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Chapter 1
Sample moments and their distribution

Section 1.1. Sample characteristics and their distribution

Suppose that we want to estimate F (s) = P(X ≤ s) using gathered data.
Looking at the function F , a reasonable guess, if we have no further infor-
mation about the random variables X1, . . . , Xn, is to consider giving equal
weight to the observed realization x1, . . . , xn and look at the proportion
falling in the category X ≤ s for a given value of s. We thus have

F̂n(s) = P̂n(X ≤ s) = 1
n

#xi’s which are smaller or equal to s

which can be written in a more formal way as

F̂n(s) = 1
n

n∑
i=1
E(s− xi) (1.1)

where

E(x) =

1 if x ≥ 0

0 otherwise
. (1.2)

This will be a random function if evaluated everywhere. First, we go with
some definitions:
Definition 1.1 (Random sampling)
Let X be a random variable (rv) with distribution function F and let
X1, . . . , Xn be iid rv with common distribution function (DF) F . Then,
the collection X1, . . . , Xn is called a random sample of size n from DF F or
simply as n independent observations on X.

Definition 1.2 (Statistic)
Let X1, . . . , Xn be n independent observations on X and let f : Rn → Rk be
a Borel measurable function. Then, the random variable f(X1, . . . , Xn) is
called a (sample) statistic provided that it is not a function of any unknown
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parameter(s).

Example 1.1
Let X1, . . . , Xn be a random sample from F . Then

X = 1
n

n∑
i=1

Xi (1.3)

and

S2
n = 1

n− 1

n∑
i=1

(
Xi −X

)2
(1.4)

are statistics, while Xn − µ and S2
n/σ

2 are not. Here, µ = E (X) and
σ2 = VarX, F is the cumulative distribution function of N (µ, σ2); they are
random variables and depend on an unknown parameter. (1.1) is there for
s = 2, but in general it returns a cadlag function1 and will be a random func-
tion. If we consider the mean of (1.1), the empirical distribution function
(EDF) of a random sample from distribution function F , the expectation
will be given by

E
[
F̂n(s)

]
= E

[
1
n

n∑
i=1
E(s− xi)

]

= 1
n

n∑
i=1

E [E(s− xi)]

Recall that E(s) is a binary variable. If we look at E E(s− xi) as defined in
(1.2), then P(E(s− xi) = 1) = P(Xi ≤ s) = F (s) so

E [E(s− xi)] = F (s)

and going back to our calculation, we get

1
n

n∑
i=1

F (s) = F (s)

1The term cadlag stands for “continue à gauche, limite à droite”.
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This property (namely having the mean as being the value of our estimate
at any point) is called unbiasedness; we will go back to it very soon. Does it
necessarily make sense to look at this property? Not always; one could be
considering the distribution of income and wondering whether the fact the
mean is high is an indicator of how much people have as a living; we could
very well be better of estimating with the median if we have some extremely
high value. We could also think in a very silly way that a slap on the left
side of the face doesn’t cancel a slap on the right. If we look at the variance
of the F̂n

Var
(
F̂n(s)

)
= Var

[
1
n

n∑
i=1
E(s− xi)

]
= 1
n2 Var

[
n∑
i=1
E(s− xi)

]

since E is a measurable function and Xi are mutually independent, then
Yi = E(s− xi) are independent and

Yi =

1 F (s) = p

0 1− F (s) = 1− p = q

and P(Y1 = 1) = P(Xi ≤ s) = F (s) so Var(Yi) = p(1 − p) = F (s)[1− F (s)]
and

Var
(
F̂n(s)

)
= 1
n2

n∑
i=1

p(1− p) = p(1− p)
n

= F (s)[1− F (s)]
n

We can easily show that

Theorem 1.3

P
(
F̂n(s) = j

n

)
=
(
n

j

)
(F (s))j (1− F (s))n−j

for j = 0, 1, . . . , n since

F̂n(s) = 1
n

n∑
i=1
E(s− xi) = 1

n

n∑
i=1

Yi
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where Yi are iid Bernoulli B(1, p = F (s)) random variables, thus
∑n
i=1 Yi ∼

B(n, p = F (s)); the sum is Binomial. Thus, getting F̂n(s) from above and

P
(
F̂n(s) = j

n

)
= P(Zn = j) =

(
n

j

)
[F (s)]j [1− F (s)]n−j ,

we could immediately get the expected value and the variance from the
theorem.

Corollary 1.4
The mean and the variance are from above

E
(
F̂n(s)

)
= F (s) Var

(
F̂n(s)

)
= F (s)(1− F (s))

n

Corollary 1.5
We have convergence in probability of the empirical distribution function to
the true distribution function:

F̂n(s) p−→ F (s)

using the Weak Law of Large Numbers (WLLN). We can also directly com-
pute it using Chebychev inequality

P
(∣∣∣F̂n(s)− F (s)

∣∣∣ > ε
)
≤

Var
(
F̂n(s)

)
ε2

and noting that Var
(
F̂n(s)

)
n→∞−−−→ 0, we have convergence for any fixed

ε > 0 and even if it is random as long as the denominator of

F (s)[1− F (s)]
nε2

goes to ∞. This property is called consistency; we have convergence to the
target. This is crucial as when we take n large enough, we can get the
population and we should clearly be having the true mean. Note this is
necessary, but not sufficient.
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We can even get

Corollary 1.6
As a result of the Central Limit Theorem (CLT)

F̂n(s)− F (s)√
F (s)[1− F (s)]

n

D−→ N (0, 1)

This is remarkable since with only the mean and the variance, we can get
confidence intervals -we don’t need the distribution from which they are
drawn. What can I say about this as a function is beyond the scope of the
course, but nevertheless here is an amazing result.

Theorem 1.7 (Glivenko-Cantelli theorem)
Suppose that X1, . . . , Xn are independent and have a common distribution
function F ; put

Dn(ω) = sup
x
|Fn(x, ω)− F (x)|.

Then Dn → 0 almost surely.
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Proof First, we note that Fn(x, ω) a.s.−−→ F (x) using the Strong Law of Large
Numbers (SLLN). Another application of the SLLN with I(−∞,x) instead of
I(−∞,x] in the definition of the empirical cumulative distribution function
(CDF) shows that

lim
n
Fn(x−, ω) = F (x−)

except on a set Bx of probability 0.

Let φ(u) = inf[x : u ≤ F (x)] for 0 < u < 1 and put xm,k = φ(k/m) for
m ≥ 1, 1 ≤ k ≤ m. It is not hard to see that F (φ(u)−) ≤ u ≤ F (φ(u));
hence

F (x−m,k)− F (xm,k−1) ≤ 1
m

F (x−m,1) ≤ 1
m

F (xm,m) ≥ 1− 1
m

Let

Dm,n(ω) = max
{
|Fn(xm,k, ω)− F (xm,k)| , |Fn(x−m,k, ω)− F (x−m,k)|

}
for k = 1, . . . ,m. If xm,k−1 ≤ x ≤ xm,k, then

Fn(x, ω) ≤ Fn(x−m,k, ω) ≤ F (x−m,k) +Dm,n(ω) ≤ F (x) + 1
m

+Dm,n(ω)

and

Fn(x, ω) ≥ Fn(xm,k−1, ω) ≥ F (xm,k−1)−Dm,n(ω) ≥ F (x)− 1
m
−Dm,n(ω)

Together with similar arguments for the cases x < xm,1 and x ≥ xm,m, this
shows that

Dn(ω) ≤ Dm,n(ω) + 1
m

(1.5)

If ω lies outside the union of all theAxm,k andBxm,k , then limn→∞Dm,n(ω) =
0 and hence using (1.5), limn→∞Dn(ω) = 0 except at A =

⋃
m,k(Axm,k ∪
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Bm,k) where Ax = {ω ∈ Ω : limn→∞ Fn(xω) 6= F (x)}. �

One can also show using the SLLN that

‖F̂n − F‖∞
a.s.= O

√ log logn
n

 .
Also important results in this area is Komlos-Major-Tusnady approximation
and Dvoretzky-Kiefer-Wolfowitz inequality

P
(

sup
x
|Fn(x)− F (x)| > ε

)
≤ 2e−2nε2 ∀ ε > 0 (1.6)

from which Glivenko-Cantelli theorem automatically follow. We even get
the rate of convergence to 0. Another result allows one to make uniform
bands

√
n[F̂n(s)− F (s)] w−→ B(F (s))

namely convergence to a Brownian motion, and where w stands for weak-*
topology.

We could think that with all these results, statistics is known and problems
are solve before they even arise. However, all the above was based on iid
sample. Most of the time, what we have in hand (for example with medical
data) contains missing data. We tend to have certain bias; we tend to
recruit people that have longer survival. We may have partial observation,
which leads to censoring. Let Ti be the time to event and Ci the time to
loss to follow-up. Then we may have instead of the ideal (Ti, Ci) the actual
observation will be (Xi, δi) where

Xi = Ti ∧ Ci δi =

1 if Ti ≤ Ci
0 if Ti > Ci

Lots of problems are encountered with our candidates in survival analysis. If
the percentage of loss to follow-up is important, one cannot simply exclude
them from the inference without introducing bias. You will underestimate if
you throw some out since they have potential to survive. The survival S(t)
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is defined as 1− F (t) = P(T > t) and for X ≥ 0, the expectation of X will
be

EX =
∫ ∞

0
[1− F (t)]dt =

∫ ∞
0

S(t)dt

All of this leads back to the problem of estimating F̂n, which is the empirical
distribution function. The well-known Kaplan-Meier estimator is a good
example of function that estimate the fraction of patients that survive (a
treatment). We proceed with some more definitions

Definition 1.8 (Point estimate)
Let X1, . . . , Xn be a random sample of size n, from Fθ, where θ ∈ Θ. A
statistic T (X1, . . . , Xn) is said to be (point) estimate of θ if T : Rn → Θ.

Definition 1.9 (Unbiasedness)
A point estimate of θ is called unbiased if Eθ[T ] = θ, where

Eθ[T ] =
∫
tdFT,θ(t),

if T = T (X1, . . . , Xn).

Eθ[T ] =
∫
X1
· · ·
∫
Xn

T (X1, . . . , Xn) dFX1,...,Xn(x1, . . . , xn)∏n

i=1 dFθ,Xi (xi)

Note that we must have E|T | < ∞, conditional convergence is not enough:
if we do not have absolute convergence, we could rearrange the sum and
make it converge to anything we want.

Definition 1.10 (Consistency)
Let X1, . . . , Xn be a sequence of iid rv with a common DF, say Fθ, θ ∈ Θ.
A sequence of point estimates T (X1, . . . , Xn) = Tn is called consistent for θ
if Tn

p−→ θ as n→∞.

Recall Tn
p−→ θ iff limn→∞ P(|Tn − θ| > ε) = 0, ∀ε > 0. We are interested by

E|Tn − θ| as it is not realistic to look at each instance separately (we may
have a huge number of points).
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Mean Squared Errors (MSE)

E[(Tn − θ)2] = E
[
({Tn − Eθ(Tn) + Eθ(Tn)− θ)2

]
= Varθ(Tn) + (Biasθ(Tn))2 ,

where Biasθ = Eθ(Tn)− θ.

We are interested in MSE because we have a good intuition about square
norms (as in a Euclidean space), so we can work with concept like orthog-
onality more easily; moreover, x2 is a nicer function to work with than |x|
(for instance because of smoothness). Finally, squared points translate well
to matrix multiplication.

Note that we do not want MSE = 0, because in that case we not only
don’t have any bias (which is good), but we don’t have a variance either
(which renders the experiment useless). As the theory of statistics devel-
oped, statisticians aimed at unbiased estimators and tried to minimize the
MSE.
Definition 1.11 (Order statistic)
Consider X1, . . . , Xn, a random sample, then the order statistic is simply an
ordering of the Xi:

• X(1) = mini=1,...,n(Xi),

• X(2) = second smallest of the Xi,

• . . .

• X(n) = maxi=1,...,n(Xi).

Example 1.2
An example where we use the order statistic, would be in an electrical circuit.
If we are interested in the lifetime of the system, then there will be two cases:
If the circuit is a parallel system, then we are interested in X(n) = max(Xi),
where each Xi is a resistance and the system will die if all switches died. In
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Figure 2: A bimodal distribution

lattice theory notation, we may write this as X(n) = ∨ni=1Xi. If it is a series
system, then the lifetime will be determined by the shortest lived resistance
and this time we look at X(1) = min(Xi) = ∧ni=1Xi.

Definition 1.12 (Sample Median)
The sample median is a non-parametric statistic. It is defined as follow:
Let X1, . . . , Xn be a random sample from F , and X(1), . . . , X(n) be the order
statistic. Then

Z 1
2

=

X(n+1)/2 if n is odd
1
2

(
Xn/2 +X(n/2)+1

)
if n is even

is called the sample median.

We must be careful when looking at the density; we can see from the cad-
lag function behaviour like that of a bimodal distribution for example, the
average length of fish can be normally distributed, but with different mean
for male or female. Note that if a distribution is symmetric, then E = Z 1

2
.
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Section 1.2. χ2, t and F -distributions

Say you have treatments T1, . . . , Tk (for simplicity let k = 2), for instance
on mice.

T1 T2

X1,1 X2,1
...

...
X1,m X2,m

Here X1,i and X2,i are trials for the first and second treatment respectively.
The biologist Ronald Fisher was the amongst the first to develop a theory
of statistics that could deal with similar problems. In his era devoid of
computers, an important problem was data compression, as a treatment
can have several hundreds if not thousands of trials. It was near impossible
to do the computations by hand. Once a table of data is summarized, how do
we measure information? Do we use the average, and measure the distance
of a trial to it? But what is information to begin with?

Fisher’s Theory of Information

Suppose we have a density fθ, for instance N (µ, 1). Say that fθ(5) is a
constant function and that fθ(2) resemble a wiggly polynomial. We can
say that fθ(5) is not sensitive to information as the function is not really
dependent on the information θ, whereas fθ(2) is. Stemming from this idea,
Fisher found a way to measure this sensitivity to information with

E
[
∂2 log fθ(x)

∂θ2

]

which measures the curvature of fθ(x0) for some fixed value x0 of x.
If we turn our attention to the summary, we might ask which qualities we
want from it. If we were to decompress it, we would maybe want the likeli-
ness of an event, and would want Xi to be sufficient and be able to absorb all
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Figure 3: Geometric interpretation of SST, SSE and SSTr

the information about pertinent θ. Suppose that we consider Xij = pi + εij ,

where i = 1, . . . , k is the number of treatments and j = 1, . . . , ni the num-
ber of observations under the first treatment. Fisher assumed that the error
term εij ∼ N (0, σ2) where σ2 is unknown. We define Xi. = 1

ni

∑ni
j=1Xij and

X .. = 1
k

∑k
i=1Xi.. Then, for our given experimental treatment, we will get

the total variation to be the sum of random fluctuations plus the systematic
deviation due to treatment, namely what we are interested in. This can be
written as (

Xij −X ..

)
=
(
Xij −Xi.

)
+
(
Xi. −X ..

)
(1.7)

Summing up over all i, j, we have

k∑
i=1

ni∑
j=1

(
Xij −X ..

)2

SST

=
k∑
i=1

ni∑
j=1

(
Xij −Xi.

)2

SSE

+
k∑
i=1

ni∑
j=1

(
Xi. −X ..

)2

SSTr

(1.8)

which stands respectively for total sum of square (STT), sum of squared
errors (SSE) and sum of squared treatment (SSTr).2 If X1, . . . , Xn

iid∼ F and
we consider as a specific case N (µ, σ2).Then, Xn ⊥⊥ (X1 − Xn, . . . , Xn −
Xn) will be our goal if Xi ∼ N (µ, σ2) entails that Xi = µ + σε∗ where
ε∗ ∼ N (0, 1). Thus, assuming what σ is known, µ is unknown, we replace

Xi = µ+ σε∗ = µ+ ε = Xn + (X1 −Xn)
2It is also found under the term SSR under the literature, which stands for sum of

squared residual. These notions are crucial when doing regression analysis; they allow you
to get the coefficient of determination (R2) which is an indicator of correlation and with
which you can perform hypothesis testing.
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for ε ∼ N (0, σ2). Given as seen in the figure that SST=SSE+SSTr, we may
ask if p1 = · · · = pk which was Fisher’s question: are all treatments working
similarly. We can look at this ratio.

SSTr/(k − 1)
SSE/k(n− 1)

where the (k − 1) and k(n − 1) are the dimension of the space spanned by
our vectors. A note about SSE:

k∑
i=1

ni∑
j=1

(
Xij −Xi.

)2

it expresses the random fluctuations that are intrinsic to our data and that
we cannot model. On the other hand, we have SSTr

k∑
i=1

ni∑
j=1

(
Xi. −X ..

)2

is the systematic fluctuation due to the treatment. If SSTr is almost as large
as SSE, then we have something not significant.

A word about the constants; they represent the dimension of the spaces.
Using linear algebra and looking at (1.7), we can define

v =
{(
Xij −X ..

)
; i = 1, . . . , k; j = 1, . . . , ni

}
w =

{(
Xi. −X ..

)
; i = 1, . . . , k

}
z =

{(
Xij −Xi.

)
; i = 1, . . . , k; j = 1, . . . , ni

}
and we see that the dimension of w is k−1 and z has dimension (n−1)k. By
looking at span(w) and examining the linear relationship, if we add all terms,
we get 0 since

∑k
i=1

(
Xi. −X ..

)
= 0. We need to show that it cannot be less

than k − 1. This is left as an exercise and can be done via direct sums. We
have that v, w are subspaces of z and span(v) is actually the biggest space.
For we have

∑k
i=1

∑ni
j=1

(
Xij −X ..

)
= 0 and X .. = 1

kn

∑k
i=1

∑ni
j=1Xij . Now,
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we are assuming n = n1 = n2 = · · · = nk. Since we have a direct sum
dim[span(v)] = kn− 1 and

dim[span(v)] = dim[span(w)] + dim[span(z)]

and it must be that (kn − 1) − (k − 1) = k(n − 1) = dim[span(z)], which
indeed justifies the constants; they are the dimension of the spaces spanned
by our vectors. If F is too large, we reject the equality hypothesis. We will
need to find the PDF of F . We shortly show that for Xi

iid∼ N (0, 1), then
X2
i ∼ χ2(1) and that

∑n
i=1X

2
i ∼ χ2(n).

Recall the moment generating function of a random variableX isMX(t) =
E(etX) arises from the Laplace transform, which is a smooth one-to-one map.
We can get an analog with the Fourier transform, namely the characteris-
tic function, which always exists. If we have a random vector X, then
MX(t) = E(et>·X) where · is the inner product and where t = (t1, . . . , tk)
and X = (X1, . . . , Xk). This formula will become

∏n
i=1 e

ti·Xi if each Xi

are independent since any function is independent and the r.v. will be un-
correlated. We can consider simply the moment generating function of a
single r.v. to be MX1(t1) = MX(t1, 0, . . . , 0). We have independence for
X ⊥⊥ Y ⇔MX,Y (s, t) = MX(s)MY (t).

Proposition 1.13 (Chi-square distribution)
We can recover the distribution of the χ2 random variable through the
method of MGF, through a change of variable or with the method of distri-
bution function. Suppose that Z ∼ N (0, 1) and define X = Z2. We want
to find

FX(x) = P(X ≤ x) = P(|Z| ≤
√
x)

= P(−
√
x ≤ Z ≤

√
x) = P(−

√
x < Z ≤

√
x)

= P(Z ≤
√
x)− P(Z ≤ −

√
X) = FZ(

√
X)− FZ(−

√
X)

We have made a relationship between the CDF of Z and that of X. In
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Figure 4: Chi-square random variable
As the number of degrees of freedom increase, the distribution becomes less skewed to

the left.

order to work with the PDF, we differentiate

dFX(x)
dx

= d[FZ(
√
x)− FZ(−

√
x)]

dx

fX(x) = 1
2
√
x
fZ(
√
x)−

(
− 1

2
√
x

)
fZ(−

√
x) = 1

2
√
x

[fZ(
√
x) + fZ(−

√
x)]

which evaluated at
√
x is equal to

= 1
2
√
x

[ 1√
2π
e−

(
√
x)2
2 + 1√

2π
e−

(
√
x)2
2

]
= 1
√
x
√

2π
e−

x2
2
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provided x ≥ 0. One can rewrite this slightly differently as

fX(x) =


1

2
1
2 Γ(1

2)
x−

1
2 e−

x2
2 , x > 0

0 otherwise

where Γ(1
2) =

√
π.

This is close to the Gamma distribution, which came to existence due to
the work of Erlang, a Danish engineer that worked in communication and
wanted to study the distribution of the duration of calls using the phone
central by looking at the histograms.

Definition 1.14 (Gamma distribution)
We say that X ∼ Γ(α, β) if


1

βαΓ(α)x
α−1e−

x
2 , x > 0

0 otherwise
(1.9)

for α, β > 0. This is used for example in queueing theory. We have χ2 in
the case β = 2, α = 1

2 and

χ2(ν) = Γ
(
α = ν

2 , β = 2
)

(1.10)

with the parameter ν being the number of degrees of freedom.

Proposition 1.15 (Sum of Chi-square r.v.)
If we have that Xi

iid∼ N (0, 1), for i = 1, . . . , n, then X2
i

iid∼ χ2(1) and
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T =
∑n
i=1X

2
i ∼ χ2(n). Then, using the moment generating function,

MT (s) = E(esT ) = Ees
∑n

i=1 X
2
i

= E
(

n∏
i=1

esX
2
i

)
⊥⊥=

n∏
i=1

E
(
esX

2
i

)
=

n∏
i=1

MX2
i
(s) iid= [MX2(s)]n

=
( 1√

1− 2t

)n
if t < 1

2 and (1− 2t)
n
2 is χ2 with n degrees of freedom.

