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This course gives an overview of the theory of robustness and distribution-free tests. It
will also give an introduction to estimation in a function space. After the course, the
student will know the most important results in these areas and will have learned to
use robust and non-parametric methods.

Part 1
Review of Likelihood Methods

The basis of modeling is a stochastic process which describes the data generation (sim-
ulating from the model should generate output resembling the data).

Data Model

Probability

Statistics

Typically, a model contains parameters. The data is used to estimate (identify, learn)
the true value of the parameter or to test questions about the parameters.

Example 1.1 (Regression models)
(a) The simple linear regression has Yi = α + βxi + σEi for i = 1, . . . , n. We can assume

E1, . . . , En
iid∼ N (0, 1), but also E1, . . . , En

iid∼ G where G ·∼ N (0, 1); a method which
works well with this model is robust. On the contrary, we can also consider lifting

restrictions as E1, . . . , En
iid∼ F ⊂ F , typically a class of absolutely continuous distribu-

tions. This problem is rank-based, and non-parametric, meaning that the parameter
belongs to an infinite dimensional space.

(b) Multiple regression, of the form Yi = θ0 + x>i θ+ σEi, with dim(θ) = p.
(c) Another non-parametric problem is smoothing: for xi ∈ R, we consider Yi =

f (xi) + σEi, where f ∈ C 2(R)

Definition 1.1 (Likelihood)
The joint density of the data, viewed as a function of the parameter(s), is called the
likelihood (function) and denoted Ln(θ), n indicating the sample size.

Example 1.2 (Likelihood of Bernoulli variates)
Let X1, . . . , Xn

iid∼ B(p). Then, the density for one observation x is

f (x | p) = px(1− p)1−x =





p if x = 1,

1− p if x = 0

and thus

Ln(p) = pΣn(1− p)n−Σn , Σn =
n

∑
i=1

Xi
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To find the maximum of this equation as a function of p, we compute

∂

∂p
Ln(p) = Σn pΣn−1(1− p)n−Σn − pΣn(1− p)n−Σn−1(n− Σn)

and the root of ∂Ln/∂p is given by

Σn

p̂n
=

n− Σn

1− p̂n
⇔ p̂n =

Σn

n
= X̄n

If Ln(p1) > Ln(p2), the Bernoulli model B(p1) is more probable that B(p2) to have
generated the data.

Definition 1.2 (Maximum likelihood estimator)
The value θ̂ of the parameter which satisfies Ln(θ̂n) ≥ Ln(θ) for all θ ∈ Θ is called
the maximum likelihood estimator (MLE). It is often found as a root of the likelihood
equation

∂

∂θ
log(Ln(θ)) = 0.

The function `n(θ) = log(Ln(θ)) is called log-likelihood and the score equation for a
sample of size n is

∂

∂θ
`n(θ) =

n

∑
i=1

∂

∂θ
log( f (Xi | θ)) = 0.

Example 1.3 (Likelihood of Bernoulli variates (continued))
The log-likelihood for an n-sample of Bernoulli variates is

`n(p) = Σn log(p) + (n− Σn) log(1− p).

Example 1.4 (Independent and identically distributed random variables)
Let X1, . . . , Xn

iid∼ F(x | θ) with density f (x | θ) for some unknown θ = θ0. We have
Ln(θ) = ∏n

i=1 f (Xi | θ) and

1
n
`n(θ) =

1
n

n

∑
i=1

`n( f (Xi | θ))
a.s.−→ E (log( f (X | θ)))

where

E (log( f (X | θ))) =
∫ [

log
(

f (x | θ)

f (x | θ0)

)
+ log( f (x | θ))

]
f (x | θ0)dx

= −Iθ:θ0 +
∫

log( f (x | θ0)) f (x | θ0)dx.

Iθ:θ0 is the divergence. We stick with the original definition of Kullback & Leibler (1951).
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Definition 1.3 (Kullback–Leibler divergence)
Let f1 and f2 be two densities. The quantity

I1:2 :=
∫

log
(

f1(x)
f2(x)

)
f1(x)dx ≥ 0

is called the mean information in an observation from f1 for discriminating f1 from
f2.1 We have that I1:2 = 0 if and only if f1 = f2 almost surely.

The quantity

J( f1, f2) := I1:2 + I2:1 =
∫
( f1(x)− f2(x)) log

(
f1(x)
f2(x)

)
dx

is the Kullback–Leibler divergence. Jeffreys noted the “symmetry, positive definite-
ness and additivity” of the divergence, as well as its “invariance to non-singular trans-
formations”.

This shows that Eθ0 (log( f (X | θ))) has a unique maximum at θ = θ0 under the condi-
tion of identifiability (if θ1 6= θ2, then f (x | θ1) 6= f (x | θ2)).

Usually, one has θ̂n → θ0 almost surely or in probability as n→ ∞. Is θ0 an asymptotic
root of the likelihood equation? That is the case if the MLE is consistent. We investigate
the Fisher consistency of the score. First,

1
n

∂

∂θ
`n(θ0) =

1
n

n

∑
i=1

∂

∂θ
log( f (Xi | θ0))→ Eθ0

(
∂

∂θ
log( f (X | θ0))

)

as n→ ∞, where

Eθ0

(
∂

∂θ
log( f (X | θ0))

)
=
∫

∂

∂θ
log( f (x | θ0)) f (x | θ0)dx

=
∫ ∂

∂θ f (x | θ0)

f (x | θ0)
f (x | θ0)dx

=
∂

∂θ

∫
f (x | θ0)dx =

∂

∂θ
1 = 0

For large values of n and for scalar θ:

0 =
∂

∂θ
`n(θ̂n) ∼=

∂

∂θ
`n(θ)

∣∣∣∣
θ=θ0

+ (θ̂n − θ0)
∂2

∂θ2 `n(θ)

∣∣∣∣
θ=θ0

(1.1)

1This is what is often nowadays termed the Kullback–Leibler divergence of f2 from f1.
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and thus

θ̂n − θ0 ∼=
∑n

i=1
∂
∂θ log( f (xi | θ))

−∑n
i=1

∂2

∂θ2 log( f (xi | θ))

∣∣∣∣∣
θ=θ0

.

We therefore have

Theorem 1.4 (Asymptotic normality of maximum likelihood estimator)
The asymptotic behaviour of the MLE is as follows:

√
n(θ̂n − θ0)

d−→ N
(

0, I(θ0)
−1
)

,

where the Fisher information is

I(θ) := Eθ

([
∂

∂θ
log( f (X | θ))

]2
)
≥ 0.

Under additional regularity conditions, we also have equality of the Fisher information
with the negative Hessian matrix

I(θ) = −Eθ

(
∂2

∂θ2 log( f (X | θ))

)
.

An immediate consequence of Theorem 1.4 is that θ̂n
·∼ N (θ0, (nI(θ0))

−1).

Often, the MLE has to be computed by numerical optimization. Equation (1.1) shows a
possible avenue, taking

θ̂i+1 = θ̂i +
∂
∂θ `n(θ̂i)

− ∂2

∂θ2 `n(θ̂i)

which is in a nutshell the Newton-Raphson algorithm. The quantity

J (θ̂) = − 1
n

∂2

∂θ2 `n(θ̂i)

is called the observed information. Another possible algorithm for calculations of the
MLE is the Fisher’s scoring algorithm,

θ̂i+1 = θ̂i +
∂
∂θ `n(θ̂i)

I(θ̂i)
,

which uses the expected information.
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Part 2
Robustness

2.1. Critique of the likelihood method

We can show that if the model is accurate, then the MLE will be asymptotically the most
efficient consistent estimator (under regularity conditions).

What is the behaviour of the MLE if the model only holds approximately? Suppose

X1, . . . , Xn
iid∼ G(x), which we approximate by F(X | θ).

Example 2.1
Let X1, . . . , Xn

iid∼ (1− ε)N (µ0, 1) + εH. What will be the impact of ε and H on the MLE?
Suppose H = δk for k ∈ R+. We can show that the expectation and the variance of the
MLE are strongly perturbated. Express Xi as

Xi = (1− Bi)Zi + Bik

where Bi
iid∼ B(ε) and Zi

iid∼ N (µ0, 1). Then

E (µ̂0) = E
(

1
n

n

∑
i=1

Xi

)
= E (Xi)

= E ((1− Bi)Zi + kBi)

= EBi

(
EZi |Bi

((1− Bi)Zi + kBi)
)

= (1− ε)µ0 + kε

and

Var (µ̂n) =
1
n

(
ε(1− ε)(µ2

0 + k2
)
+ (1− ε)

If ε ≈ 0.05, µ0 = 0, n = 100 and k is very large, we are easily convinced that the median
will be a “better” estimator in terms of the MSE.

The following material is extracted from Huber & Ronchetti (2009).

In order to estimate the standard error of Normal data N (µ, σ2), Fisher proposed to
use the MLE

Sn =

√
1
n

n

∑
i=1

(xi − x̄)2

If the model is correct, this estimator is the most efficient (among consistent estimators).
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Despite this argument, the physicist Eddington observed that

S̃n =
1
n

n

∑
i=1
|xi − x̄|

performs better.

An eye opening example has been given by Tukey (1960). If we suppose a mixture of
good observations N (µ, σ2) and bad ones N (µ, 9σ2) in proportions 1− ε, ε, then even
for small values such as ε ≈ 0.02, the robust estimator of Eddington performs “better”
than the MLE in terms of the asymptotic relative efficiency (ARE) of S̃n to Sn, given by

ARE = lim
n→∞

Var (Sn) /[E (Sn)]2

Var
(
S̃n
)
/
[
E
(
S̃n
)]2 =

1
4

[
3(1+80ε)
(1+8ε)2 − 1

]

π(1+8ε)
2(1+2ε)2 − 1

.

Why use the ARE? Note that E (Sn) → σ, while E
(
S̃n
)
=
√

2/πσ ∼= 0.8σ. We should
compare

lim
n→∞

Var (c1,nSn)

Var
(

c2,nS̃n

) ,

with E (c1,nSn)→ σ, E (c2,nSn)→ σ and c1,n = σ/E (Sn) and c2,n = σ/E
(
S̃n
)
.

What robustness is trying to do is to broaden the model. The model assumptions may
fail to hold, and so this leads to a question, namely what should a robust procedure
achieve?

• it should have a nearly optimal performance at the assumed model
• small deviations from the model assumptions should impair the performance only
slightly
• somewhat larger deviations from the model should not cause an immediate break-
down (catastrophe, absurd values).

Gross errors (termed outliers) occurring in a small proportion are considered a small
deviation. Similarly, small errors (through for example rounding) in a large proportion
of the data are also small deviations.

Remark 2.1
Let M be the set of all probability measures on a sample space Ω, usually a finite
dimensional Euclidean space. Then, the above ideas of “small deviations” are captured
by the Prohorov metric:

dP(F, G) := inf {ε > 0 : F{A} ≤ G{Aε}+ ε, for all Borel sets A ⊂ B(Ω)} ,
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for F, G ∈ M, where

Aε =

{
x ∈ Ω : inf

y∈A
‖x− y‖ < ε

}
.

the closed ε-neighbourhood of A.

Theorem 2.1 (von Strassen)
This theorem is extracted from von Strassen (1965), pp. 423-439. Let F, G ∈ M; then

F{A} ≤ G{Aδ}+ ε, ∀ A ∈ B(Ω) and δ, ε > 0

if and only if there exists two random variables X, Y with values in Ω and laws F and
G, respectively, such that

P (‖X−Y‖ ≤ δ) ≥ 1− ε.

The first paper using the term robust was due to G.E.P. Box, in the ’30s, on behaviour
of test statistics. The near optimality of performance is usually judged by asymptotic
indicators (with n → ∞), such as the asymptotic variance, the asymptotic efficiency or
the asymptotic relative efficiency. But unless the convergence is uniform in the neigh-
bourhood of the assumed model, there are difficulties with this approach because the
results cannot guarantee anything for finite samples.

The theory of robust statistics laid out hereafter is based on the work of Peter Huber
and Frank Hampel, both professors at ETHZ, and is mostly asymptotic in nature. It is
also possible to stay within the given sample and to study robustness with regard to
small changes of the sample. This approach is due to John Tukey, and was termed by
him as “resistance”.

Definition 2.2 (Sensitivity curve of an estimate)
A function of the statistic Tn−1(x1, . . . , xn−1), the subscript indicating the number of
observations. The sensitivity curve is

SCn−1(x) = n[Tn(x1, . . . , xn−1, x)− Tn−1(x1, . . . , xn−1)].

The asymptotic version of the sensitivity curve is Frank Hampel’s influence function.
The scaling by the sample size preserves the scale.

Example 2.2 (Sensitivity curve of mean and median)
For the arithmetic mean, we have x̄ = (x1 + · · ·+ xn−1)/(n− 1), so that

SCn−1(x) = n
(

1
n
[(n− 1)x̄ + x)]− x̄

)

= x− x̄
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which goes to ∞ as x → ∞, certainly an unbounded function.

In contrast, if T is the median, then

SCn−1(x) =n (med(x1, . . . , xn−1, x)−med(x1, . . . , xn−1))

= n
(

1
2

(
x( n

2 )
+ x( n

2 +1)

)
− x( n

2 )

)

=
n
2

(
x( n

2 +1) − x( n
2 )

)
.

for n even, n ≥ 4, you can write this and the distance is Op(n). We note that the mean
has an unbounded sensitivity, whereas the median has a bounded sensitivity.

x̄ x

SC(x)

Figure 1: Sensitivity curve for the mean

2.2. Basic types of estimates

In order to construct optimal robust estimates, we need to have a large set of candi-
date estimates to choose from, such as the class of all unbiased estimators, admissible
estimators, etc.

2.2.1. M-Estimators

These were introduced by Peter Huber, who also established their asymptotic proper-
ties. M-estimator stands for “maximum likelihood like” estimators.
Definition 2.3 (M-estimators)
An M-estimator is any estimate Tn defined by a minimization problem of the form
∑n

i=1 $(xi; Tn) for data xi and Tn which minimizes this sum, where $ is an arbitary
function, ψ is the derivative with respect to θ of $, that is ψ(x; θ) := ± ∂

∂θ $(x; θ), and

Tn = arg min
θ

n

∑
i=1

$(xi; θ).

It can be defined by an implicit equation of the form

n

∑
i=1

ψ(xi; Tn) = 0. (2.2)

Equation (2.2), is nowadays called estimating equation. Note that choosing $(x; θ) =

− log f (x; θ) leads to the MLE.
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Example 2.3 (Location estimates)
Often, we will encounter Tn = arg minθ ∑ $(xi − θ) and ∑n

i=1 ψ(xi − Tn) = 0. In this
case, we only need to specify a function $ and ψ ≡ $′.

Let θ ∈ R be a location parameter for an absolutely continuous distribution function
F. A location family is such that fθ(x) = f0(x − θ) for a probability density function
with θ = 0. Oftentimes, it is possible to express the results for the asymptotic variance
in terms of dF0(0).

Asymptotic properties of M-estimates

The mathematical development is similar to that for maximum likelihood estimators.
A simple theory is possible if $ is convex in θ or if ψ(x; θ) is monotone in θ. Assume
that ψ(x; θ) is measurable in x and non-increasing in θ.

In the most general case, this may look like

∑n
i=1 ψ(xi; t)

tT∗n T∗∗n

To be precise, let T∗n = sup{t : ∑n
i=1 ψ(xi; t) > 0} and T∗∗n = inf{t : ∑n

i=1 ψ(xi; t) < 0}.
Any T∗n ≤ Tn ≤ T∗∗n is an M-estimate under weak monotonicity. We have

{t : T∗n < t} ⊂
{

t :
n

∑
i=1

ψ(xi; t) ≤ 0

}
⊂ {t : T∗n ≤ t}

{t : T∗∗n < t} ⊂
{

t :
n

∑
i=1

ψ(xi; t) < 0

}
⊂ {t : T∗∗n ≤ t} .

Thus, at a continuity point of the distribution of T∗n and T∗∗n ,

P (T∗n < t) = P
(

n

∑
i=1

ψ(Xi; t) ≤ 0

)

P (T∗∗n < t) = P
(

n

∑
i=1

ψ(Xi; t) < 0

) (2.3)

The exact distribution of T∗n and T∗∗n can be worked out via convolution of the law of
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ψ(X; t). To investigate the limiting distribution of Tn, put

λ(t) = λ(t, F) = EF (ψ(X; t)) .

If λ(t) exists and is finite for at least one t, then it exists and is monotone for all t,
because of the assumption of monotonicity of ψ, meaning ψ(x; t)− ψ(x; s) ≥ 0 if t ≤ s.
Its expectation exists (but is possibly infinite).

Theorem 2.4 (Uniqueness of minimizer)
Assume the existence of t0 such that λ(t) > 0 for t < t0 and λ(t) < 0 for t > t0. Then,
both T∗n and T∗∗n converge in probability and almost surely to t0.

