε) for some ε > 0, then
Zn  Z.

Assume that Yi have a MGF 22. Then

M√n(Yn)(t) = E
(
e

1√
n

(Y1+...+Yn)t
)

=
n∏
i=1

E
(
e

t√
n
Yi
)

=
(
MYi

(
t√
n

))n

If we look at the moment generating function of Y1 as a power series, we
have

MYi(s) = MYi(0) +M ′Yi(0) · s+M ′′Yi(0) · s
2

2! +M ′′′Yi(0) · s
3

3! . . .

= 1 + EY1 · s+ EY 2
1 ·

s2

2! + EY 3
1 ·

s3

3! . . .

= 1 + s2

2! + EY 3
1 ·

s3

3! + . . .+ EY k
1 ·

sk

k!

by assumption, Now suppose that we have in an interval of convergence

MY1

(
t√
n

)
= 1 + t2

2n +O
(
n−

3
2
)
< 1 + t2

2n +O
( 1
n

)

since it goes faster to zero than 1
n . Hence,

M√n(Yn)(t) =
(

1 + t2

2n +O
( 1
n

))n
n→∞−−−→ e

t2
2

which is precisely the moment generating function of the N (0, 1). �

22Otherwise, the same result can be established using the characteristic function; the
proof uses the same idea.
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Example 17.7
Suppose that X ∼ B(n, p) L=

∑n
i=1 Yi, where Yi are i.i.d. B(1, p) and we

look at P(X ≤ x). We can use our brand new tool to approximate the
distribution of Y .

P(X ≤ x) = P
(

n∑
i=1

Yi ≤ x
)

= P
(

1
n

n∑
i=1

Yi ≤
x

n

)

= P
(
√
n

Yn − p√
p(1− p)

≤
√
n

x
n − p√
p(1− p)

)
≈ Φ

(
√
n

x
n − p√
p(1− p)

)

for n large enough.

Example 17.8
Suppose that we have Y ∼ P(n), for n ∈ N and Y L=

∑n
i=1Xi, and Xi are

i.i.d. P(1). In this case, by the Central Limit theorem,

P(Y ≤ y) = P
(

n∑
i=1

Xi ≤ y
)

= P
(
√
n
Xn − 1

1 ≤ y√
n
−
√
n

)

≈ Φ
(
y√
n
−
√
n

)

� � �
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Using R
R is a free statistics software alimented by a large community of users. It
has numerous packages for download, which allow you to perform special-
ized operations ranging from econometrics to survival analysis. For example,
the stats package (which is automatically loaded) allow to do hypothesis
testing, generate data on random variables or draw distribution functions.
Particular instances of those packages can be loaded when needed; you only
need to type the command library() with the input you require. For more
information, we refer the reader to the online documentation. Nevertheless,
it you need to look for functionalities and inputs, the following commands
are useful:
> library(help = "stats") to get all possibilities of a package;
> help("dnorm") in case you know the syntax of your command;
> help.search("normal distribution")if you are looking for an unknown
function, but do not know the exact syntax or its properties and inputs. One
can also use the ?"dnorm" to replace help() and ??"normal distribution".

R language is quite intuitive and people who are familiar with programming
languages should find it is a valuable (yet free) tool, highly customizable.
Here are some examples from class and the resulting graphs:
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Figure 22: Coin toss experiment repeated 1000 times.
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coin <- function(N=1000,p=0.5){
X <- rbinom(n=N,size=1,prob=p)
A <- numeric(N)
for(i in 1:N){
A[i] <- mean(X[1:i])
}
A
}

out <- coin(2000)

plot(out,type="l")
lines(c(0,2000),c(0.5,0.5),col=2)
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# Binomial distribution
BiPlot <- function(n=10,p=0.5,col="black")
{
x <- 0:n
y <- dbinom(x,size=n,prob=p)
plot(x,y,col=col)
for(i in 1:(n+1)){
lines(c(x[i],x[i]),c(0,y[i]),col=col)
}
}
par(mfrow=c(1,3))
BiPlot(5,0.5)
BiPlot(10,0.5)
BiPlot(30,0.5)

In this case, we see that the command BiPlot() takes as input the number
of trial and the probability.