If we go back to Fisher’s problem, if we consider
∑k
i=1

∑n
j=1(Xij − X1.)2

is N (0, σ2); we can divide both numerator and denominators to get it dis-
tributed as N (0, 1) random variable. If furthermore Xi

iid∼ N (µ, σ2) for
i = 1, . . . , n, then looking at the difference between our random variables
and the sample mean, we obtain

Xi −Xn = Xi −

 1
n

n∑
j=1

Xj

 =
n∑
j=1

ajXj

where

aj =

−1/n j 6= 1

1− 1/n j = 1
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We are working with a bunch of linearly independent random variables.

MΣnj=1 ajXj
(t) = E

(
etΣnj=1 ajXj

)
= E

 n∏
j=1

etajXj


⊥⊥=

n∏
j=1

MXj (taj)

=
n∏
j=1

(
exp

(
tajµ+

t2a2
jσ

2

2

))

= exp

µt n∑
j=1

aj + t2σ2

2

n∑
j=1

a2
j


If we look at

n∑
j=1

aj = −n− 1
n

+
(

1− 1
n

)
= 0

implies

n∑
j=1

a2
j = (n− 1) 1

n2 +
(

1− 1
n

)2

= n− 1
n2 + 1 + 1

n2 −
2
n

= n

n2 + 1− 2
n

= 1− 1
n
.

Hence,
MXi−Xn

(t) = MΣnj=1 ajXj
(t) = e

t2σ2
2 (1− 1

n)

and we deduce from the last step that X1 −Xn ∼ N
(
0, σ2

(
n−1
n

))
.

Why are we interested in summations? One can think they are important
because we are looking at averages; we will see this again with likelihood
(which can be though of as the likeliness of the sample at hand), we will have
joint distribution and if we have that our random variables are independent
of each other, then it will be the product. However, we can easily take logs
and recover summations (this is called the log-likelihood). For the moment,
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however, the
∑k
i=1

∑n
j=1(Xij −X1.)2 are not independent.

Definition 1.16 (Snedecor-Fisher distribution)
Let X,Y be independent χ2 random variables with respectively m and n

degrees of freedom. Then,

F = X/m

Y/n
(1.11)

is said to have a F−distribution F ∼ F (m,n) with (m,n) degrees of freedom
and with probability distribution function

F (m,n) = gF (x) =
Γ
[
m+n

2
]

Γ
[
m
2
]
Γ
[
n
2
]m
n

(
m

n
x

)m
2 −1 (

1 + m

n
x

)−m+n
2
, x > 0

and 0 otherwise.

To get the PDF, call the ratio V = X/m
Y/n and introduce an auxiliary trans-

formation W = Y , looking at (X,Y )→ (V,W ) and applying the change of
variable to get the joint density fV,W and we integrate to obtain

fV (v) =
∫
w
fV,W (v, w)dw

Be careful about the range when you do the transformation. Could we just
have an injective map between the two? We can have a bijection since the
cardinality Rk → R is the same, but we don’t have a smooth map.

If the graph of our distribution is not monotone up and has several max-
ima and minima, then we can partition the graph into parts that are each
monotone up or monotone down and apply the Law of total probability to
sum all parts. The question one may ask is whether we often run into this
type of distribution. In practise, the answer is not really and by Morse-Sard
theorem, we know that the set of critical values has measure zero if the
function is analytic. (if it is a σ−compact set, than it is countable).

We will now turn our attention to the work of William Gosset, from Iowa
State University, who worked with agricultural studies on fertilizer and we
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Figure 5: Fisher distribution

carry his idea in the easy case where we have only two different treatments
T1 and T2 and we have samples that we summarize in a table of the following
form:

T1 X1 X2 . . . Xn Xn

T2 Y1 Y2 . . . Yn Y n

A natural way to make the comparison is to look at the absolute difference
between the two means of the treatments and check whether the difference
was small or large. However, this approach is not unit free and changing
the measurement unit would affect the inference results; it should not be
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different if our measurements are in terms of metres or centimetres; it is
the reason why we divide by the standard deviation to get a dimensionless
measure of distance, that is invariant with respect to scaling. Gosset looked
at the estimator ∣∣∣X − Y ∣∣∣√

X − Y
.

If we open this up, we get

1
n

∑n
i=1(Xi − Yi)√

Var(X − Y )
= Z√

VarZ

which becomes for 1 sample like a one sample test.

If Xi ∼ N (µx, σ2), Yi ∼ N (µy, σ2), for i = 1, . . . , n and Xi ⊥⊥ Yi are inde-
pendent within groups and between groups, then Zi ∼ N (µx − µy, 2σ2).

Often, we don’t have the variance and we have to replace it with S.

Z√
VarZ

∼ Z
Sz√
n

VarZ = σ2
z

n

Another distribution that we come across quite often in statistics is the
t-distribution.

Definition 1.17 (Student t distribution)
If X ∼ N (0, 1) and X ⊥⊥ Y, Y ∼ χ2(n), then T = X√

Y/n
∼ t(n) -the

Student-t distribution - with PDF given by

fn(t) =
Γ
(
n+1

2

)
Γ
(
n
2
)√

nπ

(
1 + t2

n

)−n+1
2

, t ∈ R.

has a bell-curve with heavier tails.

Note that for n = 1, T is a Cauchy random variable. The tail of this
distribution die polynomially fast; there only are n − 1 existing moments.
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fn(t) is symmetric around 0 and as t→ ±∞, we also note that

lim
n→∞

(
1 + t2

n

)−n+1
2

= e−
t2
2 .

which is the kernel of the PDF of the normal random variable. We only
need to show the rest converges to one, i.e.

lim
n→∞

Γ
(
n+1

2

)
Γ
(
n
2
)√(

n
2
) = 1.

The proof of this is left as an exercise (hint: use the formula Γ(α + 1) =
αΓ(α)). Then t−distribution converges to the Normal distribution and is
quite often used in finance with the Black-Scholes option-pricing (Lévy pro-
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cesses). There is an interesting relationship between the t-distribution and
the F -distribution.

F (1, n) dist= t2(n)

The Fisher distribution would be applicable to the above by raising the t
to the power two to get χ2 and Y

n as a ratio of χ2 variables. How to do it?
As before, we use the transformation theorem using the auxiliary variable
W = Y (it will be easier to invert the Jacobian).

Here are a few things we need to know :

Proposition 1.18 (Moments of the t-distribution)

E(Xr) =


n
r
2

Γ( r+1
2 )Γ(n−r2 )

Γ(n2 )Γ(n2 ) if r < n and r is even,

0 otherwise.

In particular, if n > 2, E(X) = 0, E(X2) = Var(X) = n
n−2 and E[Xr] = 0 if

r < n and odd. For the F -distribution,

E[F k] =
(
n

m

)k Γ
(
k + m

2
)

Γ
(
n
2 − k

)
Γ
(
m
2
)

Γ
(
n
2
)

In particular E(X) = n
n−2 if n > 2 and Var(X) = n2

m
(2m−2n−4)
(n−2)2(n−4) if n > 4.

The simple trick to find the moments is to as usual write the definition
and reformulate by rearranging the terms to recover the PDF of the F
distribution with different parameters.
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Section 1.3. Distribution of sample mean and sample
variance when sampling from a Normal distribution

We begin with

Theorem 1.19
Let X1, . . . , Xn be iid rv N (µ, σ2) rv’s, then X and (X1 −X, . . . ,Xn −X)
are independent.

Proof We use the joint MGFMζ(t, t1, . . . , tn) for ζ ≡ {X,X1−X, . . . ,Xn−
X}.

Mζ(t, t1, . . . , tn) = E
[
exp

{
tX +

n∑
i=1

ti(Xi −X)
}]

= E
[
exp

{
n∑
i=1

tiXi −
(

n∑
i=1

ti − t
)
X

}]

= E
[
exp

{
n∑
i=1

Xi

(
ti −

t1 + . . .+ tn − t
n

)}]

Let
t = 1

n

n∑
i=1

ti

and continuing from above, we have

Mζ(t, t1, . . . , tn) = E
[
n∏
i=1

exp
{
Xi(nti − nt+ t)

n

}]

=
n∏
i=1

E
[
exp

{
Xi [t+ n(ti − t)]

n

}]

where the last step follows from independence. Using the fact that Xi ∼
N (µ, σ2), and adopting the convention

t∗ = t+ n(ti − t)
n

,
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we obtain

n∏
i=1

exp
{
µt∗ + σ2

2 t
∗2
}

= exp
{
µ

n

[
nt+ n

n∑
i=1

(ti − t)
]

+ σ2

2n2

n∑
i=1

[t+ n(ti − t)]2
}

= exp
{
µt+ σ2

2nt
2
}
· exp

{
σ2

2

n∑
i=1

(ti − t)2
}

= MX(t) ·MX1−X,...,Xn−X(t1, . . . , tn)

which in turn implies that X and (X1 −X, . . . ,Xn −X) are independent.
�

Corollary 1.20
X and S2 are independent.

Proof If Xn is independent from a vector, it is independent of any function
of that vector. The result is immediate. �

Corollary 1.21
The ratio of the sample variance statistic with the true variance given by

(n− 1)S2

σ2 ∼ χ2(n− 1)

follows a Chi-square distribution with n− 1 degrees of freedom.

Proof Xi ∼ N (µ, σ2) thus Xi−µ
σ ∼ N (0, 1) hence

(
Xi − µ
σ

)2
∼ χ2(1).

The Xi are independent so

n∑
i=1

(
Xi − µ
σ

)2
∼ χ2(n)
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Now, adding and subtracting X:

n∑
i=1

(
Xi − µ
σ

)2
=

n∑
i=1

(
Xi −X

σ

)2

+ n
(X − µ)2

σ2

= (n− 1)S2

σ2

V

+
(
X − µ
σ/
√
n

)2

W

since the cross terms vanishes (that is
∑

(Xi −X) = 0).

MU (t) = MV (t) ·MW (t)

(1− 2t)−
n
2 = MV (t) · (1− 2t)−

1
2

⇒ MV (t) = (1− 2t)−
n−1

2 , t <
1
2

Therefore V ∼ χ2(n− 1). Why does this hold? Note here that

X ∼ N
(
µ,
σ2

n

)
,

X − µ
σ/
√
n
∼ N (0, 1)

as

E[et1v+t2w] = E[et1vet2w]

= E[et1v]E[et2w]

since V ⊥⊥W . �

Corollary 1.22
The scaled difference between the arithmetic mean and the unknown µ given
by

X − µ
σ/
√
n
∼ t(n− 1)

follows a Student’s t distribution.
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Proof Given
√
n
X − µ
S

∼ N (0, 1)

and
(n− 1)S2

σ2 ∼ χ2(n− 1)

recall that X is independent from S2, thus

X − µ
S/
√
n

=
(X − µ)/ σ√

n√
(n− 1)S2/σ2

n− 1

= N (0, 1)√
χ2(n− 1)
n− 1

∼ t(n− 1)

�

Corollary 1.23
If Xi are iid and Xi ∼ N (µ1, σ

2
1) and Yj are iid with Yj ∼ N (µ2, σ

2
2) and

Xi ⊥⊥ Yj , then
S2

1/σ
2
1

S2
2/σ

2
2
∼ F (m− 1, n− 1).

Proof

S2
1/σ

2
1

S2
2/σ

2
2

=

[
(m− 1)S2

1/σ
2
1

]
/(m− 1)[

(n− 1)S2
2/σ

2
2

]
/(n− 1)

∼
χ2(m−1)
m−1

χ2(n−1)
n−1

∼ F (m− 1, n− 1).

�

Corollary 1.24
Under the conditions of Corollary 1.23, we have

(X − Y )− (µ1 − µ2)√{
(m− 1)S

2
1
σ2

1
+ (n− 1)S

2
2
σ2

2

}
√√√√m+ n− 2

σ2
1
m + σ2

2
n

∼ t(m+ n− 2)
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and the difference between our two treatments sample means is given as

X − Y ∼ N
(
µ1 − µ2,

σ2
1
m

+ σ2
2
n

)
,

and also
(m− 1)S2

1
σ2

1
+ (n− 1)S2

2
σ2

2
∼ χ2(m+ n− 2)
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Chapter 2
Theory of point estimation

Section 2.1. Introduction

We will confine ourselves mostly to parametric settings. This just means
that we will assume we know the form of the distribution up to a finite
unknown number of parameters? How do we know whether our guess is
correct; if we are testing relatively few characteristic, this will be done eas-
ily, however we run into trouble if we have a large number of parameters;
the number of observations required to perform our analysis will be enor-
mous. We can define residuals and fit a model, observing the residuals and
testing for them; first visually -observing if our observed and fitted values
are close. Keep in mind that when we are in real life working with real
data, things are never perfect and we will look for a theory that can shed
some light on the unknown. If we had reason to think for example that
X1, . . . , Xn ∼ N (µ, σ2) has bell curve, but we don’t necessarily know the
centre nor the dispersion. Sometime, we have mixed knowledge: this leads
to semi-parametric models, part of which as the name indicates is paramet-
ric while the other is non-parametric. Sir David Cox became famous forty
years ago with his proportional hazards model. In such cases, we do not get
to observe all observations. We have an initiating event: administrating the
drug or stimulus in the context of clinical trial, we follow patients with the
two competing risks: time-to-death Ti and time-to-dropout Ci. This relates
to the example from the beginning, with Xi = Ti ∧ Ci, with the goal that
our estimate FT leads to Ti

A word about the Kaplan-Meier estimates. Suppose that we have some
indications of differences between genders or races. We could think of a con-
troversial example (for political issues) about the fact that North American
black people have a higher blood pressure. This may be reasoned thinking
there was a pre-selection when they were chosen as slave back in Africa and
that people with saltier skins were selected, as they would require less water
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for the journey. But there may be more covariates in our estimate - we want
to know how they affect FT . If we define

λ(t) = f(t)
1− F (t)

respectively the PDF on the numerator and CDF in the denominator, then

λ(t) = lim
∆t→0

1
∆tP(t ≤ T ≤ t+ ∆t|T > t)

that is given that someone has survived to this point what is the probability
that he/she die in a short time (essentially in a very local interval). If we
were to work this out, it would yield our ratio, since by definition P(A|B) =
P(A ∩ B)/P(B) = P(A)/P(B) if A ⊂ B is a small interval. Given the
covariates, consider λ(t|Z) = λ0(t)eβ>Z and let M be a binary variable for
male, F stand for female; we have

λ(t|M)
λ(t|F ) = λ0(t)eβ1·1

λ0(t)eβ1·0 = eβ

if we can make this, than this is robust. There are only finitely many β

and this is parametric, while the choice for λ0(t) is infinite and this part is
non-parametric; thus we say that this will be as a whole semi-parametric.
We pursue now with a
Definition 2.1 (Parameter space)
The set of all admissible values of the parameters of a DF F is called a
parameter space and denoted (often) by Θ.
Example 2.1
Suppose X ∼ B(n, p), where p is unknown. The best example of this is a
referendum with a split between two options; we could have a few million
people in our population and we take a sample of size say 2000. Let

Xi =

1 yes/survive

0 no/failure

and we want to predict the result of the referendum. In this case, we want
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to find the proportion p = P(Xi = 1). By admissible, we mean that the
parameter will make the above into a distribution function. Therefore,

Θ = {p ∈ R : 0 ≤ p ≤ 1}

is our parameter space. Another example: suppose X ∼ N (µ, σ2); then

Θ = {(µ, σ2) : µ ∈ R, σ ∈ R+},

that is the pairs such that when we write the density function, we get a
correct PDF (or PMF). In our case, for

∫ ∞
−∞

1√
2πσ

e−
(x−µ)2

2σ2 dx

will require σ > 0 and µ ∈ R. This is what is meant by admissibility.
Another example: for the Gamma distribution, X ∼ Γ(α, β) with α, β un-
known. Then Θ = {(α, β);α, β > 0} otherwise the integral of the PDF will
diverge 3. Recall the PDF was given by (1.9) as

1
βαΓ(α)x

α−1e−
x
2 , x > 0

Also, we might want to recall definition 1.8 we made of point estimate at
this stage.
Example 2.2
Suppose that Xi

iid∼ P(λ); this is a distribution that arises by taking the limit
of a binomial, that is for npn ≈ λ

lim
n→∞

(
n

k

)
pkn(1− pn)n−k → P(X = x) = e−λλx

x!

for x = 0, 1, . . . and will be a distribution of rare events. In this case, Θ =
{λ;λ > 0}. If we consider Xn = 1

n

∑n
i=1Xi is a statistic, but could happen

to be zero (if all observations are zero), so we will define it as P(X = 0) = 1
3One can find more information about these integral in Bartle’s book The elements of

real analysis in the chapter on Euler’s functions

33



if λ = 0 and if λ > 0, then P(X = x) = e−λλx/x!, for x = 0, 1, . . .

But we could also consider T = 1, T =
∑n
i=1 αiXi/

∑n
i=1 αi for αi > 0, which

is as valid as the previous example. We have uncountably many estimators
and even with some criteria, we will still have uncountably many despite the
additional restrictions. What criteria helps us choosing, even in classes?

Section 2.2. Properties of estimators

The minimal conditions we require from an estimator is

Definition 2.2 (Consistency)
Let X1, . . . , Xn be a sequence of iid rv with common DF Fθ, θ ∈ Θ. A
sequence of point estimators T (X1, . . . , Xn) = Tn is called weakly consistent
for θ if Tn

p−→ θ as n → ∞, ∀ θ ∈ Θ. If Tn
a.s.−−→ θ,then we say Tn is strongly

consistent

Recall that

Tn
p−→ θ ⇔ lim

n→∞
P(|Tn − θ| > ε)→ 0 (2.12)

and will differ from limn→∞ P{ω ∈ Ω : |Tn(ω)− θ| > ε} which is a function:
to work with it, we need a metric. All topologies in finite-dimensional spaces
are equivalent. Also, we introduce here notions that are tentatively covered
in Honours Probability, namely Chernoff inequality and Hoeffding’s bounds

Theorem 2.3 (Chernoff inequality)
Suppose X1, . . . , Xn are independent random variables. Let X =

∑n
i=1Xi

We can apply Markov’s inequality to get the following inequality

P(X ≥ a) ≤
∏n
i=1 E(etXi)
eta

(2.13)

Proof Using Markov inequality and applying the transformation x 7→ etx

P(X ≥ a) ≤ P
(
etX ≥ eta

)
≤ E(etX)

eta
=
∏n
i=1 E(etXi)
eta
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since the MGF of the sum is the product of the individual MGF if the
variables are independents. �

Theorem 2.4 (Hoeffding’s inequality)
LetX1, . . . , Xn be independent random variables such that P(Xi ∈ [a1, bi]) =
1, then for Xn, we have the following inequality

P
(
Xn − E(Xn) ≥ t

)
≤ exp

(
− 2t2n2∑n

i=1(bi − ai)2

)
(2.14)

This theorem is broader and is meant to give bounds for martingales.
Definition 2.5 (Martingale)
First note that a random (stochastic) processes is a family of random vari-
ables indexed by a parameter, say t, where t ∈ T . The set T may be
countable or uncountable, and of one or several dimensions. In this latter
case, we usually say random (stochastic) fields. An interesting example of
applications of random fields can be found in statistical theory developed
for PET and fMRI in brain mappings.

A martingale is a stochastic process with the following properties:
IfM1,M2, . . . ,Mn a sequence of random variables, then for all n: E|Mn| <∞
and

E[Mn|M1, . . . ,Mn−1] = Mn−1.

A random sum is an example of a martingale: for Xi orthogonal random
variables with mean zero, andMn =

∑n
i=1Xi, with a sequence {Mt : t ∈ T}.

The martingale increments Mn −Mn−1 will be orthogonal with mean zero.
Much of the theory of martingale was developed by Joseph Doob.

Martingales are random processes and they are essentially summation of
a bunch of mean zero orthogonal variables. In other words, a martingale
process

M = {Mt : t ∈ T}

where Mt =
∑
s≤tms where ms = M(s + δs) − M(s). The ms so de-

fined is called the martingale increment at time s. Now E[ms] = 0 and
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Cov(ms,mu) = 0 for any s and u. There are, of course, some other tech-
nical conditions, such as measurability and existence of moments involved.
Because of this construction, you can guess that something like CLT should
hold under rather general conditions for martingale processes.

Definition 2.6 (Stochastic integrals)
Suppose you have two random processes X(t) and Y (t). The stochastic
integral topic revolves around defining

∫
t x(t, ω)dy(t, ω).

If one of the two processes has almost sure, on ω, continuous paths and
the other one has almost sure, on ω, paths of bounded variation, you can
define the aforementioned integral path by path using Stieltjes integral either
directly or by invoking the integration by parts. However, the problem
starts when these conditions are not met. For instance, if you want to
find

∫
tB(t, ω)dB(t, ω), where B(t) is a Brownian motion. We know that

Brownian motions paths are almost surely continuous and almost surely are
not of bounded variation. If you check the first chapter of the book by
Phillip Protter, you will find a good overview of stochastic integrals. If you
are more application oriented you can check Oksenda’s book.