Remark 2.2
The existence of t0 is related to Fisher consistency.

Definition 2.5 (Fisher consistency)
An M-estimate is called Fisher consistent for the parametric model {F(x; θ); θ ∈ Θ} if

EFθ0
(ψ(X; θ0)) =

∫
ψ(x; θ0)dFθ0(x) = 0

for any θ0 ∈ Θ and if

EFθ0
(ψ(X; θ1)) =

∫
ψ(x; θ1)dFθ0(x) 6= 0, for all θ1 6= θ0.

Proof of Theorem 2.4 This follows from applying the strong (weak) law of large num-
bers to n−1 ∑n

i=1 ψ(xi; t0 ± ε) and the exact distributions in eq. (2.3). �

One can view M-estimators under a functional point of view. Let

Fn(x) = n−1
n

∑
i=1

IXi≤x

be the empirical distribution function. Then, the estimating equation can be written as
an expectation:

0 =
1
n

n

∑
i=1

ψ(xi; Tn) =
∫

ψ(x; Tn)dFn(x) = EFn (ψ(X; Tn)) .

We can extend this functional to a subset D ⊂ M, so that T(F) is the solution of
EF (ψ(X; T(F))). Using the empirical distribution from the sample, with T(Fn) ≡ Tn,
we recover the previous result.

Corollary 2.6
If T(F) is uniquely defined, then Tn is consistent for T(F), meaning that Tn → T(F)

where→ is either almost sure convergence, a.s.−→, or convergence in probability,
p−→.
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To derive the asymptotic distribution of Tn, it is convenient to first study λ(Tn). By our
theorem, this is a consistent estimate of zero, as λ(t0) = 0. Since λ is non-increasing,

{t : −λ(Tn) < −λ(t)} ⊂ {t : Tn < t} ⊂ {t : Tn ≤ t} ⊂ {t : −λ(Tn) ≤ −λ(t)}

We will show that−√nλ(Tn) is asymptotically normal. If this holds, an expansion of λ

around t0 will lead to the asymptotic distribution of Tn. This requires that the derivative
λ′(t0) < 0 exists.

1
n ∑n

i=1 ψ(xi; t)

tT∗n T∗∗n

λ

t0

Assumptions:

(A1) ψ(x; t) is measurable in x and nonincreasing in t.
(A2) There is at least one t0 with λ(t0) = 0.
(A3) Let Γ0 := {t : λ(t) = 0}. Then λ is continuous in a neighbourhood of Γ0.
(A4) σ2(t) = E

(
ψ2(X; t)

)
− λ(t, F)2 is finite, non-zero and continuous in a neighbour-

hood of Γ0.

Theorem 2.7
Under assumptions (A1)-(A4),

P
(
−
√

nλ(Tn) < y
)
→ Φ

(
y
σ0

)

uniformly in y, where σ0 = σ(t0).

Corollary 2.8
If λ has a derivative λ′(t0) < 0, then

√
n(Tn − t0)

d−→ N
(

0,
σ2

0
(λ′(t0))2

)

with the variance being given by

σ2
asy =

σ2
0

(λ′(t0))2 =
EF
(
ψ2(X; t0)

)
[
− ∂

∂θ EF (ψ(X; θ) )
∣∣
θ=t0

]2 .

Example 2.4
The arithmetic mean corresponds to ψ(x, θ) = (x − θ) and − ∂

∂θ ψ(x, θ) = ±1. Then
σ2

asy = E
(
(X− T(F))2).
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Recall we assumed ψ to be monotone. One can look for the root of the equation
∑n

i=1 ψ(xi, Tn) = 0, and the result stays the same if we multiply this by n−1. This

converge in probability to λ(T) =
∫

ψ(x, T(F))dF(x) if Xi
iid∼ F. Even if this is on the

asymptotic level, we can look at this in terms of the empirical distribution for finite
sample, namely λ(Tn) =

∫
ψ(x, Tn)dFn(x).

Proof of Theorem 2.7 Let y ∈ R. It follows

P
(
−
√

nλ(T∗n ) < y
)
= P (T∗n < tn)

where y = −√nλ(tn) and the sequence {tn} exists for sufficiently large n because of
the continuity of λ in a neighbourhood of Γ0.

P (T∗n < tn) = P
(

n

∑
i=1

ψ(Xi, tn) ≤ 0

)

= P
(

n

∑
i=1

(ψ(Xi, tn)− λ(tn)) ≤ −nλ(tn)

)

= P
(

n

∑
i=1

(ψ(Xi, tn)− λ(tn)) ≤
√

ny

)

= P
(

1√
n

n

∑
i=1

(
ψ(Xi, tn)− λ(tn)

σ(tn)

)
≤ y

σ(tn)

)

The sequence Yi,n = [ψ(Xi, tn) − λ(tn)]/σ(tn) for i = 1, . . . , n contains iid random
variables with expectation zero and variance 1 (because of the standardisation). We
need to verify a central limit theorem applies.

Lemma 2.9 (Central limit theorem)

P
(

1√
n

n

∑
i=1

Yn,i ≤ z

)
→ Φ(z)

uniformly in z.

Proof of Lemma 2.9 The convergence to normality follows from the Lindeberg condi-
tion: for every ε > 0,

E
(

Y2
n,i ; |Yn,i| >

√
nε
)
→ 0

as n→ ∞. Since λ and σ are continuous, this follows from

E
(

ψ2(X, tn) ; |ψ(X, tn)| >
√

nε
)
→ 0

15



as n→ ∞ because of the monotonicity assumption. �

We have thus

P
(
−
√

nλ(Tn) < y
)
→ Φ

(
y
σ0

)
.

uniformly in y. Note that any Tn such that T∗n ≤ Tn ≤ T∗∗n has the same asymptotic
behavior. �

Proof of Corollary 2.8 If λ′(t0) < 0, then

tn = t0 −
y√

nλ′(t0)
+ o(n−1/2)

which comes from a Taylor series expansion λ(tn) = λ(t0)+ (tn− t0)λ
′(t0)+ o(n−1/2).

Thus, taking y = −√nλ(tn) and using the above, we get

P (T∗n < tn) = P
(

T∗n < t0 −
y√

nλ′(t0)
+ o(n−1/2)

)

= P
(√

n(T∗n − t0) ≤ −
y

λ′(t0)
+ o(1)

)

→ Φ
(

y
σ0

)

as n→ ∞. Using Theorem 2.7, we get

P
(√

n
(−λ′(t0)

σ0

)
(T∗n − t0) ≤ y

)
→ Φ(y)

as n→ ∞. �

Remark 2.3
1. The trick of using λ(Tn) instead of Tn is useful. For example, in the location case,
ψ(x, t) = ψ(x− t), we have λF(t) =

∫
ψ(x− t) f (x)dx =

∫
ψ(x) f (x + t)dx. 2

2. The general result and a longer list of conditions is in Huber (1967).

3. (a) The result says
√

n(Tn − T(F)) d−→ N (0, σ2
asy) where

σ2
asy =

σ2
0

(λ′(t0))
2

(b) This type of limit allows us to compute confidence intervals with the help of the
limit and apply them to Tn.
2We can then differentiate under the integral sign without problems; λ is smoother as we integrate over a

smooth density.
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(c) We can also say

Tn ∼̇ N
(

T(F),
σ2

asy

n

)

for n large enough, but it does not mean that Var (Tn) = σ2
asy/n, nor that E (Tn) =

T(F).
(d) A more intuitive proof in the case of a consistent M-estimate can be based on a

Taylor series expansion of the estimating equation. Tn is in a neighbourhood of T(F),
in an interval which is of length Op(n−1/2), meaning

n

∑
i=1

ψ(xi, Tn) = 0 =
n

∑
i=1

ψ(xi, T(F)) +


 ∂

∂θ

n

∑
i=1

ψ(xi, θ)

∣∣∣∣∣
T(F)


 (Tn − T(F)) + o(n−1/2).

(2.4)

This is hand-wavy, but one can look analysed rigorously. Rewriting this is

√
n(Tn − T(F)) =

1√
n ∑n

i=1 ψ(xi, T(F))

− ∂
∂θ

1
n ∑n

i=1 ψ(xi, θ)
∣∣∣
T(F)

after multiplying by
√

n on each side of eq. (2.4). Using the central limit theorem,
the numerator converges in law, under mild regularity conditions (given in Huber),
to

N
(

EF (ψ(X, T(F))) , E
(

ψ2(X, T(F))
))

;

given that EF (ψ(X, T(F))=0, the expression for the variance simplify. Using a law of
large number, the denominator converges to

∫
− ∂

∂θ
ψ(x, θ)

∣∣∣∣
T(F)

dF(x).

This leads to σ2
0 /(λ′(t0))

2, but only if

∂

∂θ

∫
ψ(x, θ)

∣∣∣∣
T(F)

dF(x) =
∫

∂

∂θ
ψ(x, θ)

∣∣∣∣
T(F)

dF(x).

The asymptotic variance of an M-estimate (if it exists), is of the form

E
(
ψ2(X, T(F))

)
(

E
(
− ∂

∂θ ψ(x, θ)
∣∣∣
θ=T(F)

))2 =

∫
ψ2(x, T(F))dF(x)

(∫
− ∂

∂θ ψ(x, θ)
∣∣∣
θ=T(F)

dF(x)
)2 .
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4. Multivariate case: if we take θ = (θ1, . . . , θp)>, then ψ(x, θ) = ∇θ$(x, θ) ∈ Rp is
the gradient of $. The Taylor expansion leads to


−

n

∑
i=1

∂

∂θ
ψ(x, θ)

∣∣∣∣∣
θ=T(F)



−1(

n

∑
i=1

ψ(xi, T(F))

)
+ o(n−1/2)

where ∑n
i=1 ψ(xi, T(F)) ∈ Rp and the first term is an p× p matrix. This yields

√
n(Tn − T(F)) =


− 1

n

n

∑
i=1

∂

∂θ
ψ(x, θ)

∣∣∣∣∣
θ=T(F)



−1(

1√
n

n

∑
i=1

ψ(xi, T(F))

)
+ o(1)

This time, the asymptotic variance is B−1AB−1 where the symmetric p× p matrices
A, B are given by

A =
∫

ψ(x, T(F))ψ>(x, T(F))dF(x)

B =
∫
− ∂

∂θ
ψ(x, θ)

∣∣∣∣
T(F)

dF(x)

2.3. L-estimators and R-estimators

L-estimates are linear combinations of order statistics, (x1, . . . , xn) 7→ (x(1), . . . , x(n))
where x(1) ≤ x(2) ≤ · · · ≤ x(n) are ordered. An example of such estimator is the
trimmed mean, for which α · 100% of the observations at each end are deleted and the
mean of the remaining sample is taken. This can be written as

Tn =
∑n

i=1 anix(i)
∑n

i=1 ani

where ani = Iαn<i<(1−α)n, that is 1 if αn < i < (1− α)n and zero otherwise.

R-estimates are estimates derived from rank tests. To test the point null hypothesis
H0 : {the median is θ}, one can use for example the sign test,

sθ(x1, . . . , xn) =
n

∑
i=1

Ixi−θ ,

thus sθ is the number of xi greater than θ. If θ → −∞, Sθ → n, while if θ → ∞, Sθ → 0.
In the neighbourhood of the median, Sθ

·∼ n/2.

An R-estimate could be such that sθ(x1, . . . , xn) is close to n/2.
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2.4. Influence function

This concept is due to Hampel (1974), who published material from his thesis in JASA.

Definition 2.10 (Influence function)
Suppose T(F) is a statistical functional, that is T : D ⊆ M → R. The influence
function IFT(x, F) at x ∈ R of T evaluated at the model F, provided it exists, is

IF(x, T, F) =
d
dt

T(Ft)

∣∣∣∣
t=0

where Ft is a mixture law, Ft = (1− t)F + t∆x and ∆x is the Heavyside function, whose
derivative is the Dirac δ(x), a point mass at x, given by

∆x =





0, if u < x

1, if u ≥ x

or H(u− x), where H(u) is the Heavyside function

H(u) =





0 if u < 0

1 if u ≥ 0

which is a jump function of height 1 at u = 0.

The distribution Ft mixes the model F and the point mass at x. A random variable
Y ∼ Ft can be simulated in two steps:

(i) Generate u ∼ U (0, 1)
(ii) If u ≤ 1− t, sample y ∼ F and if u > 1− t, set y = x.

Ft is a perturbed version of F or more precisely a contaminated version of F.

Example 2.5 (Influence function of M-estimates)
T(F) is implicitly defined as a root of

0 = λFt(T(Ft)) =
∫

ψ(u, T(Ft))dFt

= (1− t)
∫

ψ(u, T(Ft))dF(u) + t
∫

ψ(u, T(Ft))δx(u)

= (1− t)λF(T(Ft)) + tψ(x, T(Ft)).

We need the derivative of λFt(T(Ft)) with respect to t:

−λF(T(Ft)) + (1− t)λ′F(T(Ft))
d
dt

T(Ft) + ψ(x, T(Ft)) + t
∂

∂θ
ψ(x, θ)

∣∣∣∣
T(Ft)

d
dt

T(Ft) = 0
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At t = 0, we get

λ′F(T(F))IF(x) + ψ(x, T(F))

since λF(T(F)) = 0. The influence function, it it exists, is thus equal to

IF(x) =
ψ(x, T(F))
−λ′F(T(F))

.

If we can interchange the integral and the differential operators, the denominator be-
comes

−λ′F(T(F)) = −
∫

∂

∂θ
ψ(x, θ)

∣∣∣∣
θ=T(F)

dF(x),

which may be more easily computed.

Example 2.6 (ψ functions of common M-estimates)
• The arithmetic mean has ψ(x, θ) = x − θ, and each new observation will pull the
mean on either side of θ.
• The median is ψ(x, θ) = 2H(x− θ)− 1
• Huber function is ψk(x, θ) = min(max(x− θ,−k), k)

Figure 2: Plot of ψ(x, θ) functions for the mean (full red), the median (dotted green) and Huber’s
function with k = 2 (dashed blue).

2.4.1. Functional interpretation

The operator appearing in the definition of the influence function,

d
dt

T(Ft)

∣∣∣∣
t=0

= lim
t→0+

T(Ft)− T(F)
t

= lim
t↓0

T(F + t(∆x − F))− T(F)
t

,
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is the Gâteaux derivative of the functional T evaluated at F in the direction of ∆x − F.

dT(F; G) := lim
t→0

T((1− t)F + tG)− T(F)
t

.

what is itself a function in G.

Banach space

F

G

Figure 3: Schematic representation of Gâteau derivative in a Banach space

Fréchet differentiability

The familiar meaning of differentiability demands more than the mere existence of the
Gâteaux limit

lim
t→0

T((1− t)F + tG)− T(F)
t

.

For this reason, we introduce the Fréchet differential of a functional.
Definition 2.11 (Fréchet differential)
A statistical function θ(F) is Fréchet differentiable at G ∈ M if there exists a bounded
linear function LG(F) such that

|θ(F)− θ(G)− LG(F− G)| = o(d(F, G))

where d is a distance.
Remark 2.4
1. If θ is Fréchet differentiable at G, then θ is Gâteaux differentiable at G.
2. A bounded linear functional defined on a subset ofM has the form

LF(G) =
∫

ψF(x)dG(x),

where ψ is bounded.
3. The distance function can be chosen as the Prohorov distance (see remark 2.1).
4. We provide an analogy for C 1(R) assuming f : R→ R. The derivative f ′(x) exists
if and only if

lim
y→x

f (y)− f (x)
y− x

= f ′(x) ⇔ | f (y)− f (x)− (y− x) f ′(x)| = o(|x− y|).
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5. We accept that if Ft = (1− t)F + t∆x, then dP(F, Ft) = o(t).

2.4.2. Asymptotic analysis

With the Fréchet differential, the asymptotic analysis is simplified. Suppose Fn, the
empirical distribution based on a sample x1, . . . , xn where Xi ∼ F. We can express Fn

as Fn = n−1 ∑n
i=1 ∆xi

Lemma 2.12
Assuming that θ is Fréchet differentiable with respect to the Prokhorov distance,

θ(Fn)− θ(F) =
1
n

n

∑
i=1

IF (xi) + o(dP(Fn, F)).

Remark 2.5
By Donsker’s theorem,

√
n(Fn − F) converges weakly to a Brownian bridge. From this,

it can be shown that dP(Fn, F) = Op(n−1/2) and therefore

θ(Fn)− θ(F) =
1
n

n

∑
i=1

IF (xi) + op(n−1/2).