#Poisson distribution

PoisPlot <- function(lambda=2,N=10,col="black")
{
x <- 0:N
y <- dpois(x,lambda=lambda)
plot(x,y,col=col)
for(i in 1:(N+1)){
lines(c(x[i],x[i]),c(0,y[i]),col=col)
}
}
PoisPlot(lambda=1)
PoisPlot(lambda=2)
PoisPlot(lambda=5)
PoisPlot(lambda=20,N=50)
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Figure 23: The Binomial distribution
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Figure 24: The Poisson distribution with λ = 1 and λ = 2
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Figure 25: The Poisson distribution with λ = 5, N = 10 and λ = 20, N = 50
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Figure 26: Geometric distribution with probabilities 0.99, 0.7 and 0.5
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Figure 27: Negative binomial distribution

161



0 10 20 30 40

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

x

y

0 10 20 30 40

0.
00

0.
02

0.
04

0.
06

0.
08

x

y

Figure 28: Comparison between the Negative binomial and the Poisson
distributions

# Geometric distribution

GeoPlot <- function(prob=0.99,N=10,col="black")
{
x <- 0:N
y <- dgeom(x,prob=prob)
plot(x,y,col=col)
for(i in 1:(N+1)){
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lines(c(x[i],x[i]),c(0,y[i]),col=col)
}
}

GeoPlot(prob=0.99)
GeoPlot(prob=0.7)
GeoPlot(prob=0.5)

# Negative Binomial distribution

NBPlot <- function(size=5,prob=0.5,N=10,col="black")
{
x <- 0:N
y <- dnbinom(x,size=size,prob=prob)
plot(x,y,col=col)
for(i in 1:(N+1)){
lines(c(x[i],x[i]),c(0,y[i]),col=col)
}
}
NBPlot(prob=0.99)
NBPlot(size=1,prob=0.7)
NBPlot(size=5,prob=0.7,N=20)
par(mfrow=c(1,2))
NBPlot(size=20,prob=0.5,N=40)
PoisPlot(lambda=20,N=40)
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Examples of expectations for a dice, and a Normal and Cauchy random
variable. The code will display the arithmetic mean for 5000 tries.
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Figure 29: Mean of a dice

rdice <- function(n=100){
U <- runif(n=n)
floor(6*U)+1
}

mean.dice <- function(n=5000){
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Figure 30: Mean of a Gaussian random variable

X <- rdice(n)
m <- cumsum(X*10)
N <- 1:n
plot(m/N,type="l")
lines(c(0,n),c(35,35),col=2)
}
mean.dice()
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Figure 31: Mean of a Cauchy random variable

mean.gauss <- function(n=5000,mu=0,sigma=1){
X <- rnorm(n=n,mean=mu,sd=sigma)
m <- cumsum(X)
N <- 1:n
plot(m/N,type="l")
lines(c(0,n),c(mu,mu),col=2)
}
mean.gauss()
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mean.cauchy <- function(n=5000){
X <- rt(n=n,df=1)
m <- cumsum(X)
N <- 1:n
plot(m/N,type="l")
lines(c(0,n),c(0,0),col=2)
}
mean.cauchy()
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The first two distributions illustrate what happens with an accumulation of
points along the line; it has no density since the volume of the line is zero
(see Example 12.4). The second distribution stresses out the fact that the
support is countable (see Example 12.6). Note that the Quantitative Risk
Management library is considered obsolete and is not supported in newer
version of R.

###### Other distributions #########

U <- runif(1000)
plot(U,U)

library(QRMlib)
require(grDevices)
out <-rcopula.clayton(1000,theta=2,d=2)
X <- qpois(out[,1],lambda=2)
Y <- qbinom(out[,2],prob=0.5,size=10)
plot(X,Y)
hist(X)
hist(Y)

Three-dimensional plots of the Bivariate Normal distribution, with contour
plot or perspective (3-D)

##### Bivariate Normal distribution #######

BiDensPlot(func=dmnorm,mu=c(0,0),Sigma=equicorr(2,0),c(-3, 3),
ypts = c(-3, 3),type="contour");

BiDensPlot(func=dmnorm,mu=c(0,0),Sigma=equicorr(2,0),c(-3, 3),
ypts = c(-3, 3),type="persp");
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Figure 32: Plot of a Bivariate Uniform random variable

par(mfrow=c(1,3))
BiDensPlot(func=dmnorm,mu=c(0,0),Sigma=equicorr(2,0),c(-3, 3),
ypts = c(-3, 3),type="contour");

BiDensPlot(func=dmnorm,mu=c(0,0),Sigma=equicorr(2,0.4),c(-3, 3),
ypts = c(-3, 3),type="contour");

BiDensPlot(func=dmnorm,mu=c(0,0),Sigma=equicorr(2,-0.7),c(-3, 3),
ypts = c(-3, 3),type="contour");

X1 <- rmnorm(1000,rho=0)
X2 <- rmnorm(1000,rho=0.4)
X3 <- rmnorm(1000,rho=-0.7)

plot(X1)
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Figure 33: Bivariate Poisson-Binomial random variable

plot(X2)
plot(X3)