Example 2.3
Let X1, . . . , Xn be a random sample from B(n, p). Then,

Tn = 1
n

n∑
i=1

Xi
p−→ p

as n → ∞. This procedure mainly tells us that the sample proportion
converge to the (population) proportion and allow one to determine how
many samples we need to get within say 1% of the actual value. Applying
the WLLN to {Xn}∞n=1 and noting that µ = EX = p,

Sn − np
n

= Tn − p
p−→n→∞ 0

An important theorem that is used often when establishing consistency is
Kolmogorov’s Law of Large Numbers.
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Theorem 2.7 (Kolmogorov’s Strong Law of Large Numbers)
Let X1, X2, . . . be iid random variables with common law L(X)(common
cumulative distribution function F ). Then

Sn
n

=
∑n
i=1Xi

n
a.s.−−→
n→∞

µ = EX ⇔ E|X| <∞. (2.15)

We will not attempt to prove this result, as it would require several pages
and the use of Kolmogorov’s maximal inequality. An easier proof would
draw on martingales, but this is beyond the scope of the course.

Using Kolmogorov’s theorem, we have the following result

Theorem 2.8
If X1, X2, . . . are iid random variables with common CDF F and E|X|p <∞
for some positive integer p, then

1
n

n∑
i=1

Xk
i

a.s.−−→ EXk for 1 ≤ k ≤ p

and therefore n−1∑n
i=1X

k
i is a consistent estimator for EXk for 1 ≤ k ≤ p.

Moreover, if cn is any sequence of constraints such that cn → 0 as n → ∞,
then

1
n

n∑
i=1

Xk
i + cn

a.s.−−→ EXk

for 1 ≤ k ≤ p, i.e. n−1∑n
i=1X

k
i + cn is also consistent for EXk.

We see that even with consistency, we cannot narrow the set of estimators;
there are still infinitely many.

Example 2.4
Let Xi

iid∼ N (µ, σ2). Then (n−1)S2

σ2 ∼ χ2(n− 1) and hence

E
(
S2

σ2

)
(n− 1) = n− 1 ⇒ E

(
S2

σ2

)
= 1
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For the moments of the χ2(ν), we can use that fact that

χ2(ν) = Γ
(
α = ν

2 , β = 2
)

and that E(Γ) = αβ and Var(Γ) = αβ2 and our mean is ν and variance 2ν.
We know that S2 is an unbiased estimator for σ2. Furthermore,

Var
(

(n− 1)S2

σ2

)
= 2(n− 1) ⇒ Var

(
S2

σ2

)
= 2
n− 1

so the variance of the ratio tends to zero as n→∞, meaning that S2 is also
consistent. It then follows from Chebychev’s inequality that

P
(
|S2 − σ2| > ε

)
≤ VarS2

ε2 = 2σ4

(n− 1)ε2
n→∞−−−→ 0

We could also have gotten our result directly from Kolmogorov’s theorem.

Theorem 2.9
If Tn is a sequence of estimators for θ such that Eθ[Tn]→ θ and Var[Tn]→ 0
as n→∞, then Tn is a consistent estimator of θ.

Proof

P(|Tn − θ| > ε) ≤ ε−2 Eθ[(Tn − θ)2]
MSE

= ε−2[Var(Tn)
→0

+Biasθ(T 2
n)

→0

]

as n→∞, thus Tn is a consistent estimator of θ. �

Example 2.5
Say Xi are iid Bernoulli random variables with parameter p.

P(Xi = x) = px(1− p)1−x, n = 0, 1, 2, . . .

p̂ = 1
n

∑
Xi, Ep̂ = p, Varp̂ = p(1− p)

n
→ 0

as n→∞, thus p̂ is consistent.
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Example 2.6
Suppose we look at the different estimators for the variance, namely

S2 = 1
n− 1

n∑
1

(xi −X)2, S2
∗ = 1

n

n∑
1

(xi − x)2

where Xi are iid N (µ, σ2), i = 1, . . . , n random variables and xn = 1
n

∑n
1 Xi.

We know that S2 is unbiased: (n−1)S2

σ2 ∼ χ2(n− 1),E
[

(n−1)
σ2 S2

]
= n − 1.

Hence ES2 = σ2 We can show this as long as the Xi’s are of the same
distribution and that the variance exists.

E[S2
∗ ] 6= σ2, E[S2

∗ ] = E
[
n− 1
n

S2
]

= n− 1
n

σ2 n→∞−−−→ σ2.

On the other hand,

Var[S2
∗ ] = Var

[(
1− 1

n

)
S2
]

=
(

1− 1
n

)2
VarS2 n→∞−−−→ 0

Thus
S2
∗

p−→ σ2

that is S2
∗ is a consistent estimator of σ2.

Exercise 2.1
Suppose X1, . . . , Xn are pairwise orthogonal (that is corr(Xi, Xj) = 0, i 6=
j; i, j = 1, . . . , n). Let Var(Xi) = σ2 < ∞, i = 1, . . . , n and E(Xi) = µ, i =
1, . . . , n. Then E[S2] = σ2 where

S2 = 1
n− 1

n∑
1

(Xi −X)2

To do this, take Xi −X = Xi − µ+ µ−X = Xi − µ− (X − µ). Then raise
to the power of 2, and take the expectation.

Var[X] = σ2

n

39



X

Y

Figure 7: Correlations of -1,0,1 with
∑
XiYi = 0

Recall the Central limit theorem (CLT) and the following fact: if two vari-
ables are jointly normally distributed, then X,Y are independent if and
only if they are orthogonal X ⊥ Y ⇔ X ⊥⊥ Y . Usually, we only have
that independence imply orthogonality, but under normality assumption,
the converse holds for some CLT. This was a signal for Doobs that the only
type of relationship for Normal random variables is linear.

How did Pearson came up with the concept of correlation? As usual in
modelling, we look at extreme cases. Say the data satisfies Y = X. We
want to summarize the data, say we compute

n∑
1
XiYi

This is not very useful as it has not many invariants.

n∑
1

(Xi −X)(Yi − Y )

is better because it is translation invariant, but it is not scale invariant yet

corr(X,Y ) =
∑

(Xi −X)(Yi − Y )√∑
(Xi −X)2(Yi − Y )2
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is equal to ∑ 1
n(Xi −X)(Yi − Y )√

1
n

∑
(XiX)2 1

n

∑
(Yi − Y )2

→ E[(X − µX)(Y − µY )]√
Var(X)Var(Y )

which is the Pearson correlation. A nice geometric interpretation of correla-
tion is that it represents the cosine between (X1, . . . , Xn) and (Y1, . . . , Yn)
since it can be written as

corr(X,Y ) ≡ cosφ = 〈X,Y 〉
‖X‖‖Y ‖

Invariance property

We define the invariance property: let G be a group of Borel measurable
(nice) functions from Rn to Rn. The group operation is composition, i.e.
g1, g2 is defined as

g2g1(x) = g2(g1(x))

Definition 2.10 (Invariance under group)
A family of probability distributions {Pθ : θ ∈ Θ} is said to be invariant
under a group G if ∀ g ∈ G and ∀ θ ∈ Θ. We can find a unique θ∗ ∈ Θ such
that the distribution of g(X) is given by Pθ∗ wheneverX has the distribution
Pθ.

We write θ′ = gθ, the above definition is equivalent to

Pθ′ = {g(x) ∈ A} = Pgθ{x ∈ A}

or equivalently
F ∗θ′(X1, . . . , Xn) = Fgθ(X1, . . . , Xn)

where F ∗ is the distribution function of g(X1, . . . , Xn).

Example 2.7
Say X is a random variable having binomial distribution B(n, p), for 0 < p <
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1, G = {e, g} where g(x) = n− x, e(x) = x. Then Y = g(x) ∼ B(n, 1− p),.
If we look at

P(Y = y) = P(n− x = y) = P(X = n− y)

=
(

n

n− y

)
pn−y(1− p)n−(n−y) =

(
n

y

)
(1− q)n−yqy

where q = 1− p ∀ y = 0, . . . , n and g(p) = 1− p and set G = {e, g}.

Example 2.8

G = {g : Rn → Rn|ga,b(X1, . . . , Xn) = (axi + bi, . . . , axn + b)}; a > 0; b ∈ R

Let X = (X1, . . . , Xn) ∼ f(X1, . . . , Xn) have distribution

( 1√
2πσ

)n
exp

{
1

2σ2

n∑
1

(Xi − µ)2
}
.

Then

g(X) = (aX1 + b1, . . . , aXn + b) ∼ f∗(X1, . . . , Xn)

=
(

1√
2π(aσ)

)n
exp

{
− 1

2a2σ2

∑
(Xi − (aµi + b))2

}

i.e.
g(µ, σ2) = (aµ+ b, a2σ2).

Definition 2.11
Let G be a group of transformation that leaves the family {Fθ : θ ∈ Θ} of
distribution functions invariant. An estimate T is said to be invariant under
G if

T (g(X1), . . . , g(Xn)) = T (X1, . . . , Xn.)

Example 2.9 (Invariance)
1. Location invariant: T (X1 + a, . . . ,Xn + a) = T (X1, . . . , Xn).
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From there, we see that T1(X1, . . . , Xn) = 1
n

∑n
i=1Xi is not location

invariant, but S2 = T2(X1, . . . , Xn) = 1
n−1

∑n
i=1(Xi−Xn)2 is location

invariant.

2. Scale invariant: T (cX1, . . . , cXn) = T (X1, . . . , Xn) and remark that
neither the sample mean nor the sample variance are fulfilling this
property. Some people think we should maybe define it as follows:

T (g(X1), . . . , g(Xn)) = g(T (X1, . . . , Xn))

but we must be careful in that case about how our group act (so that
we have a well-defined g : Rn → R). These things are a bit sour; there
is no consensus on a definition. If we looked at the correlation ,

corr(X,Y ) =
∑n
i=1(Xi −Xn)(Yi − Y n)√∑n

i=1(Xi −Xn)2∑n
i=1(Yi − Y n)2

,

we could indeed see that it is scale invariant.

3. Location-scale invariant : T (aX1 + b, . . . , aXn + b) = T (X1, . . . , Xn).
Look at the so-called signal-to-noise ratio; it is scale invariant, but
not location invariant. We could verify this: say X̃i = cXi, X̃n =
n−1∑n

i=1 cXi = cXn for c > 0 and S̃2 = (n−1)−1∑n
i=1(cXi−Xn)2 =

c2

n−1
∑n
i=1(Xi − Xn)2 = c2S2. An example of location-scale invariant

statistics is corr(X,Y ). Another example that is scale invariant too,
but not location invariant is the reciprocal of the signal-to-noise ratio,
the so-called coefficient of variation, defined as X/S.

4. Permutation invariant: T (Xi1 , . . . Xin) = T (X1, . . . , Xn),
where {i1, . . . , in} is a permutation of {1, . . . , n}. All the examples
we have seen up to now in this example are permutation invariant.
This concept gives birth to the U-statistics. An example of statistic
that does not fulfil this requirement is say T (X1, . . . , Xn) = X1, or the
determinant of a matrix of observations [X1, · · ·Xn].
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Section 2.3. Sufficient statistic

We build a bit on our idea of compression. Say you have data which you
collected in an experiment; we want to have a summary, but not to lose
information. We would like to be able to decompress this summary, but
since we are working with random variables and not deterministic functions,
we have to lower our expectations. Two realizations that are equally likely
are the same to us: if we could come out with something similar (we cannot
regenerate the actual data): X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn) are
T−similar if PX|T=t,θ = PY |T=t,θ for all possible values of t. We want
X|T = t

D= Y |T = t. We say a realization x = (x1, . . . , xn) and a realization
y = (y1, . . . , yn) of Y are T−similar if X and Y are T−similar and T (x) =
T (y), that is they fall in the same partition. This is in a sense the compressed
values, which are the same.

Definition 2.12 (Sufficiency)
Let X = (X1, . . . , Xn) be a sample from Fθ. A statistic T = T (X) is
sufficient for θ or for the family of distributions {Fθ : θ ∈ Θ} if and only if
the conditional distribution of X given T = t does not depend on θ (or any
unknown parameter), except perhaps for an null set A, i.e. Pθ{T ∈ A} =
0 ∀ t.

The idea behind this is that you cannot do simulations and generate data if
it depends on an unknown parameter. What we need is P(X = x|T = t, θ) =
P(X = x|T = t) does not depend on θ and all the relevant information was
observed by t.

Example 2.10
LetXi

iid∼ B(p). Consider T (X1, . . . , Xn) =
∑n
i=1Xi. The conditional proba-

bility P(Xi = xi, i = 1, . . . , n|
∑n
i=1Xi = t) = P (A|B) and note that A ⊂ B,

this is P(A)/P(B). If we work out∏n
i=1 P(Xi = xi)(n
t

)
pt(1− p)n−t =

∏n
i=1 p

Xi(1− p)1−Xi(n
t

)
pt(1− p)n−t = pΣXi(1− p)n−ΣXi(n

t

)
pt(1− p)n−t = 1(n

t

)
If we wanted to generated the data, At = {(X1, . . . , Xn) :

∑n
i=1Xi = t};
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all that yield a total of t and we must now pick randomly uniformly one
among the set. At collects all n−tuples, there are

(n
t

)
of them. Clearly,

these are from the same partition - we need to show that they are the same
in probability. It is best to work with discretedistributions for practical
purposes.

Example 2.11
Let Xi

iid∼ P(λ), i = 1, 2, . . . , n and T (X1, X2) = X1 +X2.

P(X1 = x1, X2 = x2|T = t) = P(X1 = x1, X2 = x2, T = t)
P(T = t)

= P(X1 = x1, X2 = x2)
P(T = t)

if x1 + x2 = t and zero otherwise. Substituting the formula, we get

P(X1 = x1, X2 = x2|T = t) =



λX1e−λ

X1!
λX2e−λ

X2!
(2λ)te−2λ

t!

if X1 +X2 = t

0 otherwise

If we simplify this,

λX1+X2e−2λ/(X1! +X2!)
2tλte−2λ/t! =

(
t

X1

)(1
2

)t
if x1 + x2 = t and 0 otherwise. Here, when choosing a pair that satisfies the
conditions, we have a different probability for each pair - it is binomial in
this case. Let us go for a counter-example: it is easy to see that X1 + 2X2

constitute one. P(X1 = 0, X2 = 1|X1 + 2X2 = 2) and using again A ⊂ B

and P(X1 = 0, X2 = 1)/P(X1 + 2X2) and working the denominator to

P(X1 = 0, X2 = 1) + P(X1 = 2, X2 = 0) = e−λλe−λ + λ2e−λ

2! · e−λ,
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which can be simplified further as

e−λλe−λ

e−λλe−λ + λ2e−λ

2! e−λ
= λ

λ+ λ2

2
= 1

1 + λ
2

still depends on λ unknown and as such is not sufficient.

Here is an important theorem to find sufficient statistics:

Theorem 2.13 (Fisher-Neyman Factorization theorem)
Let X1, . . . , Xn be discrete random variables with PMF pθ(x1, . . . , xn), θ ∈
Θ. Then T (X1, . . . , Xn) is sufficient for θ if and only if we can write

pθ(x1, . . . , xn) = h(x1, . . . , xn) · gθ(T (x1, . . . , xn)) (2.16)

where h is a non-negative function of x1, . . . , xn only and doesn’t depend
on θ and g is a non-negative function of θ and T (x1, . . . , xn) solely (it de-
pends only on observations through T ). The statistic T (X1, . . . , Xn) and
parameter θ may be vectors.

Often, this boils down to taking the joint distribution and trying to factor
it.

Proof

Let T be sufficient for θ, then P (X = x|T = t) is independent of θ and we
may write

Pθ(X = x) =

Pθ(X = x|T (x) = t) if T (x) = t

0 otherwise

= Pθ(T = t)
gθ(T (x))

P(X = x|T = t)
h(x)

46



Conversely, suppose (2.16) holds. Then

Pθ(T = t) =
∑

x:T (x)=t
Pθ(X = x)

=
∑

x:T (x)=t
gθ(T (x))h(x)

= gθ(T (x))
∑

x:T (x)=t
h(x)

What we want is to find P(X = x|T = t) and need to divide by P(T = t).
Now suppose that Pθ(T = t) > 0 for some t. Then

Pθ(X = x∗|T = t) = Pθ(X = x∗|T (x) = t)
Pθ(T (x) = t)

if compatibility holds =


Pθ(X = x∗)
Pθ(T (x) = t) if T (x) = t

0 otherwise

=


gθ(t)h(x∗)

gθ(t)
∑
x:T (x)=t h(x) if T (x∗) = t

0 otherwise

=


h(x∗)∑

x:T (x)=t h(x) if T (x∗) = t

0 otherwise

Hence T is sufficient. �

Remark
• The above theorem holds for quite general families of distributions.
The absolutely continuous case can be proved similarly. We can have
cases such as

fX(x) = 1
2δ0 + 1

2U(0, 1);

the above example4 is continuous, not dominated by Lebesgue measure
and has mass at zero.

4δ0 stands for the Dirac delta function.
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• The above theorem holds true if θ is a vector of parameters and T is
a random vector. In this case we say T is jointly sufficient for θ.5 We
will see with UMVUE that we have sometimes partial sufficiency. Note
that even if θ is a scalar, T may be a vector if θ and T are vectors of
the same dimension and T is jointly sufficient for θ, it does not follow
that the jth component of T is sufficient for the jth component of θ.

• If T is sufficient for θ, then any injective function of T is also sufficient
for θ The proof is left to the reader as an exercise.

It does not follow that every function of T is sufficient for θ. One
can think of as a trivial example of the constant function. Also, X is
sufficient for µ if Xi

iid∼ N (µ, 1), but X2 is not.

Example 2.12

fX1,...,Xn|Xn
(x1, . . . , xn|Xn = t) =

fX1,...,Xn|Xn
(x1, . . . , xn, t)

fX(t)

where defined and since Xi
iid∼ N (µ, 1), we thus have that Xn ∼ N

(
µ, 1

n

)
and

fX(x1, . . . , xn) =
n∏
i=1

fXi(xi)

=

(
1√
2π

)n
exp

{
−1

2
∑n
i=1(xi − µ)2

}
n√
2π exp

{
−n

2 (X − µ)2
}

=


(

1√
2π

)n
√
n√
2π

 exp

−1
2

[
n∑
i=1

(
(xi − µ)2 − (X − µ)2

)]2


5Be careful with the notation, for example, we have for Normal that (X,S2) is jointly
sufficient, but X is not sufficient for µ and S2 is not sufficient for σ2 for the variance if
(µ, σ2) are unknown.
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looking at

n∑
i=1

(xi − µ)2 =
n∑
i=1

x2
i − 2µ

n∑
i=1

xi + nµ2 (2.17)

n∑
i=1

(Xn − µ) = nX
2
n − 2nµXn + nµ2 (2.18)

and the difference of 2.17 and 2.18 is
∑n
i=1 xi − nX

2
n. Set Y = X

2
n, we can

find directly

P(Y ≤ y) = P(Xn ≤ y) = P
(∣∣∣Xn ≤

√
y
∣∣∣)

= P
(
−√y ≤ Xn ≤

√
y
)

= FXn
(√y)− FXn

(−√y)

and see that S̄2 is not sufficient; differentiate fY (y) and plug back into the
ratio. We see

f
X1,...,Xn|X

2
n
(x1, . . . , xn|t)

is not independent of µ. If T is sufficient for {Fθ : θ ∈ Θ} then T is sufficient
for {Fθ : θ ∈ ω} where ω ⊂ Θ.

Example 2.13
Let Xi be iid U(0, θ).

fθ(x) =


1
θ 0 ≤ xi,≤ θ, i = 1, . . . , n

0 otherwise

Then

fθ(X1, . . . , Xn) ⊥⊥=
n∏
i=1

fθ(xi) =


1
θn

0 ≤ xi ≤ θ ∀ i

0 otherwise

=
∏n
i=1 I[0,θ](xi)

θn
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We want to this by factorization. If we write this

=
I[0,θ](

∧n
i=1 xi)I[0,θ](

∨n
i=1 xi)

θn

where
∧n
i=1 xi = min1≤i≤n xi and

∨n
i=1 xi = max1≤i≤n xi. But maybe we

can rewrite this only in terms of the maximum as

=
I[0,∨xi](

∧n
i=1 xi)I[∧xi,θ](

∨n
i=1 xi)

θn

which is of the form h(x1, . . . , xn)gθ(T (x1, . . . , xn)) and gθ(T (x1, . . . , xn)) is
called the kernel. We have T (x1, . . . , xn) =

∧n
i=1 xi. Here, we note that

h(x1, . . . , xn) = I[0,θ](min xi) and gθ(T (x1, . . . , xn)) = I[0,θ](max xi)
θn . Why do

we care about the Uniform distribution? It happens that it is really useful
in simulation. It is also useful for inverse probability integral transform. For
example, one can generate X ∼ F , Y = F (X) ∼ U(0, 1) and thus generate
easily uniform and compute the inverse distribution by finding F−1(u).

Example 2.14
Let Xi

iid∼ discrete U{1, . . . , N}, i ∈ {1, . . . , n} where N ∈ N is unknown
parameter.