Proof of Lemma 2.12 Because θ is Fréchet differentiable by assumption,

θ(Fn)− θ(F) = LF(Fn − F) + o(dP(Fn, F))

=
1
n

n

∑
i=1

LF(∆xi − F) + o(dP(Fn, F))

We need to show that LF(∆x − F) = IFF (x). As θ is Gâteaux differentiable,

IFF (x) = lim
t→0

(θ((1− t)F + t∆x)− θ(F))
t

.

θ is also Fréchet differentiable, thus

θ((1− t)F + t∆x)− θ(F)
t

=
1
t

LF(t∆x − tF) +
1
t

o(t)

= LF(∆x − F) + o(1)

using the linearity of LF and remark 2.4 (5). This implies LF(∆Xi − F) = IFF (Xi). �

Lemma 2.13
The expectation of the influence function vanishes over the domain, meaning

∫
IFF (x) dF(x) = 0.
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Proof We know that IFF (X) = LF(∆X − F) and, from remark 2.4 (2),

LF(∆x − F) =
∫

ψF(u)d(∆x − F)(u)

= ψF(x)−
∫

ψF(u)dF(u).

implying that

∫
IFF (x) dF(x) =

∫
ψF(x)dF(x)−

∫
ψF(u)dF(u) = 0.

�

We are now ready to provide the asymptotic normality of the estimator θ.

Theorem 2.14 (Asymptotic normality of θ(Fn) assuming Fréchet differentiability)
Under the assumption of Fréchet differentiability of θ(·),

√
n(θ(Fn)− θ(F)) d−→ N

(
0, E

(
[IFF (X)]2

))
.

Proof In Lemma 2.12, it can be shown that the error is op(n−1/2), so that the asymptotic
distribution of θ(Fn) is the same as the limiting distribution of

1√
n

n

∑
i=1

IFF (Xi) .

We know that E (IFF (X)) = 0 by Lemma 2.13 and that Var (IFF (X)) = E
(
[IFF (X)]2

)
.

Therefore, by the central limit theorem,

√
n(θ(Fn)− θ(F)) =

√
n

1
n

n

∑
i=1

IFF (Xi) + o

where o
p−→ 0 and the statement follows. �

2.4.3. Interpretation of the influence function

We now tackle the asymptotic approximation of estimates. Any function T(F) such
that the corresponding estimator T(Fn) has an asymptotically normal distribution can
be locally approximated by an M-estimate, whose asymptotic properties remain the
same. We simply have to choose

ψ(x, θ(F)) ∝ IF f (x) .
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Example 2.7
The trimmed mean can be asymptotically approximated by a Huber estimate.

2.4.4. Qualitative indicators

Various qualitative features are of interest.

1. The boundedness of the gross-error sensitivity,

γ∗ = sup
x∈R

|IFF (x) |,

which is finite for all Fréchet differentiable estimates. If γ∗ is infinite, a few outliers
can lead to wrong estimates. Estimates with finite γ∗ are called B-robust.
2. The boundedness of the local-shift sensitivity,

λ∗ = sup
x 6=y

|IF (x)− IF (y) |
|x− y| .

If λ∗ is large, a small change in an observation may have a large impact.
3. The existence of a rejection point

ρ∗ = inf{r > 0 : IF (x) = 0 if |x| > r}.

This concerns estimates that completely reject selected observations.

It is possible to design estimators for which the qualitative indicators are good (heuris-
tically giving ψ that are continuous, bounded and vanish for |x| > k for some k ∈ R).

Other than the previously defined function, we introduce the

• skipped mean: ψk(x; θ) = xI−k≤x≤k

• Hampel’s three points redescending estimator, for which

ψa,b,c(x; θ) =





a
c−b (c + x) if − c ≤ x ≤ b

−a if − b < x < −a

x− θ if − a ≤ x− θ ≤ a

a if a < x < b

− a
c−b (c + x) if b ≤ x ≤ c

0 otherwise

• Tukey’s biweight function, given by ψk(x; θ) = x(1− (x/k)2)2I|x|≤k.

In terms of our qualitative indicators, the mean only satisfies (2), the median (1), Huber
satisfies (1) and (2), but not (3). Note that the median does not have low local-shift
sensitivity, in contrast with Huber function. In contrast, the skipped mean only satisfies
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x

ψ(x)

(a) mean

x

ψ(x)

(b) median

−k k

−k

k

x

ψk(x)

(c) Huber

−k k

−k

k

x

ψk(x)

(d) skipped mean

−c −b −a a b c

−a

a

x

ψ(x)

(e) Hampel’s three-parts

−k − k√
5

k√
5

k

x

ψk(x)

(f) Tukey’s bisquare

(2) and (3), since it vanishes and thus is bounded. Tukey and Hampel estimators satisfy
all the qualitative requirements.

The concept of robustness goes back to precursors such as Daniel Bernoulli (1769) who
proposed, rather than using equal weights for the sample, to cover points by a semi-
circle and weight the observations accordingly. He did not address how broad the
semi-circle should be. This is an example of redescending M-estimator.

The median is an old idea as well, since minθ ∑n
i=1 |xi − θ| corresponds to minimization

of the residuals. In the case of simple linear regression, this leads to ∑n
i=1 |(yi− a− bxi)|.

This is undoable, and a partial strategy was proposed by Besikovic.

2.5. Optimal B-robust estimates

2.5.1. B-robust estimates

B-robust means that the estimator has bounded influence, |IFF (x, T) | ≤ b < ∞. Let
F(x; θ) be the model of interest and assume that dF(x; θ) = f (x; θ)dx, θ ∈ Θ = R in
the subsequent examples.

A natural question is: find ψ(x, θ) which satisfies the following:

• Fisher consistency: for all θ,
∫

ψ(x, θ) f (x; θ)dx = 0;
• bounded influence: |IFF(x;θ) (x, ψ) | ≤ b(θ).
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Which ψ minimizes the asymptotic variance subject to these two constraints?

If the boundedness requirement is dropped, then

ψMLE(x, θ) ∝
∂

∂θ
log f (x; θ)

solves the equation. If ψMLE is not bounded, then what?

Example 2.8 (Gaussian scale problem)
The model is F(x; θ) = Φ(x/θ), referred to as the normal scale problem. The likelihood
score is

∂

∂θ
log
(

1
θ

φ
( x

θ

))
= −1

θ
− x

θ2
φ′(x/θ)

φ(x/θ)
= −1

θ
+

x2

θ3

∝ x2 − θ2.

This is bounded from below, but not from above. We can truncate at k, and this idea
does work somehow. There are however two problems with this solution.

First, the influence function

ψMLEk (x, θ)∫
− ∂

∂θ ψMLEk (x, θ) f (x; θ)dx
= IFF(x; θ)

(
x, ψMLEk

)

is bounded by a constant b rather than k, since

|IFθ

(
x, ψMLEk

)
| ≤ k∣∣∣

∫
− ∂

∂θ ψMLEk (x, θ) f (x; θ)dx
∣∣∣
= b.

Second, the estimate ψ(x, θ) is not automatically Fisher consistent.

∫
ψMLE(x, θ)dF(x; θ) = 0 ;

∫
ψMLEk (x, θ)dF(x; θ) = 0

−1 1

−1

11

2

x
θ

S(x, θ)

−1 1

−1

k

x
θ

S(x, θ)

Figure 5: (Truncated) score function for the Gaussian scale problem
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Standardisation: from now on, all the functions ψ(x, θ) we considered will be multi-
plied by a constant such that

∫
− ∂

∂θ
ψ(x, θ) f (x; θ)dx = 1.

As a consequence, we have

• IFθ (x, ψ) = ψ(x, θ)

• the asymptotic variance of the M-estimator is
∫

ψ2(x, θ) f (x; θ)dx.

From Fisher consistency,

∫
ψ(x, θ) f (x; θ)dx = 0

for any ψ. Thus,

∂

∂θ

∫
ψ(x, θ) f (x; θ)dx = 0.

Under regularity conditions, we can interchange the derivative and the integral signs
so as to get

∫
∂

∂θ
ψ(x, θ) f (x; θ)dx +

∫
ψ(x, θ)

∂

∂θ
f (x; θ)dx = 0,

which implies that

−
∫

∂

∂θ
ψ(x, θ) f (x; θ)dx =

∫
ψ(x, θ)S(x, θ) f (x; θ)dx

since S(x, θ) = ∂
∂θ log f (x; θ) = 1

f (x;θ)
∂ f (x;θ)

∂θ . If ψ(x, θ) = S(x, θ), then

∫
− ∂

∂θ
S(x, θ) f (x; θ)dx =

∫
S2(x, θ) f (x; θ)dx.

The numerator and the denominator appearing in the expression for the asymptotic
variance of the M-estimator both agree in the case of maximum likelihood if we take ψ

to be the score function. It is not true in general for M-estimators that the asymptotic
variance will be equal to 1, that is

∫
− ∂

∂θ
ψ(x, θ) f (x; θ)dx 6=

∫
ψ2(x, θ) f (x; θ)dx.

For standardized ψ-functions, we have

1 =
∫

ψ(x, θ)S(x, θ) f (x; θ)dx.
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Remark 2.6 (Fisher consistency)
Suppose that

∫
ψ(x, θ) f (x; θ)dx = a(θ) 6= 0. How could one modify ψ(x, θ) to create

a Fisher-consistent version of it? If we can calculate a(θ), then ψmodif(x, θ) = ψ(x, θ)−
a(θ) will be Fisher consistent. This trick is also used for weighted likelihoods.

2.5.2. Minimum variance B-robust estimation

Lemma 2.15 (Hampel)
Let F(x; θ) be a regular model with maximum likelihood estimator given by ψMLE(x, θ).
Then,

ψb(x, θ) ∝
[
ψMLE(x, θ)− a(θ)

b]

−b

=





ψMLE(x, θ)− a(θ) if |ψMLE − a(θ)| < b

sign (ψMLE − a(θ)) b, otherwise .

is the optimal B-robust estimator.

x

−b

b

ψ(x, θ)

ψ(x, θ)− a(θ)

Figure 6: Optimal B-robust estimate.

Proof We construct ψ(x, θ) for a fixed value of θ.

Let ψ(x, θ) be an M-estimate such that

∫
− ∂

∂θ
ψ(x, θ) f (x; θ)dx = 1,

∫
ψ(x, θ) f (x; θ)dx = 0.

Then
∫

(ψMLE(x, θ)− a(θ)− ψ(x, θ))2 f (x; θ)dx

=
∫

(ψMLE(x, θ)− a(θ))2 f (x; θ)dx +
∫

ψ2(x, θ) f (x; θ)dx

− 2
∫

(ψMLE(x, θ)− a(θ))ψ(x, θ) f (x; θ)dx

= k(θ) +
∫

(ψMLE(x, θ)− a(θ))2 f (x; θ)dx +
∫

ψ2(x, θ) f (x; θ)dx,
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Figure 7: Estimate for the normal scale problem with different values of k. In the left plot, ψMLEk

is shifted by a(θ) to preserve Fisher consistency.

a constant in θ plus the asymptotic variance of the ψ-estimates. The cross term is con-
stant because one can eliminate a(θ) and one can show that

∫
ψ(x, θ)ψMLE(x, θ) f (x; θ)dx = cMLE(θ),

where S(x, θ)cMLE(θ) = ψMLE(x, θ) and −2k(θ) = cMLE. Minimizing the asymptotic
variance requires minimizing the left hand side. �

Example 2.9 (Normal location and normal scale problems)
The normal location model is F(x; θ) = Φ(x− θ) and ψ(x, θ) = ψ(x− θ). It is enough
to construct ψ for θ = 0, as only one function χ(u) needs to be determined. For the
normal scale,

ψ(x, θ) =
( x

θ

)2
− 1 = χ

( x
θ

)
.

The corresponding estimate ∑n
i=1 χ(xi/θ̂n) = 0 . The a has a multiplicative effect on

this estimate. With a smaller bound, the negative values of χ(x) are also affected (see
the right panel of fig. 7). Note that the estimate in fig. 7 is linked to Huber’s second
proposal, which looks like the square of the Huber estimator.

If b tends to zero, the corresponding estimate satisfies ∑n
i=1 χ(xi/θ̂) = 0. θ̂n is such that

half of the xi satisfy |xi| ≤ θ̂n. Thus, θ̂n = med(|x1|, . . . , |xn|).

This has been generalized to the model where both the location and the scale are un-
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Figure 8: Plot of the limiting estimate when b→ 0

known. The estimator

θ̂n = median(|x1 −med|, . . . , |xn −med|),

where med = median(x1, . . . , xn), is the median absolute deviation (from the median)
estimator, also known as MAD. The MAD is such that half of the observations are
between ± MAD. This can also be achieved with quantiles. The interquartile range
q75% − q25% also covers the middle half of the distribution. For a symmetric distribu-
tion, 1

2 (q75% − q25%) ∼= MAD (they have the same asymptotic variance). The problem
now boils down to the estimation of q75%. The choice is not trivial.

F(x)

0.5

0.25

0.75

medianq0.25 q0.75

Figure 9: Quartiles of a distribution function F(x)

Breakdown point

The following part was covered solely in the exercise session and is included merely
for completeness.

Definition 2.16 (Breakdown point)
Let T be a statistical functional. The breakdown point BP of T for the distribution F is
defined as

BP := min
{

ε : sup
H
{|T [(1− ε)F + εH]|} = ∞

}
,
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where H is any distribution function. The term supH {|T [(1− ε)F + εH]|} is the maxi-
mum (asymptotic) bias of θ.

The finite sample equivalent notion for an n-sample is defined analogously. We con-
sider the notion in the case of ε-replacement, which gives

BPn :=
1
n

min

{
k : sup
Xn−k ,Yk

{|T(Xn−k,Yk)− T(x1, . . . , xn)|} = ∞

}

for Xn−k a subset of size n− k from {x1, . . . , xn} and Yk subset of k observations from
an arbitrary distribution.

High breakdown is achieved by the median and the LMS, notably, which have ε = 0.5.
High breakdown estimates are difficult to compute because of the non-convexity of the
optimisation problem.

2.6. Robust minimax theory

Huber considered the following game with two players, one of which chooses a distri-
bution, while the other chooses an estimator. The models player 2, Nature, is allowed
to choose are F(x; θ) = F(x − θ) with F ≈ Φ. Player 1, the statistician, chooses an
estimator ψ(x− θ) = ψ(x, θ). There is a payoff from player 1 to player 2 given by the
asymptotic variance of your function under the chosen model, VarF (ψ). On the other
hand, player 2 must pay an entry cost to play the game.

As we will see, it turns out there is a minimax solution to this problem and an optimal
choice of ψ0 and F0. The payoff matrix has a saddle point if the distribution F ∈ F has
special properties, namelyF is convex and compact. This means VarF0 (ψ0) ≤ VarF0 (ψ)

for all ψ and VarF0 (ψ0) ≥ VarF (ψ0) for all F. For couples (ψ, F) we therefore have

VarF (ψ0) ≤ VarF0 (ψ0) ≤ VarF0 (ψ) . (2.5)

Player 2 maximizes his gain by choosing F0, while player 1 minimizes his loss by taking
ψ0. Thus VarF0 (ψ0) = minψ maxF VarF (ψ) . The optimal choice of ψ0 is ψMLE under F0,
thus the likelihood score for F0, that is − d

dx log f (x) = − f ′(x)/ f (x). The other one is
not so easy. We want VarF (ψ0) ≤ VarF0 (ψ0). Let ψF be the MLE for the distribution F.
Then

1
I(F)

= VarF (ψF) ≤ VarF (ψ0) ≤ VarF0 (ψ0) =
1
I(F0)

or I(F0) ≤ I(F) for all F. The saddlepoint is determined by the least-informative
distribution F0, that is, the one minimizing I(F) over the set F .

It is not difficult to show that I(F) is a convex functional. So, if F is convex and
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F, G ∈ F , then I(Ft) = I((1− t)F + tG) is a convex function in t.

Theorem 2.17 (Huber’s minimax solution under ε-contaminated normal distributions)
Let

F = {(1− ε)Φ + εH : H absolutely continuous and symmetric around 0} .

The optimal robust estimate ψ0 for the least informative ε-contaminated distribution
F0 ∈ F is

ψ0(x) = min(k, max(x,−k))

where

2
φ(k)

k
− 2Φ(−k) =

ε

1− ε
. (2.6)

Proof of Theorem 2.17 The optimal f0 turns out to be

f0(x) =




(1− ε)φ(k) exp(−k(|x| − k)) if |x| > k,

(1− ε)φ(x) if |x| ≤ k,

and accordingly, since ψ0 should be bounded for the variance to be bounded,

ψ0(x) =
d

dx f0(x)
f0(x)

=





− d
dx log f0(x) = −k if x < −k,

φ′(x)/φ(x) if |x| ≤ k,
d

dx log f0(x) = k if x > k.