BiDensPlot(func=dmnorm,mu=c(0,0),Sigma=equicorr(2,0),c(-3, 3),
ypts = c(-3, 3),type="contour");

BiDensPlot(func=dmnorm,mu=c(0,0),Sigma=equicorr(2,0.7),c(-3, 3),
ypts = c(-3, 3),type="contour");

BiDensPlot(func=dmnorm,mu=c(1,1),Sigma=equicorr(2,0.7),c(-3, 3),
ypts = c(-3, 3),type="contour");

X1 <- rmnorm(1000,rho=0)
X2 <- rmnorm(1000,rho=0.7)
X3 <- rmnorm(1000,rho=0.7,mu=c(1,1))
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Histogram of Poisson
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plot(X1,xlim=c(-5,5),ylim=c(-5,5))
plot(X2,xlim=c(-5,5),ylim=c(-5,5))
plot(X3,xlim=c(-5,5),ylim=c(-5,5))
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Histogram of Binomial distribution

Y

Fr
eq
ue

nc
y

2 4 6 8 10

0
50

10
0

15
0

20
0

25
0

172



0.02

0.04
0.06
0.08

0.
1

0.12

0.14

-3 -2 -1 0 1 2 3

-3
-2

-1
0

1
2

3

Figure 34: Bivariate Normal distribution-Contour
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Figure 35: Comparisons between bivariate Normal distributions.

174



Index
Bayes’ rule, 20
Binomial coefficient, 29

properties, 30
Binomial theorem, 30
Borel sets, 7

Central Limit Theorem, 152
Central moment, 75
Characteristic function, 89
Combinatorics

k-combination, 29, 30
k-permutation, 27

Conditional distribution
continuous, 134
discrete, 132

Conditional expectation, 134
Law of Iterated Expectations, 135
properties, 135

Continous mapping theorem, 146
Continuity

absolutely continuous, 47
Continuous distribution

Cauchy, 68
Chi-square, 59
Exponential, 45
Log-normal, 63
Lognormal, 88
Normal(Gaussian), 48
Pareto distribution, 71
Student’s t, 68
Uniform, 45
Weibull, 47

Convergence, 141
almost surely, 141
in distribution, 149
in probability, 141

pointwise, 141
Convolutions, 113, 114

De Morgan’s law, 4
Discrete distribution

Bernoulli, 33
Binomial, 33, 158
Dirac, 33
Geometric, 36, 160
Hypergeometric, 34
Negative binomial, 37, 161, 162
Poisson, 35, 157, 162
Uniform, 33

Expectation, 64
of functions of random variables,

69
of symmetric distributions, 67
properties, 70

Expected value, 66

Gamma function, 48
Good sets principle, 51

Inclusion-exclusion principle, 9
Independence, 23
Inequalities

Bonferroni inequality, 11
Boole’s inequality, 12
Cauchy-Schwartz inequality, 123
Chebichev-Bienaymé inequality, 92
Hölder inequality, 123
Lyapunov inequality, 95
Markov inequality, 91
Young inequality, 124

Laplace experiments, 27
Law of total probability, 19
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Lebesque integral, 75
Limit, 14

inferior, 15
superior, 15

Measurability, 50, 52
conditions for, 51
A− B measurable mapping, 50

Measure, 7
Median, 78
Moment generating function, 85
Moments, 64, 70

of standard Gaussian, 71
Monotone Convergence theorem, 82
Monte-Carlo integration, 146
Multinomial theorem, 31
Multiplicative rule, 27
Multivariate distributions

Farlie-Gumbel-Morgenstein, 108
Multinomial distribution, 100
Multinormal distribution, 104

Pascal triangle, 30
Probability, 7

mass function, 32
conditional, 16
density function, 44
distribution function, 38, 40, 41
continuous, 42, 44
properties, 41

joint probability mass function,
99

measure, 39
properties of, 8
space, 7

Probability measures
discrete, 32
on (R,B), 38

Random variables, 50, 51, 56
continuous, 57

discrete, 56
functions of, 58
i.i.d. variables, 112
independence, 107, 108

Random vector, 51, 97
Bienaymé identity, 130
Central moments, 122
continuous distribution, 100
Covariance, 124
discrete distribution, 99
margins, 102
Moment, 122
multivariate density function, 101
Pearson correlation, 125
Variance-covariance matrix, 130

Sample space, 3
σ-field, 4, 5
Stochastic independence, 101

Transformation theorem, 116
random variable, 61

Variance, 76, 77

Weak Law of Large Numbers, 145
Weakly consistent estimator, 149
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