PN (Xi = K) =


1
N

if k = 1, 2, . . . , N

0 otherwise

PN (Xi = ki, i = 1, . . . , n) = 1
Nn

if 1 ≤ ki ≤ N

= 1
Nn

Ik(1)Ik(n)

= E (N −
∨n
i=1 ki) E (

∧n
i=1 ki − 1)

Nn

We can define
gN

(
n∨
i=1

ki

)
= E (N −

∨n
i=1 ki)

Nn

and
h(k1, . . . , kn) = E

(
n∧
i=1

ki − 1
)
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using the Fisher-Neyman theorem,
∨n
i=1Xi is sufficient for the family {PN :

N ∈ N}, note that T = maxXi

PN (T = t) = PN (T ≤ t)− PN (T ≤ t− 1)

= [P(Xi ≤ t)]n − [P(Xi ≤ t− 1)]n

where T =
n∨
i=1

Xi =
[
t

N

]n
−
[
t− 1
N

]n
noting that the max is less than t if and only if all observations are less
than of equal since they are independently and identically distributed. It
is easy to find the joint distribution of order statistic, (although messier
in the discrete case). One can always the above trick for maximums and
minimums. Noting that {X = k} ⊆ {T = t}, we get

PN (X = k|T = t) =


PN (X = k)
PN (T = t) if T (k) = t

0 otherwise

=

1
Nn

1
Nn

[tn − (t− 1)n]
if T (k) = t

and zero elsewhere, so it does not depend on our unknown parameter N .
In the above formula, we should have carefully added indicator functions,
but they would be cancelling out so not doing so was harmless. We do one
more example on the Fisher-Neyman Factorization theorem, this time with
a Normal distribution.
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Example 2.15
Let Xi

iid∼ N (µ, σ2). In this case,

fµ,σ2(x) =
n∏
i=1

fµ,σ2(x)

=
n∏
i=1

[
1√
2πσ

e−
(ui−µ)2

2σ2

]

=
( 1√

2πσ

)n
exp

{
− 1

2σ2

n∑
i=1

(xi − µ)2
}

=
( 1√

2πσ

)
exp

{
− 1

2σ2

[ ∞∑
n=1

x2
i − 2µ

∞∑
n=1

xi + µ2
]}

and we can take h(x) = 1 and T (x) =
(∑n

i=1 xi,
∑n
i=1 x

2
i

)
are the jointly

sufficient statistics. Since there exists a one-to-one correspondence between
the vectors (

n∑
i=1

xi,
n∑
i=1

x2
i

)
⇔
(
x̄n, S

2
)
,

by our previous remark
(
x̄n, S

2) is also a sufficient statistic.

We will go with a few more remarks about sufficiency and examples, than
go to completeness (a notion due to Lehmann-Scheffé) to get uniformly
minimum variance unbiased estimator (UMVUE). If we consider our mean
squared error, where we look at the Euclidean distance between our estima-
tor and θ. In general, we cannot minimize this6;

E[T (x)− θ]2 = MSEθ(T ) = VarT (X) + (BiasθT (x))2 .

We will confine our attention for now to all unbiased estimators. If we
find an estimator Eθ

(
θ̂(T )

)
= θ, hence we get another unbiased estimator

by finding the conditional. Furthermore, as we will see with Rao-Blackwell
theorem, Var(θ̂(T )) ≤ Var(S(X)). The question now is how many time must
we do this? It appears that if the family of estimators is complete, we only
need to do this once.

6This leads to paradox in ∞−dimensions, see Galton
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Fact 2.14 (Stein’s paradox)
As a side remark, here is an interesting paradox, due to Stein. Let us
introduce the notion of admissibility. If we have two estimators, T1 and
T2, we say that T1 is inadmissible if MSEθ(T2) ≤ MSEθ(T1) ∀ θ with strict
inequality holding for at least one. Suppose we have a multivariate θ. The
paradox arises for dimension greater or equal to 3; sayXi

iid∼ N (µ, In). Then
Xn is not admissible for 3 or more dimensions. This suggests that naive
statistics can be misleadings. We can do better estimates (in regression),
namely shrinkage estimators.

Remark
As mentioned before, note that X is not sufficient for µ if σ2 is unknown, nor
is S2 for σ2. This means we cannot regenerate data from this distribution
(we say in such case that the statistic is partially sufficient as f(x1, . . . , xn|x̄)
will not depend on µ, but still on σ2). However, X is sufficient for µ if σ2 is
known and so is

∑n
i=1(Xi − µ)2 for σ2 if µ is known.

Example 2.16
Let Xi

iid∼ U(− θ
2 ,

θ
2) for θ > 0, i = 1, . . . , n, x = (x1, . . . , xn) and

fθ(x) =


1
θn

if |xi| ≤ θ
2

0 otherwise
.

We can rewrite this as

= 1
θn
E
(

n∧
i=1

xi + θ

2

)
E
(
θ

2 −
n∨
i=1

xi

)
.

Then, using Fisher-Neyman factorization theorem, (
∧n
i=1Xi,

∨n
i=1Xi) is a

sufficient statistic for θ. Remark that our statistic can have dimension higher
than that of the parameter we are trying to estimate.

Another fundamental concept that deals with uniqueness is
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Section 2.4. Completeness

Definition 2.15 (Completeness)
Let {fθ(x); θ ∈ Θ} be a family of PDF’s (or PMF’s). We say that this
family is complete if for any measurable function g (almost continuous),
Eθ[g(X)] = 0 ∀ θ ∈ Θ implies that P{g(X) = 0} = 1 ∀ θ ∈ Θ.

Definition 2.16 (Complete statistic)
A statistic T (X) is said to be complete if the family of distributions of T is
complete.

Example 2.17
Let Xi

iid∼ Bernoulli(p). Then T =
∑n
i=1Xi is a sufficient statistic for p.

Look at the likelihood

Pp(Xi = xi, i = 1, . . . , n) =
n∏
i=1

pxi(1− p)1−xi

= pΣxi(1− p)n−Σxi

= (1− p)n
[

p

1− p

]Σxi

where the term between brackets is the kernel; namely the part for which
we cannot separate observables from unobservables. We now claim that
T is also complete; using the method of moment generating functions, if
T =

∑n
i=1Xi ∼ B(n, p), then Ep

[
g(T )

]
= 0 ∀ p ∈ (0, 1) ⇒ g = 0. We see

here what is meant by uniqueness; look at the definition of

Ep
[
g(T )

]
=

n∑
t=0

g(T )P(T = t) =
n∑
t=0

g(t)
(
n

t

)(
p

1− p

)t
= 0 ∀ p ∈ (0, 1).

We have n + 1 unknowns with infinitely many equations. Suppose p ∈
{p1, . . . , pn+1} for some fixed values of pi. We can certainly plug all these
values and get a system of equations. To get zero, we need the matrix to be
invertible; this is what is meant by uniqueness. Factoring a term in our last
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equation and letting p
1−p = θ, we have

(1− p)n
n∑
t=0

g(t)
(
n

t

)(
p

1− p

)t
= 0 ∀ p ∈ (0, 1)⇒

n∑
t=0

atθ
t = 0 ∀ θ > 0

and using the Fundamental theorem of algebra, we know that this can have
at most n solutions, but it happens for uncountably many values of n, so at
must be zero and g(t)

(n
t

)
= 0, for t = 0, . . . , n ⇒ g(t) = 0 ∀ t and g is the

zero function. As an immediate consequence of Rao-Blackwell theorem, we
have

p̂ =
∑n
i=1Xi

n
= T

n
(2.19)

is UMVUE since E(g(T )|T ) = g(T ). If our unbiased estimator is already a
function of the sufficient statistic, it is UMVUE.

Most of the time, completeness boils down to Fourier transform, Laplace
transform, the Fundamental theorem of algebra or otherwise some trick.

Example 2.18
Let Xi

iid∼ N (0, θ) for θ > 0. Then {N (0, θ) : θ > 0} is not complete since
Et(X) = 0 ∀ θ > 0 and g(X) = X is not identically zero. However, note that
T (X) = X2 is complete. If X ∼ N (0, θ), then X2/θ ∼ χ2(1) or X2 ∼ θχ2(1)
and

fT (t) = e−
t

2θ
√

2πtθ
t > 0

and zero otherwise. Rewriting the above, we get

Et[g(T )] = 1√
2πθ

∫ ∞
0

g(t)t−
1
2 e−

t
2θ dt = 0 ∀ θ > 0

so the integral must vanish and be equal to zero. Using uniqueness of the
Laplace transform, we have g(t)t−

1
2 = 0 ∀ t > 0 implying that g(t) = 0

almost surely with respect to Lebesgue measure.
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Example 2.19
Let X ∼ U(0, θ) for θ > 0. Then X is complete since

Et
[
g(X)

]
=
∫ θ

0

1
θ
g(x)dx = 0 ∀ θ > 0⇒ 1

θ

∫ θ

0
g(x)dx = 0

is zero if the integral is zero. Differentiating both sides with respect to θ
(since we assume g is continuous). We can also use Lusin’s theorem in this
case; if we can do this for any subinterval, we can make a σ−field on these
interval and generate the Borel σ−field.

Now let Xi
iid∼ U(0, θ), for i = 1, . . . , n. Then Mn =

∨n
i=1Xi is a sufficient

and complete statistic since fMn(x; θ). Before we look more closely at this
example, we need to investigate the

Proposition 2.17 (Distribution of maximum of a random variable)
Looking at

FMn(x) = P(Mn ≤ x) = P(Xi ≤ xi, i = 1, . . . , n)

⊥⊥=
n∏
i=1

P(Xi ≤ x) =
[
FX(x)

]n
and differentiating both sides

fMn(x) = dfMn(x)
dx

= nfX(x)
[
FX(x)

]n−1

= n

(1
θ

)(
x

θ

)n−1
for 0 < x < θ and

fMn(x, θ) =

nθ
−nxn−1 0 < x < θ

0 otherwise

Example 2.20
We have that

Et
[
g(Mn)

]
= 0⇒

∫ θ

0
g(x)nθ−nxn−1dx = 0 ∀ θ > 0

⇒
∫ θ

0
xn−1g(x)dx = 0 ∀ θ > 0.
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Assuming that g is continuous, θn−1g(θ) = 0 ∀ θ > 0 and this entails that
g(θ) = 0 ∀ θ > 0. Recall that we had proved earlier that Mn was sufficient
for θ.

Example 2.21
As always, consider Xi

iid∼ N (θ, θ2) for i = 1, . . . , n and θ > 0. Then
T =

(∑n
i=1Xi,

∑n
i=1X

2
i

)
is sufficient for θ. T is however not complete since

Eθ
[
g(T )

]
= 0 ∀ θ if

g(t) = 2
(

n∑
i=1

Xi

)2

− (n+ 1)
n∑
i=1

X2
i

is not identically zero.

Example 2.22
Let Xi

iid∼ discrete U{1, . . . , N}. Mn =
∨n
i=1Xi was shown to be sufficient.

We also want to show it is complete. In this case,

PMn(x) = xn

Nn
− (x− 1)n

Nn
, x = 1, . . . , N

and for the expectation,

EN
[
g(Mn)

]
=

N∑
x=1

g(x)
[
xn

Nn
− (x− 1)n

Nn

]
= 0

= 1
Nn

N∑
x=1

g(x) [xn − (x− 1)n]

φ(N)

= 0 ∀ N ∈ N (2.20)

We can look at differencing φ(N) for f(N+1)−f(N)
(N+1)−N and

0 = φ(N) = [Nn − (N − 1)n]

and so g(N) = 0 ∀ N ≥ 2 and g(1) = 0 by 2.20. Therefore, g(N) = 0 ∀ N ≥
1 and as such Mn is also complete.
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It is easy to see that if we exclude the value N = n0 from the parameter
space, N = {1, 2, . . .}, the family {fMn,N : N ∈ N} is not complete any
longer. This is so since

EN [g(Mn)] = 0

if

g(x) =


0 if x 6= n0, n0 + 1

c if x = n0

−c if x = n0 + 1

for some c > 0.

To see this, write the definition of expected value. Suppose that n = 1 (we
take only one sample) and

EN [g(Mn)] =
N∑
x=1

g(x) 1
n
, ∀N

= 1
N

[g(n0)
c

+ g(n0 + 1)
−c

], ∀ N ∈ N \ {n0}

Remark
The above observation shows that the exclusion of even one member from
the family {PN : N ∈ N} destroys completeness. Recall that if a statistic is
sufficient for a class of distributions, it is sufficient for any subclass of those
distributions. Completeness works in the opposite way.

Exponential family of distributions

The exponential family of distributions includes distributions such as Bi-
nomial, Bernoulli, Gamma, Poisson, Normal, χ2, Geometric among many
others. The class arises from maximal entropy in statistical mechanics,
which is an extension of Laplace’s insufficient reasoning principle. We could
classify entropy as the negative of information. The exponential family is
used in generalized linear models - although another absent class here is the
mixture family. All exponential family distributions are unimodal.
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Let Θ ⊂ Rk and {x : fθ(x) > 0} does not depend on θ.

Definition 2.18
If there exists real valued nice functions Q1, . . . , Qk and D defined on Θ,
and T1, . . . , Tk and S on Rm such that

fθ(x) = exp
{

k∑
i=1

Qi(θ)Ti(x) +D(θ) + S(x)
}

; (2.21)

we say that the family {fθ : θ ∈ Θ} is a k-parameter exponential family
(where x = (x1, . . . , xm) and θ = (θ1, . . . , θk)).

Example 2.23
Let X ∼ B(n, p), 0 < p < 1; then

P(X = x) =
(
n

x

)
px(1− p)n−x

=
(
n

x

)
(1− p)n

(
p

1− p

)x
= exp

{
x

T (x)

log p

1− p
Q(p)

+ n log(1− p)

D(p)

+ log
(
n

x

)
S(x)

}
,

where p ∈ Θ = (0, 1) and the support does not depend on an unknown
parameter.

Example 2.24
X ∼ U(0, θ), θ > 0

fθ(x) =


1
θ

if 0 < x < θ

0 otherwise

This is not exponential family. Another example is again binomial, but with
n unknown. We can also think of the Negative binomial without knowing
the number of successes.

Example 2.25
X ∼ N (µ, σ2), where Θ =

{
(µ, σ2) : µ ∈ R, σ2 ∈ R+}
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fµ,σ2(x) = 1√
2πσ

e−
(x−µ)2

2σ2 , x ∈ R

= exp
{
− x2

2σ2 + µ

σ2x−
1
2

[
µ2

σ2 + log(2πσ2)
]}

Thus

Q(θ) = − 1
2σ2 , Q2(θ) = µ

σ2 D(θ) = −1
2

[
µ2

σ2 + log(2πσ2)
]

T1(x) = x2, T2(x) = x, S(x) = 0, k = 2, m = 1

Theorem 2.19 (Complete sufficient statistics for exponential family)
Let {fθ : θ ∈ Θ} be a k-parameter exponential family given by

fθ(x) = exp
{

k∑
i=1

Qi(θ)Ti(x) +D(θ) + S(x)
}

(2.22)

where θ = (θ1, . . . , θk) ∈ Θ an interval in Rk (namely an hypercube).
T1, . . . , Tk and S are defined on Rn, T = (T1, . . . , Tk), and x = (x1, . . . , xn),
for k ≤ n. Let Q = (Q1, . . . , Qk) and suppose that the range of Q contains
an open set in Rk. Then T = (T1(x), . . . , Tk(x) is a complete sufficient
statistic.

Proof Let k = 1 and X be a discrete random variable. To simplify life
suppose wlog that Q(θ) = θ and that Θ contains an interval (α, β)

Eθ[g(T (x))] =
∑
t

g(t)Pθ(T (x) = t)

=
∑
t

g(t) exp {θt+D(θ) + S∗(t)}

= 0, ∀ θ ∈ Θ.

(2.23)
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Now

Pθ(T = t) =
∑

x:T (x)=t
Pθ(X = x)

=
∑

x:T (x)=t
exp

{
k∑
i=1

Qi(θ)Ti(x) +D(Q̄) + S(x)
}

=
∑

x:T (x)=t
exp {θt+D(θ) + S(x)} = exp{θt+D(θ)}

∑
x:T (x)=t

exp{S(x)}

where we defined

S∗(t) = log

 ∑
x:T (x)=t

{S(x)}


It tells us that T ∼ exp{θt + D(θ) + S∗(t)} and follows the same path for
k > 1. Define

x+ =

x if x ≥ 0

0 otherwise
and x− =

−x if x < 0

0 otherwise

Then

g(t) = g+(t)− g−(t), (2.24)

where both g+ and g− are non-negative functions.

Using (2.23) and (2.24), we have

∑
t

g+eθt+S
∗(t) =

∑
t

g−(t)eθt+S∗(t), ∀ θ ∈ Θ (2.25)

and eD(θ) gets cancelled from both sides by factorizing. Let θ0 ∈ (a, b) be
fixed and write

p±(t) = g±(t)eθ0t+S∗(t)∑
t g
±(t)eθ0t+S∗(t)

; (2.26)
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we can make this into a probability distribution and use Laplace transform.
Then both p+ and p− are PMF and is follows from (2.25) that 7

∑
t

eδtp+(t) =
∑
t

eδtp−(t),∀δ ∈ (α− θ0, β − θ0) (2.27)

By the uniqueness of MGF, (2.27) implies that p+(t) = p−(t) for all t.

This in turn implies that g+(t) = g−(t) and hence g ≡ 0. Using Fisher-
Neyman factorization theorem T is also sufficient. Thus T is a complete
sufficient statistic. �

Definition 2.20 (Unbiased estimators)
Recall that T : Rn → Θ is called unbiased if Eθ(T (X)) = θ for all θ ∈ Θ. A
function ψ(θ) is called estimable function if there exists a T such that

Eθ[T (X)] = ψ(θ) ∀ θ ∈ Θ.

Example 2.26
Let Xi

iid∼ N (µ, σ2) for i = 1, . . . , n and

S2 = 1
n− 1

n∑
i=1

(Xi −Xn)2 with E(S2) = σ2

Xn = 1
n

n∑
i=1

Xi with E(Xn) = µ;

thus µ and σ2 are estimable functions.

Example 2.27
Let X ∼ P(λ) and take ψ(λ) = e−3λ and T (X) = (−2)x. Then, in this case

Eλ[T (X)] =
∞∑
x=0

(−2)x e
−λλx

x! = e−λ
∞∑
x=0

(−2λ)x

x! = e−λe−2λ = e−3λ.

7Plug (2.26) in (2.27) and use the fact that the denominators are equal by getting back
here. We now have the Laplace transform; work it for all θ.

62



This is nonsense, since we can use a negative function to approximate some-
thing positive.

Section 2.5. Minimum variance unbiased estimators

Definition 2.21
Let U be the set of all unbiased estimators T of θ ∈ Θ such that Eθ[T 2(X)] <
∞ ∀ θ ∈ Θ. An estimator T0 ∈ U is called uniformly minimum variance
unbiased estimator (UMVUE) of θ if Eθ(T0 − θ)2 ≤ Eθ(T − θ)2 ∀ θ ∈ Θ or

Varθ(T0) ≤ Varθ(T ) ∀ T ∈ U.

We now tackle existence and uniqueness of UMVUE.The proof provided for
the next theorem is analytic, however you can come out with a geometric
proof using projections and Hilbert spaces.

Theorem 2.22
Let U be the class of all unbiased estimators T of a parameter θ ∈ Θ with
EθT 2 < ∞ ∀ θ ∈ Θ and suppose U is non-empty (i.e. θ is estimable). Let
U0 be the set of all unbiased estimators ν of 0, that is

ν0 = {ν : Eθν = 0,Eθν2 <∞ ∀ t}. (2.28)

Then T0 ∈ U is UMVUE8 if and only if

EθνT0 = 0 for all θ, for all ν ∈ U0.

Proof The conditions of the theorem guarantee the existence of Eθ(νT0) ≤
[Eθν2]

1
2 [EθT 2

0 ]
1
2 (using Cauchy-Schwartz, since both second moment exist,

the inner product is finite). for all θ and ν ∈ U0. Suppose that T0 ∈ U

is a UMVUE and Eθ0(ν0T0) 6= 0 for some θ0 and some ν0 ∈ U0. Then
T0 + λv0 ∈ U for all real λ (since ET0 + λEν0 = ET0 ∈ U). If Eθ0ν

2
0 = 0, then

8Note that we don’t require sufficiency or completeness here. The proof is however not
constructive.
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Et(ν0T0) = 0 (using the above inequality) must hold since 9 Pθ0{ν0 = 0} = 1.
Let Eθ0ν

2
0 = 0. Choose λ0 = −Eθ0 (ν0T0)

Eθ0ν
2
0
. Then Eθ0(T0 + λ0ν0)2 is equal to

Eθ0T
2
0 −

[Eθ0ν0T0]2

Eθ0ν
2
0

< Eθ0T
2
0 (2.29)

Since T0 +λ0ν0 ∈ U and T ∈ U, it follows from (2.29) that Varθ0(T0 +λν0) <
Varθ0(T0), which is a contradiction.

Conversely, let Eθ(νT0) = 0 for all θ and ν ∈ U0 for some T0 ∈ U, all θ ∈ Θ
and all ν ∈ U0 and let T ∈ U. Then T0 − T ∈ U0 and for every θ, we have
Eθ{T0(T0 − T )} = 0 since T0 is orthogonal to T0 − T (since Eθ(νT0) = 0).
We then have

EθT 2
0 = Eθ(TT0) ≤

[
EθT 2

0

] 1
2
[
EθT 2

] 1
2

by Cauchy-Schwartz inequality. If EθT 2
0 = 0, then P(T0 = 0) = 1 and there

is nothing to prove. Otherwise,

(
EθT 2

0

) 1
2 ≤ (EθT 2)

1
2

or Var(T0) ≤ Var(T ). Since T is arbitrary, the proof is complete. �

Theorem 2.23
Let U be the non-empty class of unbiased estimators as defined in the pre-
vious theorem. Then, there exists at most one UMVUE for θ.