We want

d
dt
I((1− t)F0 + tG)

∣∣∣∣
t=t0

> 0

for all G. This means
∫
(2ψ′0 − ψ2

0)(g− f0)dx ≥ 0. This inequality holds true for the
following f0:
Conditions

(a) there is a k > 0 such that f0(x) = (1− ε)φ(x) on [−k, k] and (g − f0)(x) ≥ 0 for
−k ≤ x ≤ k.

(b) 2ψ′0 − ψ2
0 is constant for x ∈ (−∞,−k) t (k, ∞).

For this choice,
∫
(2ψ′0 − ψ2

0 + k2)(g− f0)dx ≥ 0,
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f0(x)

Figure 10: Optimal choice of f0

since integrating a constant against a difference of densities is zero. ψ′0 is zero because
the function is constant, ψ2

0 = k2. While the right hand side of eq. (2.5) is easy to prove
if ψ0 is the maximum likelihood estimator under F0 (exercises), the second inequality
is more difficult to prove for a given F. We need to introduce a lemma.

Lemma 2.18
If F is convex and F, F0 ∈ F and ψ0 ≡ ψMLE(F0), then

1. We have

d
dt

1
VarFt (ψ0)

∣∣∣∣
t=0

=
∫
(2ψ′0 − ψ2

0)( f − f0)(x)dx

where Ft(x) = (1− t)F0(x) + tF(x) and similarly ft(x) = (1− t) f0(x) + t f (x).
2. 1/VarFt (ψ0) is convex.

Proof of Lemma 2.18 We have using the quotient rule that

d
dt

1
VarFt (ψ0)

=
d
dt

(
∫

ψ′0 ft)
2

∫
ψ2

0 ft

∣∣∣∣∣
t=0

=
2(
∫

ψ′0 ft) (
∫

ψ′0( f − f0))
(∫

ψ2
0 ft
)
− (
∫

ψ′0 ft)
2 ∫

ψ2
0( f − f0)(∫

ψ2
0 ft
)2

∣∣∣∣∣
t=0

=
2(
∫

ψ′0 f0)(
∫

ψ′0( f − f0))(
∫

ψ2
0 f0)(∫

ψ2
0 f0
)2 − (

∫
ψ′0 f0)

2 ∫
ψ2

0( f − f0)(∫
ψ2

0 f0
)2

=
∫
(2ψ0

′ − ψ2
0)( f − f0)

with a slight abuse of notation. In the last step, we used that fact that ψ0 = ψMLE(F0)
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and thus
∫

ψ′0 f0 =
∫

ψ2
0 f0. We get

1
VarFt (ψ0)

=
u(t)2

v(t)
= w(t)

where u, v are linear in t, v > 0 and one can easily show that

w′′(t) =
2(u′v− uv)2

v3 ≥ 0.

�

Remark 2.7
1. If F is convex, then 1/VarF (ψ0) is convex. If f0 is such that for all f such that for
all F ∈ F , then

∫
(2ψ′0 − ψ2

0)( f − f0) ≥ 0, (2.7)

then f is optimal. Therefore, VarF (ψ0) ≤ VarFt (ψ0).
2. One can show that maximizing VarF (ψ0) is equivalent to maximizing VarF (ψF),
which in turn is equivalent to minimizing the information I . Indeed, since it holds
true that I(F) = 1/VarF (ψF) and if F is convex, then

d
dt

1
VarFt (ψ0)

∣∣∣∣
t=0

=
d
dt
I(F)

∣∣∣∣
t=0
, with I(F) convex.

We want to show eq. (2.5). The left hand side follows from an exercise, in which
it is shown that ψ0(x) = ψMLE(x; F0) = log f0(x). For the right hand side, we use
Lemma 2.18. We look for f0 such that for all f such that F ∈ F , eq. (2.7) is satisfied, and
then remark 2.7 (1) leads to the result. We see that

2ψ′0(x)− ψ2
0(x) = −k2, if |x| ≥ k (2.8a)

f (x)− f0(x) ≥ 0, if |x| ≤ k (2.8b)

Then
∫ (

2ψ′0(x)− ψ2
0(x)

)
( f − f0) =

∫ (
2ψ′0(x)− ψ2

0(x) + k2
)
( f − f0)

=
∫ k

−k

(
2ψ′0(x)− ψ2

0(x) + k2
)
( f − f0) ≥ 0

using eq. (2.8b) as both 2− x2 + k2 ≥ 0 and f − f0 ≥ 0 if |x| < k.
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ε k 1/I(F0)

0 ∞ 1
0.01 1.945 1.065
0.05 1.399 1.256
0.10 1.140 1.490

Table 1: ε contaminated normal distributions least informative for location.

It remains to prove eq. (2.6). Since f0 is a valid density,

1 =
∫ k

−k
(1− ε)φ(x)dx + 2

∫ ∞

k
(1− ε)φ(k) exp(−k(x− k))dx

⇔ 1 = (1− ε) {Φ(x)−Φ(−k)}+ 2(1− ε)φ(k)
[
−1

k
exp(−k(x− k))

]∞

k

⇔ 1 = (1− ε)

(
1− 2Φ(−k) + 2

φ(k)
k

)

⇔ ε

1− ε
= −2Φ(−k) + 2

φ(k)
k

�

Remark 2.8
Huber guessed the result. He supposed that in the middle, f0(x) = (1− ε)ψ(x) for
|x| ≤ k and that the tails are such that the difference 2ψ′0(x)− ψ2

0(x) is constant for all
|x| > k. We only need to verify this is indeed the case.

Remark 2.9
We need to choose ε, which readily gives by eq. (2.6) a value of k. The rightmost column
of table 1 gives the asymptotic variance when choosing the optimal estimator for F0.
Table 1 is extracted from Huber & Ronchetti (2009), Exhibit 4.3.

Theorem 2.19 (Minimax solution under bounded variance)
Let

F =

{
F symmetric, absolutely continuous with

∫
x2 f (x)dx ≤ b

}
.

Then, the minimax solution (ψ0, F0) comprises the optimal robust estimate ψ0(x) = x
and the least informative distribution given by f0(x) = φ(x/

√
b)/
√

b, the density of
N (0, b).

Proof We want to show eq. (2.5). Again, the right hand side follows from the proof that
ψ0(x) is the MLE for F0, which is S(x). For the left hand side of eq. (2.5), we know that
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∫
f (x)dx = 1,

∫
x f (x)dx = 0 and

∫
x2 f (x)dx ≤ b. We want eq. (2.7) and suppose

that

2ψ′0(x)− ψ2
0(x) = α + βx− γ2x2,

∫
x2 f0(x)dx = b.

Then, we have
∫
(2ψ′0(x)− ψ2

0)(x)( f − f0)(x)dx

=
∫
(α + βx− γ2x2)( f − f0)(x)dx

=
∫

α( f − f0)(x)dx +
∫

βx( f − f0)(x)dx + γ2b− γ2
∫

x2 f (x)dx ≥ 0

since the first two terms are zero, γ2
∫

x2 f0(x)dx = γ2b and γ2
∫

x2 f (x)dx ≤ γ2b.

We need to find the corresponding f0 of ψ0. We solve 2ψ′0 − ψ2
0 = α + βx − γ2x and

guess that ψ0(x) = γx + α̃. Finally, we know that

ψ0(x) = γx + α̃ = ψMLE(x; F0) = S(x),

which implies that

log( f0(x)) =
γ

2
x2 + α̃x + c

f0(x) ∝ exp

{
γ

2

(
x− α̃

γ

)2
}

where c is a constant. This is nothing but the kernel of a N (α̃/γ,−1/γ) distribution.
Because of the symmetry requirement of f0, we have α̃ = 0 and b = −1/γ for the
variance. This shows that the minimax solution is

f0(x) =
1√
b

φ

(
x√
b

)

and ψ0(x) = x. �

2.7. Robust regression

The classical least squares goes back to Legendre and Gauss. The problem setup is

y = Xθ+ ε
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for ε ∈ Rn, θ ∈ Rp and

θ̂ = arg min
n

∑
i=1

(
yi −

p

∑
j=1

Xijθj

)2

.

The solution

n

∑
i=1

(
yi −

p

∑
j=1

Xij θ̂j

)
Xik = 0, k = 1, . . . , p

or X>Xθ̂ = X>y. If X has full rank, then

θ̂ = (X>X)−1X>y

and

ŷ = Hy = X(X>X)−1X>y

and H ∈ Rn×n is a projection matrix, HH = H. In particular, H has p eigenvalues
equal to 1 and (n − p) equal to zero, thus tr(H) = p. This estimator is optimal if

εi
iid∼ N (0, σ2), but however non robust: it has breakdown point 0 and an unbounded

influence function (exercise). Note that the diagonal elements of H, hi := Hii, satisfy
0 ≤ hi ≤ 1 and “corresponds to the self-influence of yi on its own fitted value ŷi”.

What happens if we imagine a sequence of regression problems such that n tends to
infinity and p may also grow? The answer is that asymptotic normality and a formula
for the asymptotic variance given by σ2(X>X)−1 both hold, provided we have inde-
pendent errors from a distribution with finite variance.

Proposition 2.20
Assume that ε1, ε2, . . . are independent with mean zero and variance σ2. Then

ŷi = Xiθ̂→ E (yi) , as n→ ∞

if and only if

h = max
1≤i≤n

hi → 0, as n→ ∞.

Note that Xi, 1 ≤ i ≤ n denote hereafter 1× p row vectors.

Proof Sufficiency of h→ 0. If E (ε) = 0, then E (ŷ) = E (y) = Xθ. It follows that

Var (ŷ) = E
(

Hεε>H>
)
= HE

(
εε>

)
H = σ2HIH = σ2H.
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In particular,

ŷi =
p

∑
k=1

Hikyk

which implies Var (ŷi) = ∑
p
k=1(Hik)

2σ2 = hiσ
2
i using independence of the εi and since

H is symmetric and idempotent. Then, by Chebyshev’s inequality,

P
(∣∣ŷi − E (ŷi)

∣∣ ≥ δ
)
≤ hiσ

2

δ2 .

The necessity of h→ 0 is more difficult. Since the fitted values are such that

ŷ = Hy = H(Xθ+ ε) = Xθ+ Hε,

we look at

ŷi − E (ŷi) =
p

∑
k=1

Hikεk

= hiεi + ∑
k 6=i

Hikεk.

Then, since both terms are independent, we have the lower bound

P (|ŷi − E (ŷi)| ≥ δ) ≥ P
(

hiεi ≥ δ, ∑
k 6=i

Hikεk ≥ 0

)
+ P

(
hiεi ≤ −δ, ∑

k 6=i
Hikεk ≤ 0

)

= P (hiεi ≥ δ)P
(

∑
k 6=i

Hikεk ≥ 0

)
+ P (hiεi ≤ −δ)

(
1− P

(
∑
k 6=i

Hikεk ≥ 0

))

≥ min
{

P
(

εi ≥
δ

hi

)
, P
(

εi ≤ −
δ

hi

)}
,

which completes the proof. �

Remark 2.10
Note that since the maximum is greater than the average, max(hi) ≥ hi = p/n. This
implies that unless p/n goes to zero, consistency of all ŷi cannot happen.

One can even show more: if a ∈ Rp and such that a>a = 1, then a>θ̂ is asymptotically
normal if and only if max(hi) → 0. If it is not the case, there is at least one residual
value that does not have expectation zero.

We define the residuals as ri = yi − ŷi = (1− hi)yi − ∑k 6=i Hikyk. This is called the ith

residual. If hi is close to 1, then yi has little influence on the estimate ri and a gross error
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in yi may not be visible in ri. The error in yi may however show up in another residual
rk, if Hik happens to be sizeable. There is a large literature on procedures for finding
outliers exists (regression diagnostics). Many are based on leaving out one observation
and observing the effect.

0 2 4 6 8 10

0
2

4
6

8
10

x

y

Figure 11: Plot of least square fit with (dashed red) and without (full black). The outlying obser-
vations is flagged in red. Grey lines correspond to fit from leave-one-out cross validation.

Without loss of generality, assume that X>X = I, in which case Hik = Xi(X>X)−1X>k =

XiX>k . We now delete one of the observations: set X → X−i = X̃ and y → y−i; we are
after θ→ θ̃. Then

(X̃>X̃) = ∑
k 6=i

XkX>k = X>X− X>i Xi

and

(X̃>X̃)−1 = I +
X>i Xi

1− XiX>i

by the Sherman–Morrison formula. It follows that

θ̃ =
(

X̃>X̃
)−1

X̃>ỹ

=
(

X̃>X̃
)−1

∑
k 6=i

ykX>k
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=

(
I +

X>i Xi

1− XiX>i

)(
X>y− yiX>i

)

= θ̂− yiX>i + X>i XiX>y
(

1
1− hi

)
− yihi

1− hi
X>i

= θ̂+ (ŷi − yi)X>i
1

1− hi
.

Note that

XiX>y = Xi

(
X>1 X>2 · · · X>p

)
y =

(
Hi1 Hi2 · · · Hin

)
y = ŷi,

which implies θ̃− θ̂ = riX>i /(1− hi) ∈ Rp; this is the sensitivity. The fitted values
satisfy

Xiθ̃− Xiθ̂ =
ri

1− hi
XiX>i =

hiri
1− hi

.

Leave-out-one residuals are then

yi − Xiθ̃ = yi − Xi

(
θ̂+

ri
1− hi

X>i

)

= ri + ri
hi

1− hi
= ri

1
1− hi

.

Another diagnostic is Cook’s distance, defined as

Di :=
1

pS2 ‖ỹ− ŷ‖2

where S2 = (n− p)−1 ∑n
i=1 r2

i is the empirical variance estimate. Then

ỹ = Xθ̃ = Xθ̂+ (ŷi − yi)XX>i
1

1− hi
and the difference

ỹ− ŷ =
ri

1− hi




H1i
...

Hpi




with

Di =
r2

i
(1− hi)2

1
pS2

p

∑
k=1

H2
ik

=
r2

i hi

(1− hi)2
1

pS2

All these efforts are easy to fool through masking! One can think of several outliers
occurring in the same region.
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2.7.1. M-estimate

We can simply replace the least square criterion ∑i r2
i by ∑i $(ri), where $ is convex and

exhibits subquadratic growth. This is a proposal of Huber.

The estimating equations become

∑ ψ(ri)X>i =
n

∑
i=1

ψ(yi − Xiθ̂)X>i = 0

where ψ = $′. In order to achieve the correct scale behaviour, the residuals need to be
standardised.

∑
i

ψ
( ri

σ̂

)
X>i = 0.

The error scale σ̂ is either estimated simultaneously or by a preliminary robust estima-
tion! The influence function is

IF(Z0, y0) =
σ

E
(
ψ′
(

ε
σ

))ψ

(
y0 − Z>0 θ

σ

)
V−1

X Z0, Z0 ∈ Rp, y0 ∈ R

where θ, σ are the values under the model for which we compute the influence function
and VX =

∫
XX> dH(X) where H(X) is the distribution of the covariates. Note that

‖IF(Z0, y0)‖ is unbounded! It is indeed easy to drive to V−1
X Z0 to infinity.

In terms of asymptotics, if n→ ∞ and p is constant,

θ̂
·∼ Np

(
θ, v · (X>X)−1

)

where v is a modifier that depends on the scaled variance,

v = σ2 E
(
ψ2 ( ε

σ

))
[
E
(
ψ′
(

ε
σ

))]2 .

2.7.2. Alternative estimates

Other than M-estimators and ordinary least squares (OLS), there are other alternatives
for regression. These include `1 penalties such as least absolute deviation (LAD), which
consists of minimizing ∑n

i=1 |ri|. The least median of squares (LMS) estimate was the
first working proposal in the robust literature and is due to P. Rousseeuw. This estima-
tor minimizes

median
(

r2
i (θ), . . . , r2

n(θ)
)
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where ri = ri(θ) = yi − Xiθ. Under some conditions, this is consistent and we have

n1/3(θ̂LMS − θ)
d−→ Np(0, Υ); note the slower rate of convergence.

MM-estimates

In order to eliminate the influence of leverage points, it seems natural to use redescend-
ing ψ-functions.

Example 2.10 (Tukey’s bisquare)
Tukey’s bisquare function is defined as

ψbi = x(1− x2)2I|x|≤1.

Integrating out ψbi, we recover

$bi(x) =





1
6
(
1− (1− x2)3) if |x| ≤ 1

1
6 otherwise .

The idea is thus to use bounded $-functions and consider for example

n

∑
i=1

ψbi

( ri
σ̂

)
X>i = 0.

This will have multiple solutions and the difficulty is to select a right one.

Regression estimates based on robust scales are analogous to estimators which mini-
mize the estimated variance of the errors. Using an M-estimator, such that $(u) is a
bounded function, the corresponding ψ is redescending. σ̂robust = σ̂$ is such that

1
n

n

∑
i=1

$

(
ri
σ̂$

)
= δ,

where δ can be for example is 1/2. If we minimize σ̂$ with regard to θ, this leads to an
M-estimator that is computable and unique. This idea bears the name S-estimator .