Theorem 2.24 (Rao-Blackwell)
Let {Fθ : θ ∈ Θ} be a family of CDF and h be any statistic in U, where U

is the (non-empty) class of all unbiased estimators of θ with Eθh2 <∞. Let
T be a sufficient statistic for the family {Fθ : θ ∈ Θ}. Then, the conditional
expectation Eθ{h|T} is independent of θ and is an unbiased estimator of θ.
Moreover,

Eθ[E(h|T )− θ]2 ≤ E(h− θ)2, ∀ θ ∈ Θ (2.30)
9We can also use that if Eθ0ν

2
0 = 0, then ν0 is 0 almost everywhere since the integral

under that measure is zero.
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and the equality in (2.30) holds if and only if h = E(h|T ), that is

P{h = E(h|T )} = 1, ∀ θ ∈ Θ.

Proof We have Eθ{E(h|T )} = Eθh = θ by the iterated law of expectation
and E(h|T ) = ψ(T ) is an unbiased estimator of θ. It is therefore sufficient
to show that

Eθ{E(h|T )}2 ≤ Eθh2, ∀ θ ∈ Θ (2.31)

given that the conditional expectation is a projection n the σ-field of a Borel-
function and has smaller variance. Note that (2.30) was a mean squared
error, now we can use the variance since both are unbiased and the square
of the first moments cancel out. Note that Eθh2 = Et{E(h2|T )}, so that it
suffices to show that

(E(h|T ))2 ≤ E
(
h2|T

)
(2.32)

Recall that E(E(X|Y )) = EX and VarX = Var(E(X|Y )) + (Var(X|Y )).
Using Cauchy-Schwartz inequality,

E2(h|T ) ≤ E(h2|T )E(1|T )

and the inequality (2.32) follows. Remark that we implicitly used sufficiency
here to obtain independence of T and θ so that we could us a statistic.

The equality holds in (2.30) if and only if

Eθ[E(h|T )]2

ψ(T )

= Eθh2

Eθ[E(h2|T )]

,

that is Eθ[E(h2|T ) − E2(h|T )] = 0 which is the same as Eθ{Var(h|T )} = 0.
This happens if and only if Var(h|T ) = 0, that is if and only if E(h2|T ) =
E2(h|T ) as will be the case if and only if h is a function of T . Thus h = E(h|T )
�
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Theorem 2.25 (Lehmann-Scheffé)
If T is a complete sufficient statistic and there exists an unbiased estimator
h of θ, there exists a unique UMVUE of θ which is given by E(h|T ).

Corollary 2.26
Let X1, . . . , Xn denote a random sample from a distribution that has pdf
f(xθ), θ ∈ Θ, let T = u(X1, . . . , Xn) be a sufficient statistic for θ and let
the family {g1(t1; θ) : θ ∈ Θ} of probability density function be complete. If
there is a function of T that is an unbiased estimator of θ, then this function
of T is the unique unbiased minimum variance estimator of θ.

Proof If h1, h2 ∈ U, then E(h1|T ) and E(h2|T ) are both unbiased and

Eθ{E(h1|T )
ψ1(T )

−E(h2|T )
ψ2(T )

} = 0, ∀ θ ∈ Θ.

Since T is a complete sufficient statistic, it follows that E(h1|T ) = E(h2|T )
and hence by Rao-Blackwell theorem, E(h|T ) is the UMVUE. �

Example 2.28
Let Xi

iid∼ B(p), i = 1, . . . , n and take p̂ = 1
n

∑n
i=1Xi. We showed

∑n
i=1Xi is

sufficient (so is thus any one-to-one function). We also showed completeness
using the fundamental theorem of algebra. Now

Ep(p̂) = E
(

1
n

n∑
i=1

Xi

)
= 1
n
np = p

is the UMVUE for p.

Example 2.29
Let Xi

iid∼ P(λ), i = 1, . . . , n. For sufficiency, we can use Fisher-Neyman
factorization to get

Pλ(Xi = xi, i = 1, . . . , n) =
n∏
i=1

P(Xi = xi) = e−nλλΣxi∏n
i=1 xi
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and since the denominator is of the form h(x1, . . . , xn) and the numerator
of the form gλ(T (x1, . . . , xn)), T =

∑n
i=1Xi is sufficient. Now T ∼ P(nλ)

using the method of moment generating functions; the mgf of T is given by

MT (s) = Eλ
(
esT
)

= Eλ
(
esΣXi

)
=
[
Eλ(esX

]n
and

Eλ(esx =
∞∑
x=0

esx
e−λλx

x! =
∞∑
x=0

e−λ (λes)x

x!

= e−λeλe
s = exp(λ(es − 1))

so
MT (s) =

[
eλ(es−1)

]n
= enλ(es−1)

so T ∼ P(nλ) and

Eλ[g(X)] =
∞∑
x=0

g(x)e
−λxλ

x! = 0 ∀ λ > 0.

To show that the Poisson family is complete, write down the proof showing
that it belongs to the exponential family. Finally, T =

∑n
i=1Xi and Eλ(T ) =

nλ since T ∼ P(nλ). Thus, the UMVUE is T
n since Eλ

(
T
n

)
= λ.

Example 2.30 (UMVUE for Normal: µ, σ2, σand pth quantile)
Suppose Xi

iid∼ N (µ, σ2). Using the exponential family theorem, (Xn, S
2) is

complete sufficient for (µ, σ2). Xn is UMVUE for µ and S2 is UMVUE for
σ2. Also, K(n)S is the UMVUE for σ, where

K(n) =
√
n− 1

2
Γ
(
n−1

2

)
Γ
(
n
2
) .

Let Y = (n−1)S2

σ2 and recall this is distributed as χ2(n− 1) random variable.
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We can now recover K using that
(
σ2Y/(n− 1)

) 1
2 = S and so we have

E(S) = σ√
n− 1

E
[
Y

1
2
]

= σ√
n− 1

∫ ∞
0

y
1
2 fY (y)
χ2(n−1)

dy

= σ√
n− 1

∫ ∞
0

y
1
2
y
n−1

2 −1e−
1
2

Γ
(
n−1

2

)
2
n−1

2
dy

= σ√
n− 1

1
Γ
(
n−1

2

)
2
n−1

2

∫ ∞
0

y
n
2−1e−

1
2dy

= σ√
n− 1

Γ
(
n
2
)

2
n
2

Γ
(
n−1

2

)
2
n−1

2

∫ ∞
0

y
n
2−1e−

1
2

Γ
(
n
2
)

2
n
2
dy

and thus

E(S) = σ√
n− 1

Γ
(
n
2
)

2
n
2

Γ
(
n−1

2

)
2
n−1

2

Finally, we can tackle the problem of finding the UMVUE of the pth quantile
z, where p = P (X ≤ zp) equals

P
(
X − µ
σ

≤ zp − µ
σ

)
= P

(
Z ≤ zp − µ

σ

)
= P(Z ≤ Z1−p)

where Z ∼ N (0, 1) is the standard normal distribution. We can go in the
table to look at Z1−p and we can recover zp = Z1−pσ + µ.

Now ẑp = Z1−pσ̂ + µ̂. We thus only need to find the UMVUE of σ̂ and of
µ̂ and since this is a linear combination, we have a UMVUE of zp, that is
Z1−pK(n)S +Xn.

Example 2.31 (UMVUE for discrete uniform parameter N)
Suppose that a sample of n iid observations Xi are drawn from the discrete
uniform (1, . . . , N), where N is unknown. We wish to find the UMVUE of
N . First, we can use a result proved earlier on, namely thatMn = max1≤i≤n

is complete sufficient. Next, using Rao-Blackwell and Lehmann-Scheffé, it
suffices to find g(.), where EN (G(Mn)) = N ∀ N ∈ N. The distribution of
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zp

fY (x)

x

Figure 8: pth quantile of the Normal distribution.

This can be used for example when our data is sensitive to extreme observations (for
example salaries). We often are given quartiles: median and medians for both the upper
half of the data and the lower half.

the nth order statistic was given as

P(Mn = y) = P(Mn ≤ y)− P(Mn ≤ y − 1) =
(
y

N

)n
−
(
y − 1
N

)n
and

EN [g(Mn)] =
N∑
y=1

g(y)P(Mn = y) = N ∀ N ∈ N

and this if and only if

N∑
y=1

g(y)y
n − (y − 1)n

Nn
= N

⇔
N∑
y=1

g(y)(yn − (y − 1)n) = Nn+1

and denoting the left hand side of the equation by ϕ(N), we can see that
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we can recover a difference equation

ϕ(N)− ϕ(N − 1) = Nn+1 − (N − 1)n+1

and we have that

g(N) [Nn − (N − 1)n] = Nn+1 − (N − 1)n+1

and thus
g(N) = Nn+1 − (N − 1)n+1

Nn − (N − 1)n .

Section 2.6. Lower bound for variance

Recall that we have defined in the beginning of the course Fisher’s informa-
tion

Definition 2.27 (Fisher’s information)
The quantity

I (θ) = Eθ
[
∂ log fθ(X)

∂θ

]2
(2.33)

and we have that information increase linearly; if we have a random sample
of size n, then

In(θ) =
[
∂ log fθ(X)

∂θ

]2
= nI (θ)

The next result has loads of implications and applications and will be fol-
lowed by many examples.

Theorem 2.28 (Fréchet-Cramer-Rao inequality)
Let Θ be an open interval of the interval of the real line (Θ ⊂ R) and let
{fθ : θ ∈ Θ} be a family of PDF or PMF. Assume that the set{x : fθ(x) = 0}
is independent of θ 10. For every θ, let ∂fθ(x)

∂θ be defined. Suppose that for
10This is the assumption of same support; examples where this conditions fail include

the uniform on (0, θ); it holds for the exponential family. The class of probability measure
are equivalent if µ� ν, ν � µ.
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every θ ∈ Θ,11

∂

∂θ

∫
x
fθ(x)dx =

∫
x

∂

∂θ
fθ(x)dx = 0. (2.34)

Let ψ be defined on θ and differentiable there and let T be an unbiased
estimator of ψ such that EθT 2 <∞ ∀ θ ∈ Θ. Assume that

∂

∂θ

∫
x
T (x)fθ(x)dx =

∫
x
T (x) ∂

∂θ
fθ(x)dx ∀ θ ∈ Θ. (2.35)

Let ϕ be any function of Θ→ R. Then

[ψ′(θ)]2 ≤ Eθ {T − ϕ(t)}2 Eθ
{
∂ log fθ(x)

∂θ

}2
(2.36)

for all θ ∈ Θ. This resembles to a large extend Heisenberg uncertainty
principle; the rightmost term is the Fisher’s information that was introduced
earlier on. The interesting case will be when ψ and ϕ are the same: we then
get a lower bound for the variance. If [ψ′(θ)]2 = 1, then the variance will
be inversely proportional to the information. We cannot get zero if the
regularity conditions hold; there is an intrinsic uncertainty that we cannot
make disappear and our inference won’t be better than some level. Here are
some corollary to the main result.

For any θ0 ∈ Θ, wither ψ′(θ0) = 0 and equality holds in (2.36) for θ = θ0 or
we have

Eθ0 {T − ϕ(θ)}2 ≥ [ψ′(θ0)]2

Eθ0

{
∂ log fθ(x)

∂θ

}2 (2.37)

If, in the later case, equality holds in (2.37), then there exists a real number
K(θ0) 6= 0 such that

T (x)− ϕ(θ0) = K(θ0)∂ log fθ0(x)
∂θ

(2.38)

11The equivalent statement for (2.34) will see the integrals replaced with sums if we
have a PMF.
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with probability 1 provided that T is not a constant.

Remark
• Conditions (2.34) and (2.35) are frequently refered to as the regularity
conditions.

• It is assumed implicitly that

0 < Eθ
(
∂

∂θ
log fθ(x)

)
<∞ ∀ θ ∈ Θ.

There has been a lot of literature on identification problem and the
case of the term being zero; this is a big concern in econometrics. For
that, see the work of Franklin Fisher or Thomas Rothenberg.

One big question is identifiability, which we define as

Definition 2.29 (Identifiability)
A model P = {Pθ : θ ∈ Θ} is said to be identifiable if the map from Θ Π−→ A,
where A is the space of probability measures, is one-to-one. That is

Pθ1 = Pθ2 ⇒ θ1 = θ2 ∀ θ1, θ2 ∈ Θ.

Say that we have an identified model; we know the shape up to finitely many
unknown parameters. Econometricians have show that having an injective
map Π is like Eθ

{
∂
∂θ log fθ(x)

}
being positive definite matrix. Admissibil-

ity can hold if this is zero at some parameter value (identification is not
violated). Some results, including Sard-Smale-Morse theorem in differential
topology, allow one to capture how often does positive definitiveness fails if
it is admissible. There is a close tie between the two notions, but it is not
perfect. The set of θ such that

Eθ

{
θ ∈ Θ : Eθ

{
∂

∂θ
log fθ(x)

}2
= 0

}
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is a nowhere dense set12 and under certain conditions has Lebesgue measure
zero13

Proof If follows from (2.34) that Eθ
{
∂
∂θ log fθ(x)

}
= 0

∫
x

∂
∂θfθ(x)
fθ(x) fθ(x)dx = ∂

∂θ

∫
x
fθ(x)dx = 0

and from (2.35) that

Eθ
{
T (x) ∂

∂θ
log fθ(x)

}
= ψ′(θ).

To see this, write the definition of expectation

∫
x
T (x)

∂
∂θfθ(x)
fθ(x) fθ(x)dx =

∫
x
T (x) ∂

∂θ
fθ(x)dx

= ∂

∂θ

∫
x
T (x)fθ(x)dx

= ∂

∂θ
ET (x) = ∂

∂θ
ψ(θ) = ψ′(θ)

so that
Eθ
{

[T − ϕ(θ)] ∂
∂θ

log fθ(x)
}

= ψ′(θ)

using Eθ
{
∂
∂θ log fθ(x)

}
= 0 and Eθ

{
T (x) ∂∂θ log fθ(x)

}
= ψ′(θ). By Cauchy-

Schwartz, (2.36) follows immediately. To prove (2.37), it suffices to consider
the case where ψ′(θ0) 6= 0 or the one where in (2.36) the equality sign does
not hold for θ = θ0.

To see this, consider the following set an

A = ψ′(θ0) = 0; B = equality holds in (2.36); C = (2.37) hold.
12That is, int(cl(A))=∅; the closure does not have any open sets.
13Here, we require finite dimensionality, a continuous function of θ and admissibility.

Even C∞ is not good enough: we need analytic function in order to have a set of measure
zero. See the work of Oxtoby and Ulam.
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Using basic logic, the following are equivalent: (A ∨B) ∧ C = D and

¬D = (¬A ∧ ¬C) ∨ (¬B ∧ ¬C)

In either case it follows from (2.36) that Eθ0

{
∂ log fθ(x)

∂θ

}2
> 0 and hence

(2.37) follows (since 0 < [ψ′(θ0)]2, then the two terms must be positive.)

(ψ′(θ0))2 ≤ Eθ0{T − ϕ(θ)}Eθ
{
∂ log fθ(x)

∂θ

}2

If the equality holds in (2.37) then necessarily ψ′(θ0) 6= 0.

Remark
Why is it necessary? Since the support of the probability measures and the
probability measures are equivalent. Thus, T = ϕ(θ0) almost surely. Pθ0

implies T = ϕ(θ0) almost surely Pθ, ∀ θ and therefore T is constant.

Therefore, from Cauchy-Schwartz inequality, there exists a real number k(θ0)
such that

T (X)− ϕ(θ0) = k(θ0) ∂ log fθ0(x)
∂θ

∣∣∣∣
0

and (2.38) holds. Since �

Since T is not a constant, it follows that k(θ0) 6= 0.

Remark
If we take ϕ = ψ in (2.37), we find

Var(T (X)) ≥ (ψ′(θ))2

Eθ
{
∂ log fθ(x)

∂θ

}2 (2.39)
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In particular, if ψ(θ) = θ (2.39) reduces to14

Var(T (X)) ≥ (Eθ
{
∂ log fθ(x)

∂θ

}2
)−1 = 1

I (θ) .

Remark
If X = (X1, . . . , Xn) is a sample from a PDF (PMF) fθ(x), θ ∈ Θ, then

Eθ
{
∂ log fθ(x̄)

∂θ

}2
⊥⊥= Eθ

{
∂ log

∏n
1 fθ(xi)
∂θ

}2

=
n∑
i=1

Eθ
{
∂ log fθ(xi)

∂θ

}2

= nEθ
{
∂ log fθ(x)

∂θ

}2

Note that the cross terms are zero since the functions are independent and
the product of expectations is the expectation of the product; the correlation
terms are zero from independence of the random variables. We also have
E
(
∂ log fθ(x)

∂θ

)
= 0. Fisher though that information should increase linearly,

this is why he worked with the log function, because he wanted to force his
information function to vary linearly with respect to the data.

Example 2.32
X ∼ B(n, θ), θ ∈ Θ = (0, 1). First, we check the regularity conditions:

(a) {x : fθ(x) = 0} is independent of θ and fθ(x) =
(n
x

)
θx(1 − θ)n−x for

x = 0, 1, . . . , n.

(b) We can interchange differential and integral operators since we are
working with a discrete distribution.

(c) We have only one sample: suppose T (X) is an unbiased estimate of θ,
14The information about what your observables carry about the unknown parameter

tell you that the uncertainty from the variance cannot be below the uncertainty from the
data, which is intuitive.
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i.e. Eθ[T (X)] = θ, then

log fθ(x) = log
(
n

x

)
+ x log θ + (n− x) log(1− θ)

and taking derivatives

{
∂ log fθ(x)

∂θ

}2
=
{
x

θ
− n− x

1− θ

}2

and I (θ) is equal to

I (θ) = Eθ
{
∂

∂θ
log fθ(x)

}2
= Eθ

{
x

θ
− n− x

1− θ

}2

= Eθ

{
x2

θ2

}
+ Eθ

{
(n− x1− θ )2

}
− 2E

{
x(n− x)
θ(1− θ)

}

Recall that Var(X) = nθ(1− θ),E(x) = nθ, hence

Eθ(x2) = Var(x) + (E(x))2

= nθ(1− θ) + (nθ)2

= nθ − nθ2 + n2θ2

= nθ(1− θ + nθ)

= nθ((n− 1)θ + 1)

= 1
θ2 Eθ(x2) + 1

(1− θ)2 E((n− x)2)− θ

θ(1− θ)(nE(x)− E(x2))

Note that n− x ∼ B(n, 1− θ), hence

E[(n− x)2] = n(1− θ)[(n− 1)(1− θ) + 1]

and after completion of the missing steps, we get

Eθ
{
∂ log fθ(x)

∂θ

}2
= n

θ(1− θ) .
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There is however an easier way to show this. If the regularity conditions
hold, then we can show that

Eθ
(
∂ log fθ(x)

∂θ

)2
= −Eθ

(
∂2 log fθ(x)

∂θ2

)
(2.40)

which is an important property of the information. Recall that

∂ log fθ(x)
∂θ

= x

θ
− n− x

1− θ

and so
∂2 log fθ(x)

∂θ2 = −x
θ2 −

n− x
(1− θ)2 .

Note that we only need to take expectation once

−E
{
∂2 log fθ(x)

∂θ2

}
= E(x)

θ2 + E(n− x)
(1− θ)2 = n

θ
+ n

1− θ = n

θ(1− θ)

Using Fréchet-Cramer-Rao, we have Var(T (x)) ≥ θ(1−θ)
n . Note that θ̂ = x/n

is an unbiased estimator of θ and Var(θ̂) = Var
(
x
n

)
= θ(1−θ)

n . The sample
proportion attains the lower bound, so this is as good as it gets in terms
of variance. There are many cases of UMVUE which don’t attain the FCR
bound, but this one does. We can use this bound as a golden rule.
Example 2.33
Say Xi

iid∼ U(0, θ). Here, the support depend on the parameter. We can
however still calculate Fisher’s information and see that we cannot reach
FCR lower bound with the UMVUE. We have

fθ =

1/θ if 0 < x < θ

o otherwise
,

log fθ(x) = − log θ, and ∂
∂θ log fθ(x) = −1

θ . We cannot use the second deriva-
tive here (because of the lack of regularity), therefore we calculate

I (θ) = Eθ
{
∂

∂θ
log fθ(x)

}2
= 1
θ2
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We learnt thatMn = max xi is a complete sufficient statistic and it is enough
to show that E[Mn] = n

n+1θ, hence

fMn(x) = d

dx
FMn(x) = d

dx
P(Mn ≤ x)

= d

dx
P(Xi ≤ xi; i = 1, 2, . . . , n)

= d

dx

(
n∏
1

P(Xi ≤ x)
)

= d

dx
FnX(x)

= nfX(x)Fn−1
X (x)

if 0 < x < θ and thus

fMn(x) =

n
1
θ

(
x
θ

)n−1 if 0 < x < θ

0 otherwise

so
Eθ(Mn) =

∫ θ

0
x
nxn−1

θn
dx = n

θn

∫ θ

0
xndx = n

θn
θn+1

n
= n

n+ 1θ

is a consistent estimator, but not unbiased. We can cook up an unbiased es-
timator: Eθ

(
n+1
n Mn

)
= θ, thus n+1

n Mn is the UMVUE for θ. By definition,

Var(T ) = E(T 2)− (E(T ))2

and therefore

Eθ(T 2) = E
((

n+ 1
n

)2
M2
n

)

=
(
n+ 1
n

)2
Eθ(M2

n)
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and

E(M2
n) =

∫ θ

0

x2nxn−1

θn
dx

= n

θn

∫ θ

0
xn+1dx

= n

θ2
θn+2

n+ 2 = n

n+ 2θ
2

=
(
n+ 1
n

)2 n

n+ 1θ
2

so

Varθ(T ) = (n+ 1)2

(n+ 2)nθ
2 − θ2

= θ2
(

(n+ 1)2

n(n+ 2) − 1
)

= θ2

n(n+ 2)

for the UMVUE. Compare this with nI (θ) = n 1
θ2 , FCR lower bound gives

us θ2

n while Var(T ) = θ2

n(n+2) .

Theorem 2.30 (Chapmans, Robbins & Kiefer inequality)
Let Θ ⊂ R and {fθ(x) : θ ∈ Θ} be a class of PDF. Let ψ be defined on Θ
and let T be an unbiased estimator of ψ(θ) with EθT 2 < ∞, ∀ θ ∈ Θ. If
θ 6= ϕ, assume that fθ and fϕ are different and assume further that ∃ϕ ∈ Θ
such that θ 6= ϕ and

S(θ) = {x : fθ(x) > 0} ⊃ S(ϕ) = {x : fϕ(x) > 0}.

Then

Varθ(T (x)) ≥ sup{
ϕ:S(ϕ⊆S(θ)
ϕ6=θ ∀ θ∈Θ

} (ψ(ϕ)− ψ(θ))2

Var{fϕ(x)/fθ(x)} (2.41)
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Proof The proof is for the continuous case; it is similar for discrete random
variables. First, notice that

EθT (X)
(
fϕ − fθ
fθ

)
=
∫
S(θ)

T (x)fϕ − fθ
fθ

fθdx

=
∫
S(θ)

T (x)fϕ − fθdx

=
∫
S(ϕ)

T (x)fϕdx−
∫
S(θ)

T (x)fθdx

= ψ(ϕ)− ψ(θ)

first by cancelling the densities fθ, then by using linearity and noting that
fϕ is zero evaluated outside of S(ϕ). Also, T (X) is unbiased and we recover
the last term.

If we look at the covariance between T (X) and fϕ − fθ, we observe from
properties of covariance that

Cov
(
T (X), fϕ

fθ

)
= Cov

(
T (X), fϕ

fθ
− 1

)
= Cov

(
T (X), fϕ − fθ

fθ

)
.

We can write the above as

Eθ
(
T (X)fϕ − fθ

fθ

)
− EθT (X)Eθ

(
fϕ − fθ
fθ

)
where the rightmost term is zero since it involves a difference of distributions
functions; write this as

Eθ
(
fϕ − fθ
fθ

)
=
∫
S(ϕ)

fϕdx−
∫
S(θ)

fθdx = 1− 1 = 0.

Finally, using the Cauchy-Schwartz inequality, we get that Cov2(Z, Y ) ≤
VarZVarY for given random variables Z, Y . Using this, we get that

Cov2
(
T (X), fϕ

fθ

)
= [ψ(ϕ)− ψ(θ)]2 ≤ VarθT (X)Varθ

(
fϕ
fθ

)
(2.42)
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and in particular, if S(ϕ) ⊂ S(θ) and the rightmost term of (2.42) is non-
vanishing, then we can divide through by Varθ

(
fϕ
fθ

)
to get (2.41). �

Section 2.7. Maximum likelihood estimates

We now present an approach which is quite intuitive (compared to the
method of moment which lacks justification). The maximum likelihood es-
timate (or MLE) is the most commonly used approach in estimation. First,
we have observables and unobservables, which are linked in the paramet-
ric setting by fθ(x). x tells me about the likeliness under θ of observing
this value. As a function of θ,Lθ = Pθ(Xi = xi, i = 1, . . . , n) is called the
likelihood function . If we are not superstitious, what we have observed is
something that we should have expected to happen: we want to fit as best as
possible or observations and get good results, looking at θ̂n = argmax L(θ)
and we have shown convergence in many different cases

1. θ̂n
a.s.−−→ θ is in particular of interest to us.

We also have under rather general conditions

2.
√
n(θ̂n−θ) D−→ N (0, I−1(θ)), where I−1(θ) is the lower bound of FCR

inequality.

Maximum likelihood estimates will be asymptotically most efficient.
The more information you have, the lower the variance gets. It is im-
portant because as statisticians, we want to make confidence intervals
as we care about margins of error (which is not the case in fields like
machine learning, who want to hit the target, period.)

3. If θ̂n is the MLE of θ, then ψ(θ̂n) is the MLE of ψ(θ).

If the likelihood is continuously differentiable, then we can find the max
using the first derivative.
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Example 2.34 (MLE of Bernoulli)
Let Xi

iid∼ B(p) for i = 1, . . . , n. First, we set up the likelihood

L(p) = Pp(Xi = xi, i = 1, . . . , n)

=
n∏
i=1

P(Xi = xi)

=
n∏
i=1

[
pxi(1− p)1−xi

]
= pΣxi(1− p)n−Σxi .

Let now t =
∑n
i=1 xi. We can look at the log-likelihood since the logarithm is

a monotonic transformation, it does not change the maximum and is easier.
We get

d logL(p)
dp

= d

dp
[t log p+ (n− t) log(1− p)] = t

p
− n− t

1− p.

Therefore, p̂ should satisfy t
p̂
− n−t

1−p̂ = 0 and (1− p̂)t = (n− t)p̂, so t− tp̂−
p̂n+ tp̂ = 0 which imply that p̂ = t

n so the sample proportion is the estimate
of the MLE, which coincides in this case with the UMVUE.

Example 2.35 (MLE of Normal for µ, σ2)
Let Xi

iid∼ N (µ, σ2) for i = 1, . . . , n. The joint PDF or PMF will be our
likelihood

L(µ, σ2) = fµ,σ2(x1, . . . , xn) =
n∏
i=1

1√
2πσ

exp
(
−(xi − µ)2

2σ2

)
.

Looking at the log-likelihood `(µ, σ2) = logL(µ, σ2), we have

n∑
i=1

[
− log(

√
2πσ)− (xi − µ)2

2σ2

]
= −n log(

√
2πσ)− 1

2σ2 .

Let σ2 = θ and write the previous as

−n2 log
(
2πσ2

)
− 1

2σ2

n∑
i=1

(xi − µ)2
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We are interested in ∂`(µ,θ)
∂µ = 0 and ∂`(µ,θ)

∂θ , then solve the resulting system of
equation and look at the second derivative to verify indeed that it is negative
and we obtain a maximum. In the multivariate case, we must verify that
the Hessian matrix is negative semi-definite. Thus

∂`(µ, θ)
∂µ

= 0⇔ 1
2σ2 · 2

n∑
i=1

(Xi − µ) = 0

∂`(µ, θ)
∂θ

= 0⇔ −n2
1
θ

+ 1
2θ2

n∑
i=1

(Xi − µ)2

which yields µ̂ = 1
n

∑n
i=1Xi = Xn and for the second, assuming the distri-

bution is non degenerate (that is σ2 6= 0), then

1
θ

n∑
i=1

(Xi − µ)2 = n⇔ θ̂ = 1
n

n∑
i=1

(Xi − µ̂)2 = σ̂2.

We talked about this a while ago; S2 is divided by n− 1 while the MLE is
divided by n and is thus biased.

We could compare the MSE of the two, knowing that σ̂2 =
(
n−1
n

)
S2, so

Eσ̂2 = E
[(
n− 1
n

S2
)]

=
(
n− 1
n

S2
)
σ2 =

(
1− 1

n

)
σ2

and furthermore

Varσ̂2 = Var
(
n− 1
n

S2
)

= σ4

n2 Var
(

(n− 1)S2

σ2

)
.

Note that (n−1)S2

σ2 is distributed as χ2(n−1) so the variance is 2(n−1) which
entail Var

(
σ̂2
)

= 2(n− 1)σ4

n2 . The mean square error is as usual given by

MSE
(
σ̂2
)

= Var
(
σ̂2
)

+ Bias2
(
σ̂2
)

where the square of the bias is
[
σ2 −

(
1− 1

n

)
σ2
]2

= σ4

n2 so that the mean
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square error

MSE
(
σ̂2
)

= 2(n− 1)σ
4

n2 + σ4

n2 = 2n− 1
n2 σ4.

What about the variance of S2? We get

Var(S2) = Var
(

(n− 1)S2

σ2

)
σ4

(n− 1)2 = 2(n− 1) σ4

(n− 1)2 = 2σ4

n− 1

and comparing the two

2n− 1
n2 σ4 <

2σ4

n− 1 ⇔ (2n− 1)(n− 1) < 2n2 ⇔ 2n2 − 3n+ 1 < 2n2

happens for all n ∈ N. Surprisingly enough, MSE
(
σ̂2
)
< MSE(S2) and the

MLE estimator has a smaller mean square error.

Example 2.36 (MLE of Uniform)
Let Xi

iid∼ U(0, θ). If I look at

L(θ) = 1
θn

1(0,θ)

(
max

1≤i≤n
xi

)
1(0,max xi)

(
min

1≤i≤n
xi

)
,

but the last term does not play any role for the sufficiency of the MLE since
it does not depend on any unknown parameters which yield

L(θ) =


1
θn if 0 < max1≤i≤n xi ≤ θ

0 otherwise

is a decreasing function of θ. We need to find the minimum value of the
domain. So

1
(max1≤i≤n xi)n

= sup
θ>max1≤i≤n xi

1
θn
.

Example 2.37 (MLE of Hypergeometric (N))
This is used to determine the population size in fish ponds using capture-
recapture method. if we condition on n, the inference does not depend on
that parameter and all of n− x, x, n,M are known. We us the MLE to get
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a fast estimate. Recall that

PN (x) =
(M
x

)(N−M
n−x

)(N
n

) if max(0, n−N +M) ≤ x ≤ min(n,M)

and zero otherwise. This is the likelihood since we are dealing with one
sample from hypergeometric (where there is no replacement) compared to
the n samples of the binomial (with replacement).

In this case, the maximimizer needs not to be unique, as long as it satisfies

PN∗(x)
PN∗+1(x) ≥ 1 PN∗(x)

PN∗−1(x) ≥ 1

Another example which can be even more illustrative is the uniform, where
this time we have
Example 2.38
Xi

iid∼ U
(
θ − 1

2 , θ + 1
2

)
for a sample of size n. If we write down the likelihood,

we see that

L(θ) =

1 if θ − 1
2 ≤ min xi ≤ max xi ≤ θ + 1

2

0 otherwise

and whatever value you choose between the two does the job, that is take θ
such that θ ≤ min1≤i≤n xi + 1

2 and max1≤i≤n xi − 1
2 ≤ θ. Indeed, if we look

at Tα for 0 < α < 1, then

Tα(x1, . . . , xn) = max
1≤i≤n

xi −
1
2 + α[1 + min

1≤i≤n
xi − max

1≤i≤n
xi].

and Tα is the MLE for any α ∈ (0, 1). In particular, α = 1
2 gives us

T 1
2
(x1, . . . , xn) = max xi + min xi

2 .

We now proceed with an academic example, which is nevertheless instruc-
tive.
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Example 2.39 (Oliver)
This example illustrates a distribution for which an MLE is necessarily an
actual observation, but not necessarily any particular observation. Suppose
X1, . . . , Xn is a random sample from PDF

fθ(x) =


2
α
x
θ

2
α
α−x
α−θ if θ < x ≤ α

0 otherwise

where α > 0 is a (known) constant.

First, we want to show using the fact that the likelihood is continuous and
the parameter space is a compact set that it has a maximizer. New, we show
that it is differentiable and then that it cannot be that the MLE is between
two points.

The likelihood function is

L(θ, x1, . . . , xn) =
( 2
α

)n ∏
i:x≤θ

(
xi
θ

) ∏
i:xi>θ

(
α− xi
α− θ

)
(2.43)

Assume furthermore that the observations are arranged in increasing order
of magnitude, i.e. 0 ≤ x1 < x2 < . . . , < xn ≤ α. This function L(θ,x) is
continuous in θ except if θ 6= 0, θ 6= α, in which case we have to delete one
of the branches if θ = 0 or if θ = α. Assume 0 < θ < α. We define fθ by
(2.43). If θ = 0 ,then

fθ(x) =


2
α
α−x
α if 0 ≤ x ≤ α

0 otherwise

or if θ = α

fθ(x) =


2x
α2 if 0 ≤ x ≤ α

0 otherwise

We first need to check that the above are density functions; this is left as an
exercise. The parameter space is Θ = [0, α] and the likelihood in the more
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general case is

L(θ, x1, . . . , xn) =



(
2
α

)n∏
i:x≤θ

(xi
θ

)∏
i:xi>θ

(
α−xi
α−θ

)
if 0 < θ < α(

2
α2

)n∏n
i=1 xi if θ = α(

2
α2

)n∏n
i=1(α− xi) if θ = 0

We need to check continuity at the endpoints

L(θ, x1, . . . , xn) =



(
2
α

)n (1
θ

)a ( 1
α−θ

)b∏
i:x≤θ xi

∏
i:xi>θ α− xi if 0 < θ < α(

2
α2

)n∏n
i=1 xi if θ = α(

2
α2

)n∏n
i=1(α− xi) if θ = 0

where a(θ) is the cardinality of {i : xi ≤ θ} and b(θ) the cardinality of
{i : xi > θ}. This condition is clear given x1, . . . , xn. Indeed, for θ <

x1, a(θ) = 0. As such, a(θ)→ 0, b(θ)→ n as θ → 0+. Then L(θ, x1, . . . , xn)
is a continuous function of θ on [0, α] such that

L(θ̂, x1, . . . , xn) ≥ L(θ, x1, . . . , xn) ∀ θ ∈ [0, α].

For xj , θ < xj+1, we have

L(θ) =
( 2
α

)n
θ−j(α− θ)−(n−j)

j∏
i=1

xj

n∏
i=j+1

(α− xi)

since we have assumed earlier wlog that the observations were ordered in an
increasing fashion. Thus,

∂`

∂θ
= − j

θ
+ n− j
α− θ

and
∂2`

∂θ2 = j

θ2 + n− j
(α− θ)2 > 0.

it follows that any stationary value that exists must be a minimum. Hence
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θ̂ is not θ̂ /∈ (xj , xj+1) ∀ j = 1, . . . , n− 1. If 0 ≤ θ ≤ xi, then

L =
( 2
α

)n
(α− θ)−n

n∏
i=1

(α− xi)

which is a strictly increasing function of θ. Likewise, one can show that L(θ)
is a strictly decreasing function of θ in xn < θ ≤ α. Then θ̂ should be one
of the observations x1, . . . , xn.

In particular, let α = 5 and n = 3. If the observations arranged in an
increasing order of magnitude are 1, 2, 4, in this case, the MLE can be show
to be θ̂ML = 1. If the sample values are 2, 3, 4, then θ̂ML = 4. This is bad,
as the MLE does not work well in this case and switch from the smallest to
the largest observation; it exhibits quite a bit of instability. We now prove
a few important theorem about MLE.

Principle of Sufficiency

Theorem 2.31
Let T be a sufficient statistic for the family of PDF’s (PMF’s) fθ(x), θ ∈ Θ.
If a MLE of θ exists, it is a function of T .

Proof Since T is sufficient, we can write

L(θ, x1, . . . , xn) = h(x1, . . . , xn)gθ(T (x1, . . . , xn))

using the factorization criterion. Maximization of the likelihood function
with respect to θ is therefore equivalent to maximization of fθ(T (x1, . . . , xn))
which is a function of T also. �

Remark
Although the previous theorem states that the MLE is a function of the
sufficient statistic, the MLE itself may not be a sufficient statistic.
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Example 2.40
Let Xi

iid∼ U
(
θ − 1

2 , θ + 1
2

)
. We learned that any T (x) such that

max
1≤i≤n

(
xi −

1
2

)
≤ T (x1, . . . , xn) ≤ min1≤i≤n

(
xi + 1

2

)
is a MLE. In particular

T (x1, . . . , xn) = min
1≤i≤n

+1
2

is MLE. It is not however a sufficient statistic. Recall that (min1≤i≤n xi,max1≤i≤n xi)
is sufficient in this case.

Section 2.8. Consistency of the MLE

Lemma 2.32
Suppose Xi

iid∼ f(x; θ) for i = 1, 2, . . . , n and θ ∈ Θ ⊆ Rp is a bounded open
set. Define

R
1
2
n,θ(u) =

[L(θ + u;x1, . . . , xn)
L(t;x1, . . . , xn)

] 1
2

=
n∏
i=1

f
1
2 (xi; θ + u)
f

1
2 (xi; θ)

(2.44)

where u ∈ U = Θ − θ and we understand the latter as being the set of all
points of Θ shifted by θ . Then

θ̂ML
p−→ θ if P

{
sup
‖u‖>γ

R
1
2
n,θ ≥ 1

}
n→∞−−−→ 0 ∀ γ > 0.

If the last bit holds true uniformly in θ ∈ K ⊆ Θ, then θ̂ML is uniformly
consistent in K.

Proof The idea of the proof is simple. We want to show that θ̂ML should
be in the vicinity of θ. In other words, the chance that θ̂ML falls outside
of a neighbourhood around θ tends to zero, no matter how small is the
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θγ

θ̂ML

ûn

neighbourhood. Set ûn = θ̂ML − θ so that Rn,θ(ûn) = supuRn,θ(u). Then

P(∗)t
{
‖θ̂ML − θ‖ > γ

}
= Pθ {‖ûn‖ > γ}

≤ P
{

sup
‖u‖>γ

R
1
2
n,θ ≥ 1

}
n→∞−−−→ 0

�

Theorem 2.33 (Consistency of the Maximum Likelihood Estimators)
Suppose Θ is a bounded open set of Rp and f(x; θ) is the PDF of Pθ with
respect to the σ-finite measure ν. Let f(x; θ) be a continuous function of θ
on Θ 15 for almost all x ∈ X and let the following conditions be satisfied

1. For all θ ∈ Θ and all γ > 0,

0 < Kθ(γ) = inf
‖θ−θ′‖>γ

r2
2(θ, θ′) = inf

‖θ−θ′‖>γ

∫
x

[
f

1
2 (x; θ)− f

1
2 (x; θ′)

]
ν(dx)

is positive and thus distinguishable.

2. For all θ ∈ Θ16

{∫
x

sup
‖t‖≤δ

[
f

1
2 (x; θ)− f

1
2 (x; θ + t)

]2} 1
2

= ωθ(δ)
δ→0−−−→ 0

15Θ denotes the closure of the set Θ
16This condition is some type of modulus of continuity condition.
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Proof In view of the above lemma and Markov’s inequality, it suffices to
find an upper bound for the expectation Eθ[supΓRn(u)] which tends to zero
as n→∞. This is the core of the proof which is given below.

Suppose θ is fixed. Consider Rn,θ(u) as a function of u. Let Γ be a sphere
of small radius δ situated in its entirety in the region ‖u‖ > 1

2γ. We shall
bound the expectation Eθ[supΓRn(u)]. If u0 is the center of Γ, then

sup
Γ
R

1
2
n (u) = sup

Γ

n∏
i=1

[
f(xi; θ + u)
f(xi; θ)

] 1
2

≤
n∏
i=1

f−
1
2 (xi; θ)

[
f

1
2 (xi; θ + u0)

+ sup
‖t‖≤δ

∣∣∣f 1
2 (xi; θ + u0 + t)− f

1
2 (xi; θ + u0)

∣∣∣ ]
for t = u − u0. Note that f(x; θ + u) = f(x; θ + u0) + [f(x; θ + u0 + t) −
f(x; θ + u0)]. Therefore, we obtain by Markov inequality

Eθ[sup
Γ
Rn(u)] ≤

n∏
i=1

[ ∫
x
f

1
2 (xi; θ)f

1
2 (xi; θ + u0)ν(dx)

+
∫
x

sup
‖t‖≤δ

∣∣∣f 1
2 (xi; θ + u0 + t)− f

1
2 (xi; θ + u0)

∣∣∣ f 1
2 (xi; θ)ν(dx)

]

Now, it is easy to see that∫
x
f

1
2 (xi; θ)f

1
2 (xi; θ + u0)ν(dx)

= 1
2

{∫
x
f(x; θ)dν +

∫
x
f(x; θ + u0)dν

−
∫
x

[
f

1
2 (x; θ + u0)− f

1
2 (x; θ)

]2
dν

}
= 1

2[2− r2
2(θ, θ + u0)]

≤ 1−
κθ
(γ

2
)

2
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On the other hand, using the Cauchy-Schwartz inequality∫
x

sup
‖t‖≤δ

∣∣∣f 1
2 (xi; θ + u0 + t)− f

1
2 (xi; θ + u0)

∣∣∣ f 1
2 (xi; θ)dν ≤ ωθ+u0(δ)

using condition 2. Taking this into account together with the elementary
inequality 1 + a ≤ ea for a ∈ R, we obtain

Eθ
[
sup

Γ
R

1
2
n (u)

]
≤ exp

{
−n

[
κθ
(γ

2
)

2 − ωθ+u0(δ)
]}

. (2.45)

It follows from (2.45) that to each point ξ of the set U \ {‖u‖ ≤ γ} there
corresponds a sphere Γ(ξ) with center ξ such that Eθ

[
supΓ(ξ)R

1
2
n (u)

]
→ 0

in Pθ−probability as n→∞. Using compactness of Θ, select a finite cover
Γ(ξq) for q = 1, 2, . . . , N of the set U\{‖u‖ ≤ γ} from the collection {Γ(ξ)}.
Then

sup
‖u‖≥γ

R
1
2
n (u) ≤

N∑
q=1

sup
Γ(ξq)

R
1
2
n (u) n→∞−−−→ 0 in Pθ.