Historical notes

M-estimators with unbounded $-function have unbounded influence function. To cor-
rect for this, proposals were made involving the weights of the observation depending
on their position! Colin Mallows suggested taking

n

∑
i=1

ψ

(
ri(θ)

σ̂

)
X>i ·W(d(Xi)) = 0,
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where d(Xi) measures the outlyingness of the observation Xi. For example, one can

take the Mahalanobis distance, (Xi − X̄)Σ̂
−1
(Xi − X̄)>. Another proposal using weights

was given by Schweppe, namely

n

∑
i=1

1
d(Xi)

ψ

(
d(Xi)

ri(θ)

σ̂

)
.

Both can have bounded influence. Kraster and Welsch showed that the Schweppe esti-
mator with the Huber ψ-function is the optimal bounded influence estimator.

43



Part 3
Rank-based statistical procedures

3.1. Introduction

3.1.1. Order statistics, ranks and their properties

Given a vector x1, . . . , xN = x, we denote by oi(x) the ith smallest coordinate of x.
We will write x(i) = oi(x), meaning that x(1) ≤ · · · ≤ x(N). Consider a collection of
random variables X1, . . . , XN , usually independent and identically distributed. Then
X(i) = oi(X) is the ith is the order statistics. The gap is the distance between two order
statistics. For x = (x1, . . . , xN) such that xi 6= xj for all i, j with i 6= j. Let ri(x) be the
rank of xi among the xi’s. The ri(x) is the number of x’s that are less than or equal to xi

and xi = x(ri)
. The order statistics and the ranks correspond to a decomposition of the

data into ancillary and sufficient statistics and having both is sufficient to recover the
sample. We denote by ri(X) = Ri the rank of Xi among X1, . . . , XN . The collection of
ranks is R = (R1, . . . , RN) and we denote by X the set X = {x(1) ≤ x(2) ≤ · · · ≤ x(N)}.

Ranks are well-defined only if a tie or a coincidence between two values has probability
zero. We will thus assume absolute continuity hereafter.

Theorem 3.1
The joint density of X = (X1, . . . , XN) is f (x1, . . . , xN). It then follows that the joint
density of the order statistics X(1), . . . , X(N) is equal to

f ∗(x(1), . . . , x(N)) = ∑
π∈SN

f (x(π1)
, . . . , x(πN))Ix(·)∈X

where SN is the symmetric group of all permutations of {1, . . . , N}, thus |Sn| = N!

Corollary 3.2
If f (x1, . . . , xN) is invariant under permutations of the arguments, then

f ∗(x(1), . . . , x(N)) = N! f (x(1), . . . , x(N))Ix(·)∈X .

Proof of Theorem 3.1
∫
· · ·

∫

(X(1) , . . . , X(N)) ∈ A

f (x1, . . . , xN)dx1 · · · dxN

= ∑
π∈SN

∫
· · ·

∫

(X(1) , . . . , X(N)) ∈ A,
R = π

f (x1, . . . , xN)dx1 · · · dxN

= ∑
π∈SN

∫
· · ·

∫

A
f (x(π1)

, . . . , x(πN))dx(1) · · · dx(N)
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=
∫
· · ·

∫

A
f ∗(x(π1)

, . . . , x(πN))dx(1) · · · dx(N)

as the Jacobian of the linear transformation of (x1, . . . , xN) → (x(π1)
, . . . , x(πN)) is ±1

for all events {R = π}. It remains to associate the corresponding densities �

Theorem 3.3
If X = (X1, . . . , XN) has joint density f (x1, . . . , xN), then

P
(

R = π | X(1) = x(1), . . . , X(N) = x(N)

)
=

f (x(π1)
, . . . , x(πN))

f ∗(x(1), . . . , x(N))
.

Proof First note that the joint density of
(

R, X(·)
)

is f (x1, . . . , xN). It follows that

P
(

R = π, (X(1), . . . , X(N)) ∈ A
)

=
∫
· · ·

∫

(X(1) , . . . , X(N)) ∈ A,
R = π

f (x1, . . . , xN)dx1 · · · dxN

=
∫
· · ·

∫

A
f (x(π1)

, . . . , x(πN))dx(1) · · · dx(N)

=
∫
· · ·

∫

A

f (x(π1)
, . . . , x(πN))

f ∗(x(1), . . . , x(N))
f ∗(x(1), . . . , x(N))dx(1) · · · dx(N)

by a change of measure. �

Corollary 3.4
If f (x1, . . . , xN) is invariant under permutations of the coordinates (this holds true if
f (x1, . . . , xN) = ∏N

i=1 f (xi)), then the quantities R = (R1, . . . , RN) and (X(1), . . . , X(N))

are independent with P (R = π) = 1
N! for all π ∈ SN .

In the case of a sample from a symmetric distribution function, Xi ∼ F, with f (x) is
such that f (−x) = f (x) (so that F(x) + F(−x) = 1), then |Xi| and

sign(Xi) =





1 if Xi > 0,

−1 if Xi < 0,

0 if Xi = 0,

are independent. Indeed, P (sign(Xi) = 1) = 1
2 and

P (|Xi| ≤ t, sign(Xi) = 1) = P (0 ≤ Xi ≤ t) = F(t)− F(0)

= F(t)− 1
2

.
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On the other hand,

P (|Xi| ≤ t, sign(Xi) = −1) = P (−t ≤ Xi ≤ 0) = F(0)− F(−t)

=
1
2
− (1− F(t)) = F(t)− 1

2
.

3.2. Examples of rank statistics

A statistic T(X1, . . . , XN) whose value only depends on the ranks is called a rank statis-
tic. Note that the ranks (R1, . . . , RN) do not change if we apply a monotone increasing
transformation to X1, . . . , XN .

3.2.1. One sample statistics

In this case, the signs are used along with the ranks.

Proposition 3.5 (Sign test)
Consider the null hypothesis

H0 : X1, . . . , XN
iid∼ F, med(X) = θ0

H1 : X1, . . . , XN
iid∼ G, med(X) 6= θ0.

Another popular null hypothesis is that of symmetry, which has

H0 : X1, . . . , XN
iid∼ F, f (x) = f (−x), (med(X) = 0),

H1 : X1, . . . , XN
iid∼ G, g(x) not symmetric.

The statistic is

S(θ0) =
N

∑
i=1

sign(Xi − θ0)

or

S(θ0) = number of Xi > θ0

=
N

∑
i=1

H(xi − θ0).

Note that the Heavyside function can be expressed as H(y) = Iy≥0 = 1
2 (sign(y) + 1).

Under H0, the number of Xi > θ0 follows a Binomial distribution B(N, 1/2). In using
this as a test, we reject H0 : θ = θ0 in favor of H1 : θ < θ0 if S(θ0) is sufficiently small.
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Table 2: Calculation of the null distribution of the sign test

values of S 0 1 2 · · · N

PH0 (·) (1/2)N N(1/2)N (N
2 )(1/2)N · · · (1/2)N

For a given α ∈ (0, 1), we look for kα such that

α0 =
kα

∑
i=0

(
N
i

)(
1
2

)N
≤ α.

This implies that α0 + ( n
kα+1)(1/2)N > α. We then reject H0 if S ≤ kα. This is a test of

size PH0 (false rejection) = α0. To get exactly level α, randomization is necessary.

Any null hypothesis H0 : θ = θ0 can be tested. If we collect all θ0 not rejected, the two-
sided test will generate a confidence interval with confidence (coverage probability)
1− 2α0.

Proposition 3.6 (Wilcoxon signed rank test)
We consider

H0 : X1, . . . , XN
iid∼ F, f (θ0 − x) = f (θ0 + x)

the hypothesis of symmetry of f around θ0. We look at R+
i := ri(|Xi − θ0|), the rank of

|Xi − θ0| among |X1 − θ0|, . . . , |XN − θ0|. Then

W+(θ0) =
N

∑
i=1

IXi>θ0 R+
i .

This remarkably simply idea is almost as powerful as the Student’s t-test. From the
general theory of ranks and signs under symmetry, we know that under H0, W+ has a
distribution that does not depend on the particular f .

Table 3: Calculation of the null distribution of the signed rank test

values of N 0 1 2 3 4 5 6

N = 1 1/2 1/2 0 0 0 0 0
N = 2 1/4 1/4 1/4 1/4 0 0 0
N = 3 1/8 1/8 1/8 2/8 1/8 1/8 1/8

For general N, there is mass on the first N(N + 1)/2 observations.

We wish to test the same null hypothesis as that of the Wilcoxon test, namely symmetry.
A broader class of statistics can be obtained by assigning a score to the ranks.
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Definition 3.7 (Linear rank statistic for symmetry)
A linear rank statistic for symmetry is of the form

LN(θ0) =
N

∑
i=1

a(R+
i ) sign(Xi − θ0)

where (a(1), . . . , a(N)) is a vector of rank scores. You can easily prove that under H0,
E (L(θ0)) = 0 and Var (L(θ0)) = ∑N

i=1(a(i))2.

3.2.2. Two sample statistics

We mostly consider the setting where the null consists of equality in distribution for

the sequences X, Y , namely X1, . . . , Xm
iid∼ F and Y1, . . . , Yn

iid∼ F. We think often of the
alternative H1 where the density of Y is f (yi − ∆) rather than f , but the framework is
much more general.

Proposition 3.8 (Wilcoxon two sample test)
This statistic, proposed in Wilcoxon (1945), consists of the sum of the X ranks among
the pooled observations, that is

W =
m

∑
i=1

Ri

where Ri is the rank of Xi among {X1, . . . , Xm, Y1, . . . , Yn}. If FX and FY are continuous
(meaning there are no ties), then

PH0 (W = k) =
πm,n(k)
(n+m

m )

where πm,n(k) is the number of ways to select m among {1, 2, . . . , m+ n} such that their
sum equals k.

Lemma 3.9 (Mann–Whitney recurrence relation)
The recurrence relation gives the distribution of πm,n(k) as

πm,n(k) = πm,n−1(k) + πm−1,n(k−m− n).

The interpretation is as follows; consider without loss of generality the largest value
of the combined sample, with rank m + n. Either this observation is Y(n), in which
case it does not contribute to the value of the statistic and the sum k must be obtained
from the remaining observations. Otherwise, if the m + n rank corresponds to X(m), its
contribution to W is m + n, meaning the other m− 1 observations {X(j)}m−1

j=1 contribute
exactly k− (m + n).

48



Proof On the right hand side, the selections are among {1, . . . , m + n− 1}. The initial
conditions are

πm,0(k) =





1 if k = 1 + · · ·+ m

0 otherwise ;

π0,n(k) =





1 if k = 0

0 otherwise .

and the recurrence is given by

π1,1(k) = π1,0(k) + π0,1(k− 2) =





1 if k = 1, 2

0 otherwise

since π1,0 = Ik=1 and π0,1 = Ik=2, and

π2,2(k) = π2,1(k) + π1,2(k− 4)

= π2,0(k) + π1,1(k− 3) + π1,1(k− 4) + π0,2(k− 7)

If the sample has ties, then the resulting distribution cannot be applied directly. �

Proposition 3.10 (Mann–Whitney test)
This test, due to Mann & Whitney (1947) counts among all m ·n pairs (x-value, y-values)
the number of times that x exceeds y and is given by

M =
m

∑
i=1

n

∑
j=1

IXi>Yj =
m

∑
i=1

n

∑
j=1

IX(i)>Y(j)

=
m

∑
i=1

(Ri − i)

= W − m(m + 1)
2

if there are no ties. Indeed, there are R1 − 1 values of Y less than X(1), R2 − 1 values
less than X(2), of which 1 is X(1), etc.

Sometimes, rank statistics are in the form of what is called U-statistics.

Definition 3.11 (U-statistic)
A U-statistic of a single sample (X1, . . . , XN) is based on a kernel h(X1, . . . , XN) and
equals

1
(n

r)
∑
Γn,r

h(Xi1 , . . . , Xir )
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where the sum runs over Γn,r, all possible combinations (n
r) of index sets of size r.

The expectation of a U-statistics clearly is equal to E (h(X1, . . . , Xr))

Example 3.1 (Examples of U-statistic)
An example of kernel of rank r = 1 is the mean, with kernel h(x) = x, while for r = 2,
we have h(x1, x2) =

1
2 (x1 − x2)

2

In the two-sample case, one considers kernels of the form h(Xi1 , . . . , Xir , Yj1 , . . . , Yjs).
The U-statistic is then

(
m
r

)−1(n
s

)−1

∑
Γm,r

∑
Γn,s

h(Xi1 , . . . , Xir , Yj1 , . . . , Yjs).

The Mann–Whitney statistic M is a two-sample U-statistic with r = s = 1.

Definition 3.12 (Linear rank tests)
In the bivariate setting, we define linear rank tests as

L =
m

∑
i=1

a(Ri) =
n+m

∑
i=1

a(Ri)ci

where ci, termed regression constant, is a binary indicator

ci =





1 if 1 ≤ i ≤ m

0 otherwise .

and Ri is the rank of X1, . . . , Xm for 1 ≤ i ≤ m and the rank of Y1, . . . , Yn for m + 1 ≤
i ≤ m + n.

3.3. Locally most powerful rank tests

The whole theory will be done with the two-sample Wilcoxon test. Consider the loca-

tion shift case where X1, . . . , Xm
iid∼ f (x − ∆) and Y1, . . . , Yn

iid∼ f (y) and H0 : ∆ = 0
against the alternative H1 : ∆ > 0. We denote by a(1), . . . , a(m + n) the score given to
the ranks (an increasing function), a mapping a : {1, . . . , m + n} → R. We reject H0 if
∑m

i=1 a(Ri) is greater than the critical value. How to choose a(1), . . . , a(m + n)?

This test will reject if the ranks (R1, . . . , Rn) ∈ R where R is the rejection region. Of
course,

R =

{
r1, . . . , rm, rm+1, . . . , rm+n;

m

∑
i=1

a(ri) ≥ critical value

}
.
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Because of the uniform distribution of the ranks,

PH0 (rejection) =
|R|

(n + m)!
.

The power of the test is equal to

P∆ (rejection) = ∑
(r1, . . . , rm)

from R

P∆ (R1 = r1, . . . , Rm = rm) .

So, we need to compute the distribution of the ranks under the alternative.

∆

α

Figure 12: Power curve and local power at zero for location-shift test.

The size α is linked to the critical value. The slope of the tangent is called the local
power, which is defined as

local power :=
d

d∆
P∆ (rejection)

∣∣∣∣
∆=0
.

To find the distribution of the order statistics, we present the following general result.

Theorem 3.13
Let (X1, . . . , XN) have a joint distribution f (x) invariant under permutations of the
arguments. Let T(X1, . . . , XN) be some statistic. The expected value conditional on the
ranks,

E (T(X) | R1 = r1, . . . , RN = rN) = E
(

T
(
X(r1)

, . . . , X(rN)

))

Proof The proof relies merely on relabelling. The independence between ranks and
the order statistics readily gives

E (T(X) | R1 = r1, . . . , RN = rN) = E
(

T
(
X(r1)

, . . . , X(rN)

) ∣∣ R1 = r1, . . . , RN = rN

)

= E
(

T
(
X(r1)

, . . . , X(rN)

))
.

�
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Choose T(X1, . . . , XN) = g(X)/ f (X) where g(X) is an alternative density absolutely
continuous with respect to dF(x), meaning f (x) = 0 implies g(x) = 0. Then

E f

(
g(X1, . . . , XN)

f (X1, . . . , XN)

∣∣∣∣ R1 = r1, . . . , RN = rN

)
(3.9)

=
∫
· · ·

∫

{R1=r1,...,RN=rN}

g(x1, . . . , xN)

f (x1, . . . , xN)
N! f (x1, . . . , xN)dx1 . . . dxN

= N!Pg (R1 = r1, . . . , RN = rN) .

To get the conditional probability with respect to only the first variables, we can inte-
grate out the remaining ones. We present another proof instead.

Lemma 3.14
Let X1, . . . , Xm

iid∼ FX (with fX = f (x − ∆), the alternative) and Y1, . . . , Yn
iid∼ FY (with

fY = f (x)) and assume that fX(t) > 0 implies fY(t) > 0. Further denote V = (X, Y).
Then,

P (rank(X1) = r1, . . . , rank(Xm) = rm) =

(
n + m

m

)−1
E
(

m

∏
i=1

fX(V(ri)
)

fY(V(ri)
)

)

where V(r) are the order statistics of V1, . . . , Vn+m
iid∼ FY.

Proof

P
(

rank(X(1)) = r1, . . . , rank(X(m)) = rm | X(1) = t1, . . . , X(m) = tm

)

=
n!(FY(t1))

r1−1(FY(t2)− FY(t1))
r2−r1−1 · · · (1− FY(tm))m+n−rm

(r1 − 1)!(r2 − r1 − 1)! · · · (n + m− rm)!
.