Since each of the expectation of each term on the right hand side tends to
zero, the proof is complete.17 �

Proposition 2.34 (Asymptotic Normality of the MLE)
Let Xi

iid∼ fθ where f ∈ C3, then18

∂

∂t
log fθ(xi) = ∂

∂θ
log fθ̂(xi) + (θ − θ̂) ∂

2

∂θ2 fθ̂(xi + εi

and since θ̂ is the solution of the first derivative of the likelihood, we therefore
have

n∑
i=1

∂

∂t
log fθ(xi) = 0 + (θ̂ − θ)

[
−

n∑
i=1

∂2

∂θ2 log fθ̂(xi)
]

+ εn

17Note that κ is positive and ω goes to zero, so −nκ is negative and e−nκ → 0 as
n→∞.

18C3 stands for three times continuously differentiable functions space.
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where the left hand side is the so-called score function and thus∑n
i=1

∂
∂t log fθ(xi)∑n

i=1
∂2

∂θ2 log fθ̂(xi)
= (θ̂ − θ) + εn∑n

i=1
∂2

∂θ2 log fθ̂(xi)
.

This then implies that

1√∑n
i=1

∂2

∂θ2 log fθ̂(xi)n
·
∑n
i=1

∂
∂t log fθ(xi)/n√∑n

i=1
∂2

∂θ2 log fθ̂(xi)n
/
√
n

= A ·B

=
√
n(θ̂ − θ) +

√
nεn∑n

i=1
∂2

∂θ2 log fθ̂(xi)
.

We now note using WLLN that a p−→
(
−E

[
∂2

∂θ2 log fθ(x)
])− 1

2 and using the

CLT that B D−→ N (0, 1). The second term on the right hand side is equal to

εn√
n
·
(
−

n∑
i=1

∂2

∂θ2 log fθ̂(xi)/n
)
→ εn√

n
I(θ)−1.

It then suffices to show that εn√
n

p−→ Op or equivalently εn = Op(
√
n).

� � �

Section 2.9. Invariance property of MLE

Let {fθ : θ ∈ Θ} be a family of PDF’s (PMF’s) and let L(θ) be the likelihood
function. Suppose that Θ ⊂ Rk, for k ≥ 119.

Before we present Zehna’s theorem, here is the foreword of the original article
that illustrate the need to develop results for maps that are not injective.

One of the distinguishing features of the method of maximum
likelihood in statistical estimation is the fact that it enjoys a cer-

19This precision is important as we usually don’t have this property in ∞-dimension
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tain invariance property. likelihood estimator for u(θ̂) where u
is some function of u(θ). Some textbooks on the subject avoid
any explicit mention of properties that u must possess in order
for invariance to hold. When a proof of the property is given,
it is at least assumed, either explicitly or implicitly that u is 1-1
thereby defining a unique inverse.

Now if the assumption that u be 1-1 is really necessary, then the
invariance principle could not be invoked to find the maximum
likelihood estimator for even as common a case as the variance,
p(1− p), of a Bernoulli random variable.

Indeed, there may be some doubt as to the meaning of maximum
likelihood in such a case. The purpose of this note is to point
out that the notion of a maximum likelihood estimator for u(θ)
when u is not 1-1 can and should be made explicit.

The method used for accomplishing this task has the desirable
feature that it coincides with the usual method employed when u
is 1-1.

Theorem 2.35 (Zehna’s theorem)
Let h : Θ→ Λ be a mapping of Θ onto Λ. If θ̂ is an MLE of θ, then h(θ̂) is
the MLE of h(θ).

Proof For each λ ∈ Λ, let us define

Θλ = {θ : θ ∈ Θ, h(θ) = λ} and M(λ;x) = sup
θ∈Θλ

L(θ,x)

Then M defined on Λ is called the likelihood function induced by h.

Remark
One might legitimately ask why we define it with the sup instead of the inf.
Think about it and look at consistency.

If θ̂ is any MLE of θ, then θ̂ belongs to one and only one set Θλ̂ say. Since
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θ̂ ∈ Θλ̂, λ̂ = h(θ̂). Now

M(λ̂,x) = sup
θ∈Θλ̂

L(θ,x) ≥ L(θ̂,x)

On the other hand

M(λ̂,x) ≤ sup
λ∈Λ

m(λ,x) = sup
θ∈Θ
L(θ,x) = L(θ̂,x)

Thus
M(λ̂,x) = sup

λ∈Λ
M(λ,x)

It then follows that λ̂ ≤ h(θ̂) is the MLE of h(θ). �
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Chapter 3
Testing Statistical Hypothesis (TSM) and confidence

intervals
In this section, we will develop the theory of hypothesis testing, which allows
one to check the validity of assertions, build confidence intervals and check
validities of models. We will define H0 : θ ∈ Θ0 to be the null hypothesis,
corresponding to the status quo. We could think for example for a crime that
the null hypothesis is innocence, against the alternative hypothesis (guilt in
this case), which we denote by HA : θ ∈ ΘA. We will want to build tests
that allow the rejection of the null; however, we will also want this test to
prevent from rejecting the hypothesis.

Section 3.1. Hypothesis tests

Let X1, . . . , Xn be fθ, θ ∈ Θ, where Θ0 ∪ΘA = Θ and Θ0 ∩ΘA = ∅.

Definition 3.1 (Parametric hypothesis)
A parametric hypothesis is an assertion about the unknown parameter θ.

H0 :θ ∈ Θ0 null hypothesis

HA :θ ∈ ΘA alternative hypothesis

We set up our problem so that we don’t want to make a false call on H0. For
instance, if H0 is the hypothesis that we bury someone only if the person is
dead, we don’t want to give that up easily and falsely condemn an innocent
person.

Given a sample point x, we want to find a decision rule that will lead to the
rejection or failure to reject the null hypothesis. It is important to notice
that failing to reject does not guarantee that H0 be true, but rather that no
strong enough evidence against the alternative are present.

If Θ0(Θ1) contains only one point we say Θ0(Θ1) is a simple hypothesis
otherwise the hypothesis is said to be composite. Notice that if Θ0(Θ1) is
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True
H0 H1

Accepted H0 Correct Type II error
H1 Type I error Correct

Table 1: Decision table for hypothesis test errors

simple, then the distribution of the observation is completely specified under
Θ0(Θ1).

Example 3.1
Say Xi are iid N (µ, σ2). Then H0 : µ = 0, σ2 = 2 is a simple hypothesis,
while H0 : µ = 0 is composite.

Definition 3.2
Let X be fθ, θ ∈ Θ. a subset C of Rn such that if x ∈ C then H0 is rejected
(with probability 1) is called the critical region (set)

C = {x ∈ Rn : H0 is rejected}

Definition 3.3 (Test function)
Every “nice” function ϕ : Rn → [0, 1] is known as a test function (probability
of rejection). ϕ is a test of hypothesis H0 : θ ∈ Θ0 vs H1 : θ ∈ Θ1 at α level
of significance or ( we simply say at level α) if

Eθ[ϕ(X)] ≤ α,∀θ ∈ Θ0

in short, ϕ is a test for the problem (α,H0, H1).

If ϕ : Rn → {0, 1} then ϕ is called a non-randomized test. Otherwise, it is
a randomized test.

Let ϕ be a non-randomized test. Then

Eθ[ϕ(X)] = Pθ[ϕ(X) = 1]

and “ϕ(x) = 1” means rejecting with probability 1.
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A few remarks before we go on with other definitions. Note that we want
often our null hypothesis to be specific, so that it can lead to rejection in
some cases. For example, we may be interested in the context of linear
regression by verifying whether coefficients given from least squares is sig-
nificantly different from zero. Note that an hypothesis is a conjecture about
a population parameter rather than on a sample which is observed. After
stating the null and hypothesis alternatives, we will want to determine the
significance (the power of the test).

Definition 3.4 (Power function)
We define

βϕ(θ) = Eθ[ϕ(X)] = Pθ{ reject H0},

where βϕ is called the power function of ϕ. Then, the probability of Type
II error is

Pθ{ Type II error } = 1− βϕ(θ),

for θ ∈ Θ1,

1− βϕ(θ) = 1− Pθ{ reject H0} = Pθ{ accept H0}.

In other words, the power of a test is the probability that it will correctly
lead to the rejection of a false null hypothesis.

Definition 3.5 (Most Powerful tests)
Let Φα be the class of all tests for the problem (α,Θ0,Θ1). A test ϕ0 ∈ Φα

is said to the most powerful (MP) test against an alternative θ∗ ∈ Θ; if

βϕ0(θ∗) ≥ βϕ(θ∗), ∀ϕ ∈ Φα

Definition 3.6 (Uniformly Most Powerful tests)
A test ϕ0 ∈ Φα for the problem (α,H0, H1) is said to be uniformly most
powerful (UMP) if

βϕ0(θ) ≥ βϕ(θ),∀ϕ ∈ Φα, ∀θ ∈ Θ1
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Example 3.2
Θ = {θ0.θ1}, H0 : θ = θ0, H1 : θ = θ1. Let xi be iid fθ(x) and

L(θ0,x)
L(θ1,x) > 1

Often, we cannot attain the size α chosen, which is arbitrarily chosen. A
common practise in the literature is to report the P -value, which is the small-
est level α at which the sample statistic observed is significant. Formally,
we define the P -value as
Definition 3.7 (P -value)
The probability of observing under H0 a sample outcome at least as extreme
as the one observed is called the P -value. The smaller the P -value, the more
extreme the outcome and the stronger the evidence against H0.

If α is given, we reject H0 if P ≤ α and do not reject H0 if P > α. In the
two-sided case when the critical region is of the form C = {|T (x) > k}, the
one-sided P -value is doubled to obtain the P -value. If the distribution of
T is not symmetric, the P -value is not well defined in the two-sided case,
although many authors recommend doubling the one-sided P -value.

We now present a famous result due to Neyman and Pearson that gives a
general recipe for Most Powerful tests.
Theorem 3.8 (Neyman-Pearson fundamental lemma)

1. Any test ϕ of the form

ϕ(x) =


1 if f1(x)

f0(x) > k

γ(x) if f1(x)
f0(x) = k

0 if f1(x)
f0(x) < k

for some k ≥ 0 and 0 ≤ γ(x) ≤ 1 is the most powerful of its size for
testing H0 : θ = θ0 versus H1 : θ = θ1. If k =∞, the test

ϕ(x) =

1 if f0(x) ≤ 0

0 if f0(x) > 0
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is the most powerful of size 0 for testing H0 versus H1.

2. Given α ∈ [0, 1], there exists a test of form 1) or 2) with ϕ(x) ≤ γ (a
constant) for which Eθ[ϕ(X)] = α.

Proof We first begin with part a. Let ϕ be a test satisfying (1) and ϕ∗

be any test with Eθ0 [ϕ∗(X)] ≤ Eθ0 [ϕ(X)]. If the distributions are absolutely
continuous, the equality holds with probability zero, so we can ignore the
middle term of (1). Recall that ϕ(x) = 1 if f1(x)/f0(x) > k is the probability
of rejection.

We will assume that we are in the continuous case (the discrete case can be
treated likewise). We have

A =
∫
x
[ϕ(x)− ϕ∗(x)][f1(x)− kf0(x)]dx

=
(∫

x:f1(x)>kf0(x)
+
∫
x:f1(x)<kf0(x)

)
[ϕ(x)− ϕ∗(x)][f1(x)− kf0(x)]dx

For any x ∈ {x : f1(x) > kf0(x)}, ϕ(x) − ϕ∗(x) = 1 − ϕ(x) ≥ 0 so that
the integrand is positive. For x ∈ {x : f1(x) < kf0(x)}, ϕ(x) − ϕ∗(x) =
−ϕ(x) ≤ 0 so that the integrand is again ≥ 0. It follows that

A = Eθ1 [ϕ(X)]− Eθ1 [ϕ∗(X)]− k {Eθ0 [ϕ(X)]− Eθ0 [ϕ∗(X)]} ≥ 0

which in turns implies that Eθ1 [ϕ(X)]−Eθ1 [ϕ∗(X)] ≥ kEθ0 [ϕ(X)]−Eθ0 [ϕ∗(X)] ≥
0 and therefore ϕ(x) is more powerful as Eθ1 [ϕ(X)] ≥ Eθ1 [ϕ∗(X)].

If k = ∞, any test ϕ∗ of size 0 must vanish on the set {x : f0(x) > 0}. We
have

Eθ1 [ϕ(X)]− Eθ1 [ϕ∗(X)] =
∫
x:f0(x)=0

[1− ϕ∗(x)]f1(x)dx ≥ 0

�
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x

Pθ0

{
f1(x)
f0(x) ≤ k

}

1− α

k0

Figure 9: Choosing a value of k0 for a MP test.

Remark
We look at tests of the same size (that is, they are optimal over tests of
same size) as ϕ. If k = ∞, the size of Eθ0(ϕ) = 0 so the term vanishes.
Think of it and write the definition of Eθ0ϕ

∗(x) =
∫
x ϕ
∗(x)f0(x)dx = 0 since

ϕ∗(x) ≥ 0, f0(x) ≥ 0 almost surely under Pθ0 . We can easily extend this
result to more than two categories (finite number).

We now prove the second part of the Neyman-Pearson lemma.

Proof We confine ourselves to the case 0 < α ≤ 1. Let γ(x) = γ. The size
of a test of form (1) is

Eθ0 [ϕ(X)] = Pθ0{f1(X) > kf0(X)}+ γPθ0{f1(X) = kf0(X)}

= 1− Pθ0{f1(X) ≤ kf0(X)}+ γPθ0{f1(X) = kf0(X)}
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and since Pθ0{f0(X) = 0} = 020, we may write

Eθ0 [ϕ(X)] = 1− Pθ0

{
f1(X)
f0(X) ≤ k

}
+ γPθ0

{
f1(X)
f0(X) = k

}
.

Given 0 < α ≤ 1, we wish to find k and γ such that Eθ0 [ϕ(X)] = α, that is

Pθ0

{
f1(X)
f0(X) ≤ k

}
− γPθ0

{
f1(X)
f0(X) = k

}
= 1− α. (3.46)

Note that Pθ0

{
f1(X)
f0(X) ≤ k

}
is a CDF and hence it is a non-decreasing and

right-continuous function of k. If there exists a k0 such that Pθ0

{
f1(X)
f0(X) ≤ k

}
=

1− α, then we choose γ = 0 and k = k0. Otherwise, there exists a k0 such
that

Pθ0

{
f1(X)
f0(X) < k

}
≤ 1− α < Pθ0

{
f1(X)
f0(X) ≤ k

}
,

that is 21 there is a jump at k0. In this case, we choose k = k0 and solve
(3.46) for γ, and

γ =
Pθ0

{
f1(X)
f0(X) ≤ k

}
− (1− α)

Pθ0

{
f1(X)
f0(X) = k0

} .

�

Theorem 3.9
If a sufficient statistic T exists for the family {fθ : θ ∈ Θ},Θ = {θ0, θ1}, the
Neyman-Pearson MP test is a function of T . Indeed,

f1(x)
f0(x) = h(x)g1(T (x))

h(x)g0(T (x)) = g1(T (x))
g0(T (x)) .

This is in agreement with the sufficient principle.

We now present some examples that illustrate the MP tests
20This is true since for A = {x : f0(x) = 0}, then Pt0 (A) =

∫
A
f0(x)dx = 0.

21This doesn’t happen if we are in the absolutely continuous case. We have continuous
cases which are not and the measure induced by the variable for example f(x) = 1

2 if
x = 0, 1

2U(0, 1) if 0 < x < 1 is not dominated by Lebesgue measure.
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Example 3.3
Suppose that we want to test the hypothesis H0 : X ∼ N (0, 1) versus
H1 : X ∼ C(0, 1). According to Neyman-Pearson, we only need to look at
the ratio

f1(x)
f0(x) = π−1(1 + x2)−1

(2π)−
1
2 exp

(
−x2

2

) =
√

2√
π

exp
(
x2

2

)
1 + x2 .

The MP test is of the form

ϕ(x) =

1 if
√

2
π

exp(x2/2)
1+x2 > k

0 otherwise

where k is determined so that Eθ0 [ϕ(X)] = α. Note that f1(x)/f0(x) is a
non-decreasing 22 function of |x|. It then follows that

ϕ(x) =

1 if |x| > k1

0 if |x| < k1
.

Thus,

Pθ0

(√
2
π

exp(x2/2)
1 + x2 > k

)
= α,

knowing that X ∼ N (0, 1). Finding the distribution of this creature is not
easy. It is much easier to see Pθ0{|X| > k1} = α ⇒ 2Pθ0{x > k1} = α; we
only need to go to the table and find the value of k for α/2. If we have more
than one sample, the problem is harder to do. We can reduce the form, but
even then problems arise. In such cases, we can try simulations (which is
cheap). We generated data which is plugged in the distribution and look at
the histogram with the quantiles.

Next example is a bit more involved
Example 3.4
Suppose we have a n−sample of draws from Bernoulli distribution where
Xi

iid∼ B(p) and we test H0 : p < p0 vs H1 : p = p1 where p1 > p0. The MP
22Looking at the derivative or using the fact that for a one sample, the observation is

sufficient
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Figure 10: Test for the identification of the random variable distribution
Comparison between Cauchy density function versus Normal density.

test in this case is

ϕ(x) =


1 if λ(x) = pt1(1−p1)n−t

pt0(1−p0)n−t > k

γ if λ(x) = k

0 if λ(x) < k

where k and γ are determined from Eθ0 [ϕ(X)] = α. Now, λ(x) =
(
p1
p0

)t (1−p1
1−p0

)n−t
and since p1 > p0, λ(x) is an increasing function of t. We can see this by dif-
ferentiating the function (taking logarithms first). It follows that λ(x) > k

if and only if t > k1 for some constant k1. Then

ϕ(x) =


1 if t > k1

γ if t = k1

0 if t < k1

and
α = Eθ0 [ϕ(x)] = Pθ0{T > k1}+ γPθ0{T = k1}
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where T =
∑n
i=1Xi ∼ B(n, p). The above is equal to

=
n∑

r=k1+1

(
n

r

)
pr0(1− p0)n−r + γ

(
n

k1

)
pk1

0 (1− p0)n−k1

which can be solved using the table for the CDF of the binomial distribution.
Note that the most powerful size α test is independent of p1 as long as
p1 > p0, that is the test remains most powerful of size α against p > p0 and
is therefore a uniformly most powerful test (or UMP) test of null hypothesis
p = p0 against the alternative p > p0.

Section 3.2. Families with the Monotone Likelihood Ratio
Property

Definition 3.10 (Monotone likelihood ratio property)
Let {fθ : θ ∈ Θ}, Θ ⊂ R be a family of PDF’s (PMF’s). We say that {fθ}
has an MLR property x = {x1, . . . , xn} in T (x) if for θ1 < θ2, whenever
fθ1 , fθ2 are distinct, the ratio fθ2(x)/fθ1(x) is a non-decreasing function of
T (x) for the set of values x for which at least one of fθ1 and fθ2 is greater
than 0.
Example 3.5
Let Xi be iid U(0, θ), θ > 0. Note that for the purpose of this example, we
will inverse the roles of θ1 and θ2. The likelihood function is

L(θ,x) = f(x) =


1
θn if 0 < max xi ≤ θ

0 otherwise

If θ1 > θ2,

fθ1(x)
fθ2(x) =

1
θn1

1 max(0,θ1) xi
1
θn2

1 max(0,θ2)xi
=
(
θ2
θ1

)n 1 max(0,θ1) xi

1 max(0,θ2)xi

Thus

R(x) =

1 if max xi ∈ [0, θ2]

∞ if max xi ∈ (θ2, θ1]
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We adopted this usage of θ1, θ2 to have the bigger term in the nominator
and the smaller term in the denominator.

Then the family of uniform U(0, θ), θ > 0 has the MLR property in max xi.
We have a general result which tells us more about the class of distributions
which have this property.
Theorem 3.11
The exponential 1-parameter family fθ(x) = exp{Q(θ)T (x) +S(x) +D(θ)}
where Q(θ) is a non-decreasing function of θ has the MLR property in T (x).

Proof Left as an exercise: choose 2 values with θ2 > θ1 and look at

fθ2(x)
fθ1(x) = exp{[Q(θ2)−Q(θ1)]T (x) +D(θ2)−D(θ1)

and take the derivative to show that the ratio is non-decreasing. �

Example 3.6
Let Xi

iid∼ B(m, p), i = 1, . . . , n. Then the likelihood function is

L(p,x) =
n∏
i=1

(
m

xi

)
pxi(1− p)m−xi

=
n∏
i=1

(
m

xi

)
pΣni=1 xi(1− p)mn−Σni=1 xi

=
n∏
i=1

(
m

xi

)(
p

1− p

)t
(1− p)mn

where T (x) =
∑n
i=1Xi,

∑n
i=1 xi = t and θ = p

1−p .

exp
{

log θt+
n∑
i=1

log
(
m

xi

)
+mn log(1− p)

}

and so we have Q(θ) = log θ;T (x) =
∑n
i=1 log

(m
xi

)
;D(θ) = mn log

(
1

1+θ

)
.

Since log is a monotone function, we get a non-decreasing function and the
result holds.

106



Theorem 3.12
Let X ∼ fθ, θ ∈ Θ, where {fθ} as the MLR property in T (x) for testing

H0 θ ≤ θ0

H1 θ > θ1

where θ0 ∈ Θ. Any test of the form

ϕ(x) =


1 if T (x) > t0

γ if T (x) = t0

0 if T (x) < t0

has non-decreasing power function and is the UMP test of its size Eθ ϕ(x) =
α provided that α 6= 0.

For the proof, we know how to test θ = θ0 vs θ 6= θ0. The likelihood ratio
being a monotone function, then since the MLR has a power function which
is monotone, then MLR has monotone power function, that is Eθ0ϕ(x) is a
power function. The supremum is the same for other values for H1, since
finding t0 and γ does not depend on the value of θ0. In general, there are
no UMP test forH0 : θ ∈ (a, b)

H1 : θ /∈ (a, b)
or

H0 : θ = θ0

H1 : θ 6= θ0

In many cases, the UMP test may not even exist; this is why we need to
develop new approaches. We had earlier the likelihood ratio for compari-
son; can we develop something similar, maybe the ratio of integrals. The
criterion should be meaningful: the ratio means large values are good for
the null hypothesis and this should be reflected by our test. Ratio of in-
tegrals

∫
θ0
fθ(x)/

∫
θ1
fθ(x) yields some problems. Fisher developed another

approach, using N (µ, σ2) as a motivating example. How would we construct
tests to verify the two previous or other similar situations? No unique answer
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exists, but here is one:

λ(x) =
supθ∈Θ0 L(θ,x)
supθ∈Θ L(θ,x) ≤ 1

Large values of λ(x) are good for H0 and small values are bad for H0. How
small is the value for a given size α = PH0(λ(x) ≤ C) is a question we will
need to take care of. In general, its is not easy to find the exact distribu-
tion of λ(x); we need to rely on large-sample theory and on the fact that
−2 log λ(x) → χ2(ν) where ν = dim Θ − dim Θ0. The problem with the
integrals is that we would recover the average, and that the numerator’s av-
erage could be higher. It may be hard then to find directions for acceptance
or rejection.

We reject H0 if λ(x) ≤ c otherwise we fail to do so.

Example 3.7
Let Xi

iid∼ N (µ, σ2) and suppose that we wish to test

H0 µ = µ0

H1 µ 6= µ0
; Θ = {(µ, σ2) : µ ∈ R, σ2 ∈ R2}

and notice that both are composite hypothesis. We present the calculations
step by step for finding the ratio of MLE.

Step 1: Calculate the likelihood function:

L(θ = (µ, σ2),x) =
n∏
i=1

1√
2πσ

exp
{
−(xi − µ)2

2σ2

}

= 1(√
2πσ

)n exp
{
− 1

2σ2

n∑
i=1

(xi − µ)2
}

Step 2: Find the supremum on Θ:

sup
θ∈Θ
L(θ,x) = L((x̄, σ̂2ML),x)
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where
σ̂2ML = 1

n

n∑
i=1

(xi − x̄)2.

Step 3: Find the supremum on Θ0:

sup
θ∈Θ0

L(θ,x) = L((µ, σ̂2∗),x)

where
σ̂2∗ = 1

n

n∑
i=1

(xi − µ)2.

Step 4: We are now set to calculate λ(x):

λ(x) =
supθ∈Θ0 L(θ,x)
supθ∈Θ L(θ,x)

= L((µ, σ̂2
∗),x)

L((µ, σ̂2
ML,x)

=

(√
2πσ̂∗

)−n
exp

{
− 1

2σ̂2
∗

∑n
1 (xi − µ0)2

}
(√

2πσ̂ML
)−n

exp
{
− 1

2σ̂2
ML

∑n
1 (xi − x̄0)2

}

and noticing that σ̂2∗
∑n
i=1(xi−µ0)2 = n and similarly for the denom-
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inator, we have

λ(x) =
(
σ̂ML
σ̂∗

)n exp
(
−n

2
)

exp
(
−n

2
)

=
(
σ̂ML
σ̂∗

)n
=
(
σ̂2

ML
σ̂2
∗

)n
2

=
( ∑n

i=1(xi − x̄)2∑n
i=1(xi − µ0)2

)n
2

=
( ∑n

i=1(xi − x̄)2∑n
i=1(xi − x̄)2 + n(x̄− µ)2

)n
2

=

1 +
( 1
n− 1

)
n(x̄− µ0)2( 1

n− 1

)∑n
i=1(xi − x̄)2


−n2

which is like a t distribution. Let

F = n(x̄− µ0)2( 1
n− 1

)∑n
i=1(xi − x̄)2

is a ratio of χ2(1)/χ2(n− 1). The above then reduces to

λ(x) =
(

1
1 + F

n−1

)−n2

Note that λ(x) is a decreasing function of F . Moreover, {λ(x) ≤ c} ⇔
{F (1, n− 1) ≥ k}.

For a given α, we find k such that α = P(F (1, n − 1) ≥ K). You
mind want to refresh your memory here about the derivation of the F
statistic. If

X − µ0
σ/
√
n
∼ N (0, 1),⇒ n(X − µ0)2

σ2 ∼ χ2(1).
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and also

1
n− 1

n∑
i=1

(xi −X)2/σ2 = (n− 1)S2

(n− 1)σ2 = χ2(n− 1)
n− 1 ;

thus the ratio is F (m,n) = V/m
W/n provided V ⊥⊥ W, and that W ∼

χ2(m),W ∼ χ2(n).

Theorem 3.13 (Generalized likelihood ratio test)
Suppose we want to test H0 : θ ∈ Θ0 ⊆ Θ versus H1 : Θ1 = Θ \Θ0 then the
generalized likelihood ratio test is

λn(x) =
supθ∈Θ0 L(θ;x1, . . . , xn)
supθ∈Θ L(θ;x1, . . . , xn)

where the rejection region is given by C = {x : λn(x) ≤ c} where c is chosen
such that

sup
θ∈Θ0

Pθ(C) = α. (3.47)

We find c such that (3.47) is fulfilled. We see that it reduces to Neyman-
Pearson when the two hypothesis are simple. Often times, we cannot do
this easily and have to rely on asymptotic23:

C = {x : −2 log λn(x) ≥ k}.

If θ = (η, ξ) where θ, η, ξ are respectively of dimensions r, r′, r− r′. Then,
we may want to test H0 : η = η0 against H1 : η 6= η0. In such case, we don’t
even need H1 as it is Θ \ Θ0. We can establish some great results under
some regularity conditions24. Indeed,

−2 log λn
D−→ χ2

r−r′

Although we don’t prove this result, here is nevertheless the essence of the
23Note that here the concept of large sample depends heavily on the dimension of

parameter to estimate
24These regularity conditions resemble that of the Cramer-Rao lower bound.
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proof. We can interchange logarithms and supremum since the log is a
monotone function. Then, we get the supremum of the log-likelihood. Ex-
panding this value and computing under H0, we get two terms, one of which
is like the derivative and will vanish. The other one is almost normal, and we
can normalize properly to get convergence in distribution to the chi-square
distribution.

Section 3.3. Confidence intervals

Often times, people are not happy with sharp hypothesis; it can often be
too restrictive and we don’t have necessarily most powerful tests for them.
We would want to look at results of the form |η− η0| < ε, but as mentioned
no result is as good as those we derived to do that.

C∗ = {x : −2 log λn(x) ≥ χ2
r−r′,α}

where
sup
θ∈Θ0

P
(
χ2
r−r′ ≥ χ2

r−r′,α

)
= α.

If we use this, we can show that limn→∞ Pθ(C∗) = 1 for all θ ∈ Θ1. If the
null is incorrect, then the probability of rejecting when the null is false is 1;
the power of the test increase to 1. We pursue with a proper

Definition 3.14 (Confidence set)
A family of subsets S(x) of Θ ⊆ Rk is said to constitute a family of confidence
sets at confidence level 1− α if25

Pθ{S(x) ⊃ θ} ≥ 1− α ∀ θ ∈ Θ. (3.48)

Example 3.8
Suppose we have Xi

iid∼ N (µ, σ2) for i = 1, . . . , n and where µ is unknown,
25 Note here that S(x) is a random set. In the one-dimensional case, this is a set whose

endpoints are random variables.
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but σ2 is known. Recall that

Xn = 1
n

n∑
i=1

Xi ∼ N
(
µ,
σ2

n

)
.

Look now at the centred distribution

Z = Xn − µ
σ/
√
n
∼ N (0, 1)

and let α = 0.05. Then P(|Zn| < 1.96) = 0.95 and so

0.95 = P


∣∣∣∣∣∣∣∣
Xn − µ

σ√
n

∣∣∣∣∣∣∣∣ < 1.96

 = P
(
Xn −

1.96σ√
n

< µ < Xn + 1.96σ√
n

)

yields the random interval (Xn − 1.96σ/
√
n,Xn + 1.96σ/

√
n). If σ2 is un-

known, we can use the sample variance and thus the ratio will be distributed
according to a Student-t. Note that we relied on the asymptotic of the dis-
tribution of ratio and in this case we could easily isolate the parameter of
interest- this doesn’t always happen.

Definition 3.15 (Pivotal quantity)
If the distribution of T (x,θ) does not depend on any unknown parameter,
we say T (x,θ) is a pivotal quantity.

We will now distinguish between the large-sample case and the small sample
case, as the two approaches are very different in practise.

Large sample confidence interval

If the Xi’s have common mean µ and variance σ2 and are independent, then

Xn − µ
σ/
√
n

n→∞−−−→ N (0, 1)
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using the Central Limit Theorem (the statistic is asymptotically pivotal).
This holds as long as S p−→ σ and so(

Xn −
zα/2S√

n
,Xn +

zα/2S√
n

)

is an approximate (1−α) confidence interval for µ. We had earlier the exact
distribution, we now have the asymptotic one and P(Z > zα/2) = α/2. One
may ask what the sample size has to be and how large it needs in order
to be able to draw valid inference for this. We have a result that links the
uniform norm of the normalized parameter with the cumulative distribution
function of the normal for given n.

Theorem 3.16 (Berry-Esseen)
We have forXi

iid∼ f and sufficient sample size, where EX3
i <∞ the following

bound

sup
t

(|Fn(t)− Φ(t)|) = ‖Fn(t)− Φ(t)‖∞ ≤
Cρ

σ3√n
(3.49)

for fixed value of n and this allows us to get an idea of n, since this has
convergence O(1/

√
n). Since the skewness is not known, we can rely on

the histogram. The best estimate for C is for the moment 0.4785, which
is a big improvement over the original upper bound of 7.59 (that dates
back to Esseen in 1942.) Esseen showed that the lower bound is given by
Cl ≈ 0.4097.

A second approach for this is to use the asymptotic distribution of θ̂ML and
using the fact that

√
n(θ̂n − θ)

D−→ N (0, I−1(θ))

and from this, we can make a pivotal quantity again, with√
nI (θ)(θ̂n − θ)

D−→ N (0, 1)
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such that P(
√
nI (θ)|θ̂n − θ| < zα/2) ≈ 1 − α for large n. This is equivalent

to saying

P
(
θ̂n −

zα/2√
nI (θ)

< θ < θ̂n +
zα/2√
nI (θ)

)
≈ 1− α

and we often times replace I (θ) by a consistent estimator. For instance, if
I (θ) is a continuous function of θ, then I (θ̂n) is a consistent estimate of I (θ).
Indeed, recall that if Xn

p−→ X and g is continuous, then g(Xn) p−→ g(X).
Also, if we look back at the definition of Fisher’s information,

I (θ) = E
[{

∂

∂θ
log fθ(x)

}2]
.

If you have a bunch of samples, you can easily estimate this with

Î (θ) = 1
n

n∑
i=1

{
∂

∂θ
log fθ(xi)

}2
∣∣∣∣∣
θ=θ̂

In the assignment, plug θ̂ for θ and using Zehna’s theorem, this will be
asymptotically best; θ̂n±

zα/2√
nÎ (θ)

is an approximate 1−α confidence interval

for θ.
Example 3.9
Let Xi

iid∼ B(1, p) and recall that

E
[{

∂

∂θ
log fθ(x)

}2]
= −E

{
∂2

∂θ2 log fθ(x)
}

under regularity conditions. then

p̂n = 1
n

n∑
i=1

Xi

is the MLE of p and

Pp(x) = P(X = x) = px(1− p)1−x, x = 0, 1.
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The log-likelihood is log Pp(x) = x log p+ (1− x) log(1− p) and

∂

∂p
log Pp(x) = x

p
− 1− x

1− p .

Using the above formula for the information , we compute

∂2

∂p2 log Pp(x) = − x

p2 −
1− x

(1− p)2

and

−E
[
∂2

∂p2 log Pp(x)
]

= E
[
x

p2 + 1− x
(1− p)2

]
= Ex

p
+ E 1− x

(1− p)2

= p

p2 + 1− p
(1− p)2

= 1
p(1− p) .

Therefore, a confidence interval is given by

θ̂n ±
zα/2√
nI (θ) = p̂n ±

zα/2√
n(p̂n(1− p̂n))−1 = p̂n ±

zα/2
√
p̂n(1− p̂n)
√
n

.

election confidence interval for surveys are of the type presented above.

All that we presented so far was drawn from cases with large samples. We
may also wish to see how to derive pivotal quantities for the case of small
sample sizes.

Small sample confidence interval

We will use the probability integral transform to get a pivotal quantity. If
X ∼ F , then F (t) = P(X ≤ t) and taking Y = F (X), then Y ∼ U(0, 1)
if X is a continuous variable. Can take the uniform distribution, generate
observations and approximatively invert F (x), that is Xi = F−1(Yi) given
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F monotone.

Suppose that X ∼ E(λ) and

fλ(x) =

λe
−λx if x > 0

0 otherwise .

Then
Fλ(x) =

∫ x

0
λe−λtdt = −e−λt

∣∣∣x
0

= 1− e−λx.

If we define Y = 1− e−λX and find the distribution

fY (y) = d

dy
P(Y ≤ y)

= d

dy
P(1− e−λX ≤ y)

= d

dy
P(e−λX ≥ 1− y)

= d

dy
P(−λX ≥ log(1− y))

= d

dy
P(X ≤ −λ−1 log(1− y))

= d

dy

(
1− e−

λ log(1−y)
λ

)
= d

dy
y = 1

and so Y ∼ U(0, 1). This result holds in more generality, and the proof for
an arbitrary absolutely continuous distribution function is left as an exercise
(simple application of the change of variable theorem).

We can use this to devise a pivotal quantity. Suppose Xi ∼ F and consider
T (x,θ) =

∏n
i=1 Fθ(Xi) and taking logarithms, we obtain

− log T (x) =
n∑
i=1
− logFθ(Xi)

where Fθ(Xi) = Yi. Note that Yi ∼ U(0, 1).

Exercise 3.1
If U ∼ U(0, 1), show that − logU ∼ (E)(1) = Γ(1, 1). Then − log T (x,θ) =
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∑n
i=1− log Yi =

∑n
i=1−Zi and so Zi

iid∼ E(1) for i = 1, . . . , n so that∑n
i=1 Zi ∼ Γ(n, 1). If we define Wn = − log T (x,θ) ∼ Γ(α = n, β = 1),

using the table, we can find a, b such that P(a < Wn < b) = 1−α. However,
we may not in this case be able to isolate θ in the middle. Note however
that we have

P(e−b < T (X,θ) < e−a) = 1− α.

Remark
Confidence interval for a given confidence level is not unique. That is why,
we introduce other optimality notions, such as Uniformly Most Accurate
(UMA) confidence intervals, shortest- length (average length) confidence
intervals and some others. The former is closely tied to UMP tests. Indeed
there is a one-to-one connection between them. As such the restrictions we
were faced with when trying to find UMP tests are present here too. The
latter, i.e. shortest-length (average length) confidence interval, are desirable
and in interesting cases are available, such as normal distribution and hence
for asymptotic confidence intervals. The confidence interval presented in
class using asymptotic theory for MLE is shortest-length confidence interval.

Section 3.4. Goodness-of-fit tests

In parametric settings, we can get plausible models if we have large data.
The question that arises however in practise is how we can know the dis-
tribution we stipulate is the correct one for the data. Many things need
to be check: whether the random variables are truly independent or come
from the same distribution, or even if the parameters of the distribution,
say in the case of N (µ, σ2) are correctly specified. One thing we could do
to is to compare our assumption with the data gathered through means of
the empirical distribution, whivh is unbiased, consistent and equivalent to
MLE in the non-parametric setting. One thing that is possible is to gen-
erate the quantiles and draw them against the assumption: concordance
would come with the 45line. We want to measure thus the distance between
F̂n and F , which leads to different test depending on your metric, such as
Kolmogorov-Smirnoff test (‖F̂n − F‖∞), the Cramer Von Mises test with l2

118



norm: (‖F̂n−F‖l2) which is natural (Euclidian norm), but hard to compute
in practise and finally the Anderson-Darling which works in l2, but with a
ponderation function to accommodate for extreme-values. In any such case,
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Figure 11: Empirical distribution for a sample of size 20 against the CDF
for N (0, 1)

we still need to find the distribution, and as soon as sampling becomes more
complex and we lose independence, this is a very hard problem.

Chi-square tests

The idea for the test is simple: chop the real line into different bins, take the
observations and put into bins, and make the sets A1, . . . , An and then com-
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pare P(Ak)− P̂(Ak): compare the two vectors of n-dimension (and not func-
tions). By doing so, we take (P(A1), . . . ,P(Am)) with (P̂(A1), . . . , P̂(Am)):
by splitting our data into a finite number of group, we reduces the dimension
from ∞ to m and created a multinomial distribution in the process.

Theorem 3.17
Let X = (X, . . .Xk−1) be a multinomial random variable with parameters
n, p1, . . . , pk−1. Then, the random variable

Uk =
k−1∑
i=1

(xi − npi)2

npi

D−→ χ2(k − 1)

as n→∞ and where k is the number of bins, Xi is the number of observa-
tions in the ith bin and npi is the expected number of observations in bin i
under the null hypothesis.

Recall the PDF of the multinomial is given by

P(X = x) =
(

n

x1, . . . xn

)
n∏
i=1

pxii

and where
∑n
i=1 xi = n,

∑n
i=1 pi = 1 and x = (x1, . . . , xn), 0 ≤ xi ≤ n and

the margins are binomial if the random variables are independent. We write
X = (X1, . . . , Xn) ∼M(n, p1, . . . , pk).

Remark
There are only k − 1 independent random variables as one is completely
specified by the others. By normalizing, we can get

{
Xi − npi√
npi(1− pi)

}2
D−→ χ2(k − 1)

but the denominator does not match the one we have; we don’t have 1− pi
and the formula given would require VarX = EX = pi, so that X be Poisson.
For this, we need npn ≈ λ so that n ∼ 1

pn
, that is n is reciprocal to pn and

pn = O
(

1
n

)
. What happens is that npn(1 − pn) ≈ npn − np2

n → npn and
this formula tells us the number of bins needed.
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We now present some important results

Theorem 3.18
Let X1, . . . , Xn be a random sample on X. Suppose H0 : X ∼ F0, where F0

is completely known. Consider a collection of disjoint Borel sets A1, . . . , Ak

that form a partition of the real line. Let P{X ∈ Ai} = pi for i = 1, . . . , k
and assume that pi > 0 for each i. Let Yj denote the number of X ′is in Aj
for j = 1, . . . , k, i = 1, . . . , n. Then, the joint distribution of (Y1, . . . , Yk) is
multinomial with parameters n, p1, . . . , pk.

Theorem 3.19
Let H0 : X ∼ F0 where θ = (θ1, . . . , θr) is unknown. Let (X1, . . . , Xn) be a
random sample on X and suppose that the MLE’s of θ1, . . . , θr exists and
are respectively θ̂1, . . . θ̂r. Let A1, . . . , Ak be a collection of disjoint Borel
sets that cover the real line (a partition) and let

p̂i = Pθ̂(X ∈ Ai) > 0, i =, . . . , k

where θ̂ = (θ̂1, . . . , θ̂r) and Pθ̂ is the probability distribution associated with
Fθ. Let Y1, . . . , Yk be the random variables defined as follows, Yi: number
of Xi ∈ Aj , i = 1, . . . , n, j = 1, . . . , k. Then, the random variable

Vk =
k∑
j=1

{
(yj − np̂j)

np̂j

}2
D−→ χ2(k − r − 1).

Be warned that there are two ways here of finding MLE. We have

L(θ, x1, . . . , xn) ∝
(

n

y1, . . . , yk

)
k∏
j=1

pj(θ)

and thus Pj(θ) = Pθ(x ∈ Aj). If Fθ is the CDF of N (θ, 1), then we take
Pθ(x ∈ Aj) =

∫
Aj

(
√

2π)−1 exp
(
−1

2(x− θ)2
)
dx, find a numerical approxi-

mation that we put back in the multinomial, before finding the maximizer of
the multinomial likelihood. This is the right approach: maximizing with the
Normal and transferring our result to the multinomial would give a wrong
result.
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We move along with an example, which illustrates the test for means. We
could think for example of testing whether hearth attacks happen more on
Monday.

Example 3.10 (Fair die)
A die is rolled 120 times with the following result. and we want to test

Value 1 2 3 4 5 6
Frequency of xj 20 30 20 25 15 10

whether the die is fair, that is H0 : pi = 1
6 , i = 1, . . . , 6. The test statistic is

u = 1
120

(
1
6

) 6∑
j=1

[
xj − 120

(1
6

)]2
= 2 · 102 + 2 · 52

20 = 12.5.

Testing at 5% level, we reject H0 since 12.5 > 11.07. The intuition here is
that small values are good for H0.
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