This needs to be integrated with regard to the joint density of X(1), . . . , X(m), given by
m! fX(t1) fX(t2) · · · fX(tm). We have

P
(

rank(X(1)) = r1, . . . , rank(X(m)) = rm

)

=
∫
· · ·

∫

t1≤t2≤···≤tm

n!(FY(t1))
r1−1(FY(t2)− FY(t1))

r2−r1−1 · · · (1− FY(tm))m+n−rm

(r1 − 1)!(r2 − r1 − 1)! · · · (n + m− rm)!

×m!
( m

∏
i=1

fX(ti)

)
dt1 · · · dtm

=
n!m!

(n + m)!

∫
· · ·

∫

t1≤t2≤···≤tm

gr1,...,rm(t1, . . . , tm)

( m

∏
i=1

fY(ti)

)−1( m

∏
i=1

fX(ti)

)
dt1 · · · dtm

where the g-density, the joint density of (V(r1)
, . . . , V(r2)

, . . . , V(rm)), is given by

gr(t) =
(n + m)!(FY(t1))

r1−1 fY(t1) · · · (1− FY(tm))m+n−rm fY(tm)

(r1 − 1)!(r2 − r1 − 1)! · · · (n + m− rm)!
,
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yielding

P
(

rank(X(1)) = r1, . . . , rank(X(m)) = rm

)
=

m!n!
(n + m)!

Eg

(
m

∏
i=1

fX(V(ri)
)

fY(V(ri)
)

)

making use in the last step of eq. (3.9) and theorem 3.13 to conclude. �

We now return to the power at the alternative ∆, which is

β(∆) = ∑
(r1,...,rm)

reject

(
n + m

m

)−1
E
(

m

∏
i=1

f (V(ri)
− ∆)

f (V(ri)
)

)

where V1, . . . , Vn+m
iid∼ f . The local power, given by the derivative of the power β(·) at

∆ evaluated at ∆ = 0, is

d
d∆

β(∆)
∣∣∣∣
∆=0

= ∑
(r1,...,rm)

reject

(
n + m

m

)−1 m

∑
i=1

E
(
− f ′

f
(V(ri)

)

)
.

This holds because

d
d∆

m

∏
i=1

f (V(ri)
− ∆)

f (V(ri)
)

=
m

∑
i=1
− f ′(V(ri)

− ∆)∏
j 6=i

f (V(rj)
− ∆)

(
m

∏
i=1

f (V(ri)
)

)−1

using the product rule. We now know how the locally most powerful test for a shift in
location behaves. It has to be based on the score

aopt(r) = E
(
− f ′

f
(V(r))

)
.

Example 3.2
One can now ask many questions, for example

• for which f do we find E
(
− f ′(V(r))/ f (V(r))

)
= A + Br?

• what score is best for the normal density f (x) = φ(x)?

Definition 3.15 (Score-generating functions)
We can always represent V(r) as F−1(U(r)) where U1, . . . , Un+m

iid∼ U (0, 1) and F(X) =∫ x
−∞ f (u)du, which implies the expected value F scores are given by

aN
opt(r) = E

(
− f ′

f

(
F−1(U(r))

))
= E

(
ϕ f (V(r))

)
,

where N = n + m. The function ϕ f (u) = − f ′(F−1(u))/ f (F−1(u)), for 0 ≤ u ≤ 1, is
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termed score generating function for the expected value F scores aopt = E
(

ϕ f (V(r))
)

.
If the latter are hard to calculate, we can resort to the quantile F scores,

ãN
opt = ϕ f

(
r

n + m + 1

)
= ϕ f

(
E
(

U(r)

))
.

Remark 3.1
The optimal score for the signed rank test

N

∑
i=1

sign(Xi)a+(R+
i )

is

a+,N
opt (r) = E

(
− f ′

f
(
|X|(r)

))
.

What is ϕ+
f (u)?

The distribution of |X| is

P (|X| ≤ t) = P (−t ≤ X ≤ t) = F(t)− F(−t) = 2F(t)− 1

assuming symmetry of X about 0. The inverse of G(t) = 2F(t)− 1 for t > 0 is F−1((1+
u)/2) and so

|X|(r) = F−1
(1 + U(r)

2

)
.

For a sample X1, . . . , XN
iid∼ F and |X|(1) ≤ |X|(2) ≤ · · · ≤ |X|(N), we consider an

equivalent sample from the uniform distribution with U1, . . . , UN
iid∼ U (0, 1) and

ϕ+
F (u) = −

f ′

f

(
F−1

(
1 + u

2

))

3.4. Asymptotic distribution of rank tests

Asymptotic distribution under the null hypothesis

Consider for example the Mann–Whitney test. The mean and the variance of the test
are

E (M) =
1
2

m(m + n + 1), Var (M) =
1

12
mn(m + n + 1);
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see the exercises. With the same method, one can solve the general linear rank test.
Assume that aN(r) = ϕ(r/(N + 1)) for r = 1, . . . , n + m.

Lemma 3.16 (Asymptotic mean and variance of linear rank tests)
Consider sequences of experiments indexed by N = m + n such that N → ∞ and
m/N → λ ∈ (0, 1). The asymptotic mean and variance of

TN :=
LN
N

:=
1
N

m

∑
i=1

ϕ

(
Ri

N + 1

)
,

where Ri is the rank of Xi in the combined sample, are given respectively by

lim
N→∞

E (TN) = λϕ̄ = λ
∫ 1

0
ϕ(u)du

and

lim
N→∞

NVar (TN) = λ(1− λ)
∫ 1

0
(ϕ(u)− ϕ̄)2 du.

The variance we obtain only makes sense if 0 < λ < 1 and
∫

ϕ2(u)du < ∞.

Consider for example ϕ(u) = ϕ f (u) = − f ′/ f (F−1(u)) and

∫ 1

0
ϕ2

f (u)du =
∫ 1

0

[
− f ′

f

(
F−1(u)

)]2

du.

It is natural to make a change of variable F−1(u) = x meaning F(x) = u and f (x)dx =

du. Thus,
∫ 1

0
ϕ2

f (u)du =
∫ F−1(1)

F−1(0)

[
− f ′

f
(x)
]2

f (x)dx

= I(F).

For this particular ϕ, we need a finite Fisher information.

Proof We will replace

NTN = LN =
m

∑
i=1

ϕ

(
Ri

N + 1

)

by

N

∑
i=1

cN(i)ϕ

(
Ri

N + 1

)
,
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where cN(i) = IAi where Ai is the the event that the ith observation is from the X-
sample. The vector cN = (cN(1), . . . , cN(N)) is the vector of regression constants. Let

TN =
1
N

N

∑
i=1

Bi ϕ

(
i

N + 1

)

where B1, . . . , BN ∼ B(p) where p = m/N. Thus,

E (TN) =
1
N

N

∑
i=1

m
N

ϕ

(
i

N + 1

)
→ λ

∫ 1

0
ϕ(u)du

as N → ∞. If ϕ(u) is Riemann integrable, then

NVar (TN) =
1
N

N

∑
i=1

m
N

(
1− m

N

)
ϕ2
(

i
N + 1

)
(3.10)

+
1
N

N

∑
i=1

N

∑
j=1
i 6=j

Cov
(

Bi, Bj
)

ϕ

(
i

N + 1

)
ϕ

(
j

N + 1

)
(3.11)

where

Cov
(

Bi, Bj
)
= P

(
Bi = 1, Bj = 1

)
−
(m

N

)2

=
(2

2)(
N−2
m−2)

(N
m)

−
(m

N

)2

=
(N − 2)!m!(N −m)!
(m− 2)!(N −m)!N!

−
(m

N

)2

=
m(m− 1)
N(N − 1)

− m2

N2

= − m(N −m)

N2(N − 1)
.

Another easy proof for the covariance is derived as follows: since ∑N
i=1 Bi = m,

Var
(

N

∑
i=1

Bi

)
= 0 = N

m
N

(
1− m

N

)
+ 2
(

N
2

)
x

and solving for x, we get

Cov
(

Bi, Bj
)
= −m

(
1− m

N

)
(N(N − 1))−1 .

The behaviour as N → ∞ of the right hand side of eq. (3.10) is λ(1− λ)
∫ 1

0 ϕ2(u)du.
Analogously, we recover −λ(1− λ)ϕ̄2 for eq. (3.11). This requires a few more manipu-
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lations to show that the diagonal terms (with i = j) are of lower order and negligible.
Together, this gives

λ(1− λ)

[∫ 1

0
ϕ2(u)du−

(∫ 1

0
ϕ(u)du

)2
]
= λ(1− λ)

∫ 1

0
(ϕ(u)− ϕ̄)2 du.

�

Remark 3.2
In the one-sample case, LN = ∑N

i=1 sign(Xi)ϕ(R+
i /(N + 1)).

We now aim to derive the asymptotic normality under the null hypothesis. Historically,
this question has been instrumental for developing asymptotic.

Under the null hypothesis,

E (LN) = E
(

N

∑
i=1

cN(i)aN(Ri)

)
= Nc̄N āN

because E (aN) = āN for a rank R, where aN(r) = ϕ(r/(N + 1)), āN = N−1 ∑N
i=1 aN(i)

and c̄N = N−1 ∑N
i=1 cN(i).

It will prove easier to consider another score for derivations.

Theorem 3.17 (Projection method)
Let RN = (RN(1), . . . , RN(N)) be the vector of ranks derived under the null hypothesis
from a vector Z = (Z1, . . . , ZN) with iid coordinates distributed according to F, abso-
lutely continuous with density f . Put Ui = F(Zi) and let aN = (aN(1), . . . , aN(N)) be a
vector with entries aN(r) = E

(
ϕ(U(r))

)
, a measurable score generating function which

is not constant and such that
∫ 1

0 ϕ2(u)du < ∞. Then,

LN =
N

∑
i=1

cN(i)a(RN(i))

has the same asymptotic distribution as L̃N = Nc̄N āN + ∑N
i=1(cN(i)− c̄N)ϕ(Ui).

Using Theorem 3.13, we have

aN(RN(i)) = E (ϕ(Ui) | RN)

= E
(

ϕ(F(ZRN(i))) | RN

)

= E
(

ϕ(URN(i))
)
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If we project L̃N onto the subspace of square integrable functions defined by the span
of RN , we get the conditional expectation

E
(

L̃N | RN
)

and this turns out to be LN . Indeed,

E
(

L̃N | RN
)
= Nc̄N āN +

N

∑
i=1

(cN(i)− c̄N)aN(RN(i))

because aN(RN(i)) = E (ϕ(Ui) | RN) and because

N

∑
i=1

c̄N aN(RN(i)) = c̄N

N

∑
i=1

aN(i) = Nc̄N āN .

Remark 3.3 (on the projection method)
Consider a sample Z1, . . . , ZN . If we are dealing with a complicated statistic UN , we
would like to approximate it by a statistic of the form

ŨN =
N

∑
i=1

hi(Zi),

where hi(Zi) can be found as the projection E (UN | Zi) .

The proof of the following fact will be omitted:

Var (LN)

Var
(

L̃N
) → 1

as N → ∞; this is a sufficient condition for asymptotic equivalence (i.e. LN and L̃N

have the same asymptotic distribution). 3 In our case,

Var (LN)

Var
(

L̃N
) =

1
N−1 ∑N

i=1(cN(i)− c̄N)
2 ∑N

i=1(aN(i)− āN)
2

1
N ∑N

i=1(cN(i)− c̄N)2Var (ϕ(U))

·∼ Var (aN(ranks))
Var (ϕ(U))

which can be proved in various ways!

Corollary 3.18 (Asymptotic normality of linear rank tests)
If maxi(cN(i)− c̄N)

2/ ∑N
i=1(cN(i)− c̄N)

2 → 0 as N → ∞, then it holds that

LN − E (LN)√
Var (LN)

d−→ N (0, 1)

as N → ∞.
3See for example Van der Vaart, Asymptotic Statistics, p.176–177.
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In the two-sample case, m of the cN(i) = 1 and n of the cN(i) = 0, which imply c̄N =

m/N, so

N∨

i=1

{
(cN(i)− c̄N)

2
}
= max

{(m
N

)2
,
(

1− m
N

)2
}

and

N

∑
i=1

(cN(i)− c̄N)
2 = m

(
1− m

N

)2
+ n

(m
N

)2

= m
(

1− m
N

) (
1− m

N
+

m
N

)
= N

m
N

(
1− m

N

)

since cN(i) is binary, each term is either 1−m/N or −m/N and there are respectively
m and n of them. Does

1
N

max
(m

N , n
N
)2

m
N

n
N

→ 0

as N → ∞? Yes, unless m ≡ N or m ≡ 0, since the denominator converges to λ(1− λ)

and the numerator to max(λ, 1− λ)2.

Asymptotic distribution under the alternative

Let Z1, . . . , Zn be observations and let RN(i) denote the rank of Zi, the number of Z
values that are less than or equal to Zi. Alternatively, we can express RN(i) as RN(i) =
NFN(Zi) where FN(x), the number of Zi ≤ x upon N, is the empirical distribution. The
latter can be analysed as a stochastic process indexed by x. The representation

1
N

N

∑
i=1

cN(i)aN(RN(i)) =
∫

aN(NFN(x))cN(x)dFN(x).

can be used to get asymptotic results. Another way to obtain the power is by means of
asymptotic arguments, and this is what is used in practice.

3.5. Asymptotic power and Pitman efficacy

We begin by illustrating the concept with the Student’s t-test.

Example 3.3 (Power of test for Student’s t-test)
Let X1, . . . , XN

iid∼ N (µ, σ2), where H0 : µ = 0 versus H1 : µ > 0. Under the null
hypothesis,

TN =
√

N
X̄N
SN
∼ tN−1,
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where X̄N = N−1 ∑N
i=1 Xi and S2

N = (N − 1)−1 ∑N
i=1(Xi − X̄N)

2.

To have PH0 (rejection) = α, we reject if TN > tN−1(1− α) ∼= z1−α = Φ−1(1− α), for
large N. At µ > 0, this test has power

Pµ (rejection) = Pµ (TN > z1−α) .

and it is not easy to work out, since TN follows a non-central Student-t distribution. It
is apparent that as N → ∞, the power goes to 1, except at the null hypothesis, provided
that the test is reasonably behaved. Hence, this situation is not terribly interesting.

0.5 1

α

µ

β(µ)

Figure 13: Power as a function of Ni, for N1 (dashed red) and N2 (black) where N1 < N2 for the
H0 : µ = 0

Pitman’s idea was to compute the power at a local alternative µN → 0 so that the power
at µN converges to a number β ∈ (0, 1) as N → ∞.

Example 3.4 (Location shift for Normal distributions)
This is an example of a Student’s t-test for known σ. We reject if

√
NX̄N
σ

> z1−α

since X̄N/σ ∼ N (0, N−1) under H0. The power of this test statistic is

Pµ

(√
NX̄N
σ

> z1−α

)

since X̄N/σ ∼ N (µ/σ, N−1) under the alternative. Thus,

Pµ

(√
NX̄N
σ

−
√

Nµ

σ
> z1−α −

√
Nµ

σ

)

60



= 1−Φ

(
z1−α −

√
Nµ

σ

)

= Φ

(√
Nµ

σ
− z1−α

)

converges to 1 as N → ∞. What should µN be in order for Φ
(√

Nµ/σ − z1−α

)
→ β

for β ∈ (0, 1)? Taking µN = h/
√

N will work! In general, the power at the alternative
h/
√

N approximately

Φ (heP − z1−α)

where eP is the Pitman efficacy.

The power at the alternative µN is β(µN) = Φ(h/σ− z1−α)

3.5.1. General formula for the Pitman efficacy for test statistics with
Gaussian limits

Consider the test statistic TN = T(X1, . . . , XN) with Xi
iid∼ Fθ for θ ∈ R. We wish to test

an hypothesis of the form H0 : θ = 0 versus H1 : θ > 0 for an arbitrary family. Then,
for statistics that converge in law to a Gaussian distribution, we have

√
N

TN − µ(θN)

σ(θN)
d−→ N (0, 1) (3.12)

where µ(·), σ(·) are appropriate location and scale functions, respectively. We term
θN = h/

√
N the Pitman alternative. Similar expressions can be derived for χ2 or F

limits.
Example 3.5 (continuation of example 3.3)
In the setting of example 3.3, we had under H0, TN ∼ tN−1

·∼ N (0, 1) for N large.
Taking µ(µ) = µ/σ and σ(µ) = 1, we have

√
NX̄N
SN

−
√

NµN
σ

=
√

N
(

X̄N − µN
SN

+
µN
SN
− µN

σ

)

=
√

N
X̄N − µN

SN
+
√

NµN

(
1

SN
− 1

σ

)

d−→ N (0, 1)

since the term h(1/SN − 1/σ) → 0 by Slutsky’s theorem. By the central limit theorem,
the first term is asymptotically normally distributed and so eq. (3.12) holds for the
Student’s t-test. Whether or not eq. (3.12) holds needs to be checked in each case.

Theorem 3.19 (Power at Pitman alternative for test statistics with Gaussian limit)
Assume that eq. (3.12) holds, µ(θ) is differentiable at zero and σ(θ) is continuous. Then,
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the power at θn converges to

1−Φ
(
z1−α − h

µ′(0)
σ(0)

)
= Φ

(
h

µ′(0)
σ(0)

− z1−α

)
(3.13)

where the test has asymptotic level α and leads to rejection of H0 rejects for large values
of Tn.

Proof To achieve asymptotic level α, we reject the null hypothesis if

√
n

Tn − µ(0)
σ(0)

> z1−α ⇔ Tn > µ(0) +
σ(0)√

n
z1−α

The power at θn is asymptotically equal to

β(θn) = Pθn

(
Tn > µ(0) +

σ(0)√
n
z1−α

)

= Pθn

(√
n(Tn − µ(θn))

σ(θn)
>

√
nµ(0)

σ(θn)
+

√
nσ(0)√
nσ(θn)

z1−α −
√

nµ(θn)

σ(θn)

)

= Pθn

(√
n(Tn − µ(θn))

σ(θn)
>

√
n(µ(0)− µ(θn))

σ(θn)
+

σ(0)
σ(θn)

z1−α

)
.

Since σ(0)/σ(θn)→ 1 as n→ ∞, µ(θn) = µ(0) + θnµ′(0) + o(n−1/2) and thus

√
n(µ(0)− µ(θn))

σ(θn)
=

√
n
(
− h√

n µ′(0) + o(n−1/2)
)

σ(θn)

converges to −hµ′(0)/σ(0). The asymptotic power is thus equal to eq. (3.13). �

Definition 3.20 (Pitman efficacy)
We define the Pitman efficacy as

eP(test, Fθ) =
µ′(0)
σ(0)

.

For positive location shift, eP > 0. One is interested in local alternatives θ > 0, but
θ ≈ 0. If θ = h/

√
n, the power at θ is

β(θ) ≈ Φ(
√

nθeP − z1−α).

The bigger eP, the better the test.
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x

f (x)

Figure 14: Location shift of θ > 0 (red dashed curve) against postulated null distribution with
θ = 0.

Example 3.6
For Student’s t-test,

eP =

d
dθ

(
θ
σ

)∣∣∣
θ=0

1
=

1
σ

and the same for the Z-test.

3.5.2. Asymptotic relative efficiency of tests

Definition 3.21 (Asymptotic relative efficiency)
Let Test A TA and Test B TB be two competing tests. The ratio

ARE(A, B) :=
(

eP(Test A, F)
eP(Test B, F)

)2

is called the asymptotic relative efficiency of Test A relative to Test B, also denoted
ARE(Test A relative to Test B). At a local alternative θ and assuming both tests have
level α, the two tests have equal power if

√
nAeP(Test A) =

√
nBeP(Test B) when

ARE(A, B) =
nB

nA

If Test A is more efficient that Test B, it reaches the same power with fewer observations.

Note
Historically, Pitman studied ratios of sample sizes. The asymptotic power allows rela-
tively easy comparisons with existing tests. Note in passing that Theorem 3.19 is due
to Noether!

Example 3.7 (ARE for Wilcoxon’s signed rank test)
To compute µ′(0)/σ(0), we need to know µ(θ) for small values of θ and σ(0) (where
σ2(0) is the asymptotic variance of the test statistic under the null).
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Recall the statistic is given by

T̃N =
N

∑
i=1

sign(Xi)R+
i

= 2
N

∑
i=1

IXi>0R+
i −

N(N + 1)
2

.

where R+
i is the number of |Xj| less than or equal to |Xi|, #{|Xj| < |Xi|+ 1}. Then

TN =
T̃N

N(N + 1)
=

N − 1
N + 1

U(1)
N +

2
N + 1

U(2)
N ,

where

U(1)
N =

(
N
2

)−1 n

∑
j=1

∑
i<j

sign(Xi + Xi),

U(2)
N =

1
N

N

∑
i=1

sign(Xi)

are proportional to respectively a two-sample U-statistic of degree (1, 1) and a U-
statistic of degree 1.

Lef F be continuous around 0. Put G(x) = F(x− θ). The expectation of TN at G is equal
to

N − 1
N + 1

E (sign(X1 + X2)) +
2

N + 1
E (sign(X1))

=
N − 1
N + 1

(P (X1 > −X2)− P (X2 < −X1)) +
2

N + 1
(P (X1 > 0)− P (X1 < 0))

since it suffices to calculate the expectation of the kernel of the U-statistics, where

P (X1 > 0) = 1− G(0) = 1− F(−θ)

P (X1 > −X2) =
∫

P (X1 > −X2 | X2 = x) f (x− θ)dx

=
∫
(1− F(−x− θ)) f (x− θ)dx

For large N, only

P (X1 > −X2)− P (X2 < −X1) = µ(θ)

matters. For the variance under H0, recall the formula

VarH0 (TN) =
1

N2(N + 1)2

N

∑
i=1

i2
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=
N(N + 1)(2N + 1)

6N2(N + 1)2

∼ 1
3N

and σ(0) = 1/
√

3. If one compares the Wilcoxon test to the t-test, one finds (see exer-
cises)

(
eP(Wilcoxon)

eP(t-test)

)2

= 0

if the variance of F (and G) is infinite. Actually, the Wilcoxon test is never too bad a
choice when compared to the t test meaning (there is a universal lower bound of 0.864
for the ARE).

Remark 3.4
1. A similar theory can be developed for tests with an asymptotic χ2-distribution.
2. The Pitman alternatives and the behavior of the likelihood ratio of the Pitman al-
ternative versus the null has been studied extensively by Lucien LeCam, who inves-
tigated contiguous sequences of laws, under the name local asymptotic normality.
Equation (3.12) can be checked using this theory.
3. Other asymptotic comparisons of tests have been developed. The most popular is
Bahadur’s slope. This is also linked to Chernoff’s results on large deviations.

Example 3.8 (Normal shift)
For x → ∞, we have

1−Φ(x) ∼ φ(x)
x

=
1√
2πx

exp
(
− x2

2

)

which goes quickly to zero. We had for the power the formula Φ(
√

nµ− z1−α). Thus

1− β(µ) ∼
exp

(
− 1

2 (
√

nµ− z1−α)
2
)

√
2π(
√

nµ− z1−α)

and
1
n

log(1− β(µ)) ∼ − 1
2n
(√

nµ− z1−α

)2 − log(
√

2π(
√

nµ− z1−α))

n
,

meaning log(1− β(µ)) ∼ − 1
2 nµ2. We also have 1-β(µ) ∼ exp(−nµ2/2), which resem-

bles the Chernoff bounds for large deviations.

For many tests, n−1 log(1− β(µ)) ∼ − 1
2 c(µ) at a fixed alternative µ. c(µ) is called the

exact Bahadur slope.

We left many additional topics untouched, in particular regression. Others we only did
in the exercises, including notably the Hodges–Lehmann estimators.

65



A
c
o
ll
e
c
ti
o
n

o
f
n
o
n
p
a
ra

m
e
tr
ic

te
st
s

T
es
t

S
ta
ti
st
ic

E
x
p
ec
ta
ti
on

V
a
ri
a
n
ce

T
es
ts

fo
r
a
sh
if
t
b
et
w
ee
n
tw

o
sa
m
p
le
s
X

1
,.
..
,X

m
an

d
Y
1
,.
..
,Y

n
.
T
h
e
ra
n
k
s
ar
e
co
m
p
u
te
d
on

th
e
p
o
ol
ed

sa
m
p
le

a
n
d
N

=
n
+
m
.

W
il
co
x
on

∑
n i=

1
R
(Y

i)
n
(N

+
1)
/2

n
m
(N

+
1)
/
12

va
n
d
er

W
ae
rd
en

∑
n i=

1
Φ

−
1
[R

(Y
i)
/(
N

+
1
)]

0
(n
m
/N

(N
−
1)
)
∑

N i=
1
(Φ

−
1
[i
/
(N

+
1
)]
)2

N
or
m
al

S
co
re
s

∑
n i=

1
E[
Φ

−
1
[U

(R
(Y

i
))
]]

0
(n
m
/N

(N
−
1
))
∑

N i=
1
(E

[Φ
−
1
[U

(i
)
]]
)2

In
st
ea
d
of
E[
Φ

−
1
[U

(i
)
]]
,
w
e
co
u
ld

al
so

w
ri
te
E[
Z
(i
)
],
w
h
er
e
U
(i
)
an

d
Z
(i
)
d
en
ot
e
u
n
if
or
m

an
d
n
or
m
al

o
rd
er

st
a
ti
st
ic
s.

T
es
ts

of
sy
m
m
et
ry

fo
r
on

e
sa
m
p
le

X
1
,.
..
,X

n
.
T
h
e
ra
n
k
s
R

+ i
ar
e
co
m
p
u
te
d
on

th
e
ab

so
lu
te

d
ev
ia
ti
on

s
fr
o
m

µ
0
,
th
e
ce
n
te
r
of

sy
m
m
et
ry
.

W
il
co
x
on

∑
i:
X

i
>
0
R

+ i
n
(n

+
1)
/4

n
(n

+
1)
(2
n
+
1
)/
2
4

va
n
d
er

W
ae
rd
en

∑
i:
X

i
>
0
Φ

−
1
[ 1 2

+
R

+ i

2
(n

+
1
)

]
1 2

∑
n i=

1
Φ

−
1
[ 1 2

+
i

2
(n

+
1
)

]
1 4

∑
n i=

1
Φ

−
1
[ 1 2

+
i

2
(n

+
1
)

] 2

N
or
m
al

S
co
re
s

∑
i:
X

i
>
0
E[
|Z

| (R
+ i
)
]

n
/
√
2π

1 4

∑
n i=

1

( E
[|Z

| (i
)
]) 2

T
w
o
sa
m
p
le

te
st
s
of

sc
al
e.

T
h
e
ra
n
k
s
ar
e
co
m
p
u
te
d
on

th
e
p
o
ol
ed

sa
m
p
le
.

A
n
sa
ri
-B

ra
d
le
y

∑
n i=

1

( N
+
1

2
−
|R

(Y
i)
−

N
+
1

2
|)

n
(N

+
2
)

4
n
m

(N
−
2
)(
N

+
2
)

4
8
(N

−
1
)

lo
g-
ra
n
k
,
S
av
ag
e

∑
n i=

1

∑
N j
=
N

−
R
(Y

i
)+

1
1 j

n
n
m

N
−
1

( 1
−

1 N

∑
N j
=
1

1 j

)

T
h
e
ra
n
k
sc
or
e
u
se
d
b
y
S
av
ag
e’
s
te
st

is
a
(r
)
=
∑

N j
=
N

−
r
+
1

1 j
≈

−
lo
g
( 1

−
r

N
+
1

) .

T
es
ts

fo
r
I
sa
m
p
le
s
X

ij
fo
r
i
=

1
,.
..
,I

an
d
j
=

1
,.
..
,n

i.
T
h
e
ra
n
k
s
ar
e
co
m
p
u
te
d
on

th
e
p
o
ol
ed

sa
m
p
le
.
H
er
e
N

=
n
1
+
··
·+

n
I
.

K
ru
sk
al
-W

al
li
s

1
2

N
(N

+
1
)

∑
I i=

1
1 n
i

[ ∑
n
i

j
=
1
R
(X

ij
)
−
n
i
N

+
1

2

] 2
h
as

an
ap

p
ro
x
im

at
e
χ
2 I
−
1
n
u
ll
d
is
tr
ib
u
ti
o
n
.

T
es
ts

of
in
d
ep

en
d
en
ce

b
as
ed

on
a
sa
m
p
le

(X
1
,Y

1
),
..
.,
(X

n
,Y

n
)
o
f
a
b
iv
ar
ia
te

ra
n
d
om

v
ec
to
r.

T
h
e
co
m
p
o
n
en
ts

ar
e
ra
n
k
ed

in
d
iv
id
u
a
ll
y

an
d
re
su
lt
in

R
1
,.
..
,R

n
an

d
S
1
,.
..
,S

n
.
U
n
d
er

th
e
n
u
ll
,
th
e
tw

o
co
m
p
on

en
ts

ar
e
in
d
ep

en
d
en
t.

S
p
ea
rm

an
’s

ρ
1
2

n
3
−
n

∑
n i=

1

( R
i
−

n
+
1

2

)(
S
i
−

n
+
1

2

)
0

1
n
−
1

K
en
d
al
l’
s
τ

1
n
(n

−
1
)

∑
∑

i6=
j
si
gn

(R
i
−
R

j
)s
ig
n
(S

i
−
S
j
)

0
2
(2

n
+
5
)

9
n
(n

−
1
)

T
es
t
fo
r
re
gr
es
si
on

co
effi

ci
en
ts
.
T
h
e
d
a
ta

ar
e
(x

i,
Y
i)

fo
r
(i

=
1
,.
..
,n

),
w
h
er
e
Y
i
=

x
T i
β
+
µ
+
ε i
.
W
e
te
st

H
0
:
β
=

β
0
.

T
h
e
ra
n
k
s
ar
e
b
as
ed

on
th
e
re
si
d
u
al
s
Y
i
−
x
T i
β
0
an

d
th
e
ra
n
k
sc
or
es

ar
e
a
(1
)
≤

..
.
≤

a
(n
),
w
h
ic
h
sa
ti
sf
y
a
(1
)
+

··
·+

a
(n
)
=

0.

R
an

k
R
eg
re
ss
io
n

∑
n i=

1
a
(R

i)
(Y

i
−
x
T i
β
0
)

th
e
ra
n
k
es
ti
m
at
or

β̂
is

th
e
va
lu
e
of

β
0
,
w
h
ic
h
m
in
im

iz
es

th
is

st
at
is
ti
c.



Part 4
Nonparametric regression

4.1. Smoothing

We consider regression model where the response variable y varies smoothly with the

covariate x. Suppose we have measurements yi = f (xi) + εi where εi
iid∼ N (0, σ2) at

equally spaced nodes xi = x0 + (i− 1)∆ for i = 1, . . . , n.

0 2 4 6 8 10

0
10

20
30

40
50

x

f
(x
)

We wish to estimate f from the observations. Our goal is to estimate f (x) by f̂ (x); a
simple linear estimator is of the form

f̂ (x) =
1

W

n

∑
i=1

Wiyi =
1

W(x)

n

∑
i=1

Wi(x)yi

for weights W, {Wi}. This leads naturally, if one averages over values close to unob-
served x’s, to

f̂ (xi) =
1

2k + 1

k

∑
j=−k

Yi+j

a moving-average estimator akin to those used in time-series. This estimator, the mean
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of nearest neighbours, does not work at the boundary. Its mean and variance are

f̂ (xi) =
1

2k + 1

k

∑
j=−k

(
f (xi+j) + εi+j

)

=
1

2k + 1

k

∑
j=−k

f (xi+j) +
k

∑
j=−k

εi+j

2k + 1

which means

E
(

f̂ (xi)
)
=

1
2k + 1

k

∑
j=−k

f (xi+j)

Var
(

f̂ (xi)
)
=

σ2

2k + 1
.

4.1.1. Bias and variance of nearest neighbours smoothers

We begin with a definition.

Definition 4.1 (Hölder continuity)
If f (x) ∈ C 1([0, 1]), namely it has a continuous first derivative, then f (x) has a Hölder
continuous first derivative if

| f ′(x)− f ′(y)| ≤ C|x− y|β, 0 < β ≤ 1

for all x, y ∈ [0, 1]. If f had a second derivative at x, then | f ′(x)− f ′(y)| = o(|x − y|)
(β ≥ 1). In the case β = 1, f ′ has a Lipschitz-continuous first derivative.

We usually consider C p functions for p ≥ 2 or assume Hölder continuity of the second

derivative. Suppose E (εi) = 0, εi
iid∼ F and Var (εi) = σ2 < ∞. We consider fitted values

Ŷi =
1

2k + 1

k

∑
j=−k

Yi+j

Theorem 4.2 (Optimal bandwidth for nearest neighbours smoother)
Suppose f : [0, 1] → R is twice continuous differentiable and | f ′′(x)| ≤ M for all
0 ≤ x ≤ 1 since we are looking at a compact set. In this case, k = O(n4/5) is the
optimal spacing choice and leads to a mean squared error of O(n4/5).

Proof We already have Var
(

Ŷi

)
= σ2/(2k + 1) = O(k−1). A Taylor’s expansion of

f (x) around xi gives

f (x) = f (xi) + f ′(xi)(x− xi) + f ′′(ξx)
(x− xi)

2

2
.
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The bias is

bias(Ŷi) = E
(

Ŷi − f (xi)
)

=
1

2k + 1

k

∑
j=−k

(
f ′(xi)(xi+j − xi) + f ′′(ξxi+j)

(xi+j − xi)
2

2

)

=
1

2k + 1
f ′(xi)

n− 1

k

∑
j=−k

j +
1

2k + 1

k

∑
j=−k

1
2

f ′′(ξxi+j)

(
j

n− 1

)2

since our points xi are equally spaced, the distance between any two adjacent points
between x1 = 0 and xn = 1 is 1/(n− 1). The first sum vanishes since it involves an
odd function. Thus

∣∣∣bias(Ŷi)
∣∣∣ ≤ M

2(2k + 1)

(
1

n− 1

)2 k

∑
j=−k

j2

=
M

2(2k + 1)(n− 1)2
k(k + 1)(2k + 1)

3

= O
(

k2

n2

)

If we put k(n) = nα = nh(n), then h(n) = nα−1 is called the bandwidth.

h

Squared bias
Variance
Mean squared error

Figure 15: Squared bias and variance trade-off curve

The mean squared error of Ŷi or the sum over all Ŷi is equal to

bias
(
Ŷi
)2

+ Var
(
Ŷi
)
= O

(
k4

n4

)
+ O

(
1
k

)
= O

(
h4)+ O

(
1

nh

)

and the bias-variance tradeoff is minimized when both are of the same order. If we
want h4 = 1/nh, this is equivalent to h5 = n−1 and so choosing h = n−1/5 leads to
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k = hn = n4/5. Thus, the mean-squared error is of order O(n−4/5), since it is the order
of both the squared bias and the variance. �

In parametric and robust statistics, we are used to O(n−1). As the dimension of the
smoothing problems increases from d = 1, the rate of the the mean squared error be-
comes O(n−4/(4+d)). This is sometimes known as the curse of dimensionality.

In determining the optimal value of the bandwidth h, both σ2 and f ′′ play a role.

If we assume Hölder continuity requirement instead of boundedness of the second
derivative, we get from the Hölder bound

bias
(

f̂ (xi)
)
≤ C ∑

|j|≤k

∣∣∣∣
j

n− 1

∣∣∣∣
∣∣∣∣

j
n− 1

∣∣∣∣
β

.

If β = 1, we recover the result of our theorem. One cans show that with f ∈ C s([0, 1])
and Hölder continuous with coefficient β, the optimal mean squared error is of order
O(n−r) where r = 2(s + β)/[2(s + β) + 1]. As s increases, r approaches 1. If β = s = 1,
we get the rate r = 4/5.

4.2. Smoothing splines

4.2.1. Splines

A spline of degree p with knots t1 < t2 < · · · < tk is a function s : [t1, tk]→ R such that

• it has p− 1 continuous derivatives s′, s′′, . . . , s(p−1);
• on each interval [ti, ti+1], it is a polynomial of degree p.

We will call the space of these functions Sp(x1, . . . , xn).

Proposition 4.3 (Dimension of the spline space)
Sp(x1, . . . , xk) is a vector space of dimension k + p− 1

Proof For s1, s2 ∈ Sp(x1, . . . , xn), it is obvious that a1s1 + a2s2 ∈ Sp(x1, . . . , xn) if
a1, a2 ∈ R. The dimension is (k − 1)(p + 1) − (k − 2)p = k + p − 1 because of the
restrictions: there are k− 2 interior points, each with p restrictions due to the require-
ment of continuity of the derivatives. �

In order to fit splines, choose a basis b1(x), . . . , bk+p−1(x) and find θ̂1, . . . , θ̂k+p−1 such
that the observations y1, . . . , yn are close to ŷi = θ̂1b1(xi) + · · ·+ θ̂k+p−1bk+p−1(xi). If
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Figure 16: Cubic and linear spline fit with knots at the observations.

we fit by least squares, we obtain

θ̂ =




θ̂1
...

θ̂k+p−1


 =

(
X>X

)−1
X>y

with

X =




b1(x1) · · · bk+p−1(x1)
...

. . .
...

b1(xn) · · · bk+p−1(xn)


 .

The fitted values will be

ŷ = Xθ̂ = X(X>X)−1X>y = Hy

where H is a linear application and thus the smoother is linear. H is a projection matrix
(it projects onto the span of X) and thus all its eigenvalues are either 0 or 1. Other inter-
esting things to look at are the eigenvectors of H, filtering the signal if the eigenvalue
is 0 and letting it pass if the eigenvalue is 1. The columns of H are impulse responses.
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4.2.2. Optimality properties of splines

Proposition 4.4
Let f (x) be a differentiable such that

∫ xn
x1

( f ′(x))2 dx < ∞. Let s(x) ∈ S1(x1, . . . , xn)

with s(xi) = f (xi) for i = 1, . . . , n. Then

∫ (
f ′(x)

)2 dx ≥
∫
(s′(x))2 dx,

This property has analogues, as for example cubic splines minimize
∫ xn

x1
(s′′(x))2 dx.

Proof It is enough to consider a single interval [xi, xi+1). Write

∫ xi+1

xi

(
f ′(x)− s′(x)

)2 dx =
∫ xi+1

xi

(
f ′(x)

)2 dx−
∫ xi+1

xi

(
s′(x)

)2 dx

− 2
∫ xi+1

xi

s′(x)
(

f ′(x)− s′(x)
)

dx.

The integral of a square is positive, so it remains to prove that the last term is zero.
Using integration by part
∫ xi+1

xi

s′(x)
(

f ′(x)− s′(x)
)

dx = s′(x) ( f (x)− s(x))
∣∣∣
xi+1

xi
−
∫ xi+1

xi

s′′(x) ( f (x)− s(x)) dx.

The first term equals zero because f (x) = s(x) at the data points xi, xi+1 and the second
term vanishes because s′′(x) = 0. �

In more generality, the odd degree splines have an interesting property. For a spline
of degree 2m− 1,

∫
s(m)(x)2 dx is a minimum. The difficulty with this approach is the

choice of the knots location. You want many knots where the curvature of f is high and
less knots where the function is flat or constant.

4.2.3. Natural smoothing splines

Take (x1, . . . , xn) as knots and consider the space of natural splines

S3
n :=

{
s ∈ S3(x1, . . . , xn) : s′′(x1) = s′′(xn) = 0

}
.

Note that dim(S3(x1, . . . , xn)) = n + p− 1 = n + 2. The 2 additional conditions reduce
the dimension of S3

n to n.

Problem 4.1 (Rensch’s problem)
Find s(x), a natural cubic spline, such that ∑n

i=1(Yi − s(xi))
2 ≤ M for M ≥ 0 and s(x)

should minimize
∫ xn

x1
(s′′(x))2 dx. If M = 0, this yields the interpolating spline, which

passes through all the points. If M is large, s(x) is smooth.
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The cubic spline s(x) should minimize ∑n
i=1(Yi − s(xi))

2 + λ
∫ xn

x1
(s′′(x))2 dx.4 This is

equal to the goodness-of-fit plus λ times a smoothness penalty. This is the same prob-
lem as Rensch’s, except that it is formulated using Lagrange multipliers. The case
of λ = 0 gives the interpolating spline (rough), while λ → ∞ is the least-square fit
(smooth). The best choice in terms of variance-bias trade-off lies in between. We are
now going to study the computations of s(x).

For computational purposes there are two convenient parametrizations. The first is
obtained by writing s(x) ∈ S3(x1, . . . , xn) as a linear combination of the B-spline basis.
B-splines have minimal support and can be computed efficiently. The second is by way
of the second derivatives at the interior knots, where we work with natural splines for
which the second derivative is zero at the two extreme knots. When using the B-spline
basis, these two constraints have to be explicitly added.

4.2.4. Natural splines determined by their values and second
derivatives

Proposition 4.5 (Solution to Rensch’s problem with the natural splines formulation)
We denote the node vector by x = (x1, . . . , xn) and by di = xi+1 − xi, 1 ≤ i < n, the
gap between successive knots. Consider the vectors s = (s(x1), . . . , s(xn))> ∈ Rn and
v = (s′′(x2), . . . , s′′(xn−1))

> ∈ Rn−2. Indeed, because the spline is natural, we do not
need to record values v1 = s′′(x1) = vn = s′′(xn) = 0.

If s ∈ S3(x1, . . . , xn), then s′′ ∈ S1(x1, . . . , xn). The second derivative s′′(x) is a continu-
ous piecewise linear function, with value vi at the interior knot xi and zero at the end
knots. It thus is for xi ≤ x ≤ xi+1 equal to

s′′(x) =
vi+1 − vi
xi+1 − xi

(x− xi) + vi =
(x− xi)vi+1 + (xi+1 − x)vi

di
,

which is a linear function in x with the required values at the boundaries of the interval.

x1 x2 x3 x4
v1 = v4 = 0

v2

v3

Slope from vi to vi+1:

vi+1 − vi
xi+1 − xi

If we integrate it twice and choose the constants of integration in order to obtain the

4For a spline of degree p, it should minimize ∑n
i=1(Yi − s(xi))

2 + λ
∫ xn

x1
s
(

p+1
2

)
(x)2 dx
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required values si at the knots, we obtain

s(x) =
(x− xi)si+1 + (xi+1 − x)si

di
− 1

6
(x− xi)(xi+1 − x)Ξ (4.14)

where

Ξ =

{(
1 +

x− xi
di

)
vi+1 +

(
1 +

xi+1 − x
di

)
vi

}
.

The last equation requires checking. Clearly, s(x) is a piecewise cubic and its values at
the knots are as required, s(xi) = si. This is evident, because the cubic part is equal to
zero at the knots and the linear first term interpolates the values si. The first derivative
is easily calculated as

s′(x) =
si+1 − si

di
− 1

6
(xi+1 − x)Ξ +

1
6
(x− xi)Ξ−

1
6
(x− xi)(xi+1 − x)

[
vi+1 − vi

di

]
,

while the second derivative is

s′′(x) =
2
6

Ξ− 2
6
(xi+1 − x)

[
vi+1 − vi

di

]
+

2
6
(x− xi)

[
vi+1 − vi

di

]
.

The last equation shows that the cubic polynomial in eq. (4.14) does have indeed the
correct derivative values at the knots, because

s′′(xi) =
1
3
{vi+1 + (1 + 1)vi} −

1
3
(vi+1 − vi) = vi

and analogously s′′(xi+1) = vi+1. The only way in which the function in eq. (4.14) can
fail to be a spline is by discontinuity of the first derivative. Take any interior knot xi for
1 < i < n. There are two ways in which we can compute the first derivative. Once at
the right boundary of the interval [xi−1, xi], which leads to

s′(xi) =
si − si−1

di−1
+

1
6
(xi − xi−1)(2vi + vi−1),

and once at the left-hand boundary of [xi, xi+1], which gives

s′(xi) =
si+1 − si

di
+

1
6
(xi+1 − xi)(vi+1 + 2vi).

These two values must be equal, that is,

si+1 − si
di

− si − si−1

di−1
=

si−1

di−1
−
(

1
di−1

+
1
di

)
si +

si+1

di

=
1
6

di−1vi−1 +
1
3
(di + di−1)vi +

1
6

divi+1
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which can be written as a system of n− 2 linear equations linking the vectors s and v,
namely Q>s = Rv where Q ∈ Rn×(n−2) is a tri-band matrix and R ∈ R(n−2)×(n−2) is a
square, invertible and tri-band matrix with diagonal values (di − di−1)/3.

The smoothness penalty is equal to the integral of the square of the second derivative
of the fitted function, (s′′(x))2 dx. We have

∫ xn

x1

(s′′(x))2 dx = s′′(x)s′(x)
∣∣∣
xn

x1
−

n−1

∑
i=1

∫ xi+1

xi

s′′′(x)s′(x)dx

= 0−
n−1

∑
i=1

(
vi+1 − vi

di

)
(si+1 − si)

=
n−1

∑
i=2

vi

(
si−1 − si

di−1
− si − si+1

di

)

= v>Q>s

where we made use of the fact that s′′(x1) = s′′(xn) = 0 and that s′′′(x) is constant on
each of the intervals. The smoothness penalty can be re-expressed as

v>Q>s = v>Rv = v>RR−1Q>s = s>QR−1Q>s.

since R = R>. For a natural cubic spline s(x), we have in summary to minimize

n

∑
i=1

(Yi − s(xi))
2 + λ

∫ xn

x1

(
s′′(x)

)2 dx (4.15)

= (Y − s)>(Y − s) + λv>Rv

= Y>Y − 2Y>s + s>s + λs>QR−1Q>s

From this, the criterion that s should minimize is

s>
(

I + λQR−1Q>
)

s− 2s>Y + Y>Y .

This leads to

2
(

I + λQR−1Q>
)

sopt − 2Y = 0.

The optimal solution can also be written in terms of v:

sopt = Y − λQR−1Q>sopt = Y − λQvopt

meaning

Q>sopt = Rvopt = Q>Y − λQ>Qvopt
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and thus

vopt =
(

R + λQ>Q
)−1

Q>Y .

Computationally it is easiest to compute first v and then s, because it avoids the compu-
tation of R−1. It turns out that R + λQ>Q is banded of width 5 (with a main diagonal,
and two diagonals above and two below), and that

Q>Y =
Yi+1 −Yi

di
− Yi −Yi−1

di−1
.

Proposition 4.6
The cubic smoothing spline is the natural spline that minimizes the criterion (4.15)
among all functions defined on [x1, xn] with absolutely continuous first derivative.5

Proof Suppose f (x) is a good smooth element of this space close to the observations Y .
Let s(x) be the natural cubic spline such that f (xi) = s(xi), meaning the goodness-of-fit
criterion in eq. (4.15) is the same for f (x) and s(x). But from the optimality properties
of splines, which states the the squared second derivative is minimized among all such
functions interpolating a given vector s, we have

∫ (
s′′(x)

)2 dx ≤
∫ (

f ′′(x)
)2 dx,

which proves the claim. �

The reason for the popularity of smoothing splines is the low dimension of the spline
space.

s(x) =
n

∑
j=1

bj(x)θj,

where (b1(x), b2(x), . . . , bn(x)) is a basis of the natural cubic spline space.

4.2.5. Summary on linear smoothers

The data comes in pairs (x1, Y1), . . . , (xn, Yn), such that the observations Yi = f (xi) + εi

where εi is a random error. Thus, we have a noisy observation of a smooth function
and attempt to retrieve the signal, as Ŷ = HY . Thus,

f̂ (x) =
n

∑
j=1

Yjhj(x), x ∈ {x1, . . . , xn}

and hj(xi) returns the ith element of the column vector hj, namely Hij.

5 f ′(x) absolutely continuous means there exists f ′(x) is such that
∫ b

a f ′′(x)dx = f ′(b) − f ′(a) for all
x1 ≤ a ≤ b ≤ xn.
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Example 4.1 (Linear regression)
If f (x) = θ0 + θ1b1(x) + · · ·+ θpbp(x) is in the (p + 1) dimensional space, the

H = B(B>B)−1B>

where Bij = (bj(xi)) ∈ Rn×(p+1). The eigenvalues of H are equal to either 0 or 1. The
trace tr(H) = p + 1, corresponding to the number of coefficients, or equivalently the
number of degrees of freedom of the model.

It is often true that H1 = 1, given the sum of the rows is 1.

Example 4.2 (Nearest neighbour smoothing)
For k = 1, n = 7, we have

H =




1
2

1
2 0 0 0 0 0

1
3

1
3

1
3 0 0 0 0

0 1
3

1
3

1
3 0 0 0

0 0 1
3

1
3

1
3 0 0

0 0 0 1
3

1
3

1
3 0

0 0 0 0 1
3

1
3

1
3

0 0 0 0 0 1
2

1
2




Generally, each row contains the value 1/(2k + 1) in position i− k, . . . , i + k. You need
to adapt ad-hoc the values near the edges. This Toeplitz structure gives rise to interest-
ing patterns, since the eigenfunctions behave like sinusoids.

The eigenvalues are no longer 0 or 1 and may even be negative.

Example 4.3 (Smoothing splines)
The matrix H remains a bit hidden, unless we work with basis functions. Consider a
basis consisting of b1(x), . . . bn(x). The smoothing spline is then of the form ∑n

j=1 θjbj(x)
and Ŷ = Bθ, with again Bij = bj(xi). We can express the sum of squared residuals as

n

∑
i=1

r2
i = (Y − Ŷ)>(Y − Ŷ)

= (Y − Bθ)>(Y − Bθ)

while
∫ xn

x1

(
s′′(x)

)2 dx =
∫ xn

x1

(
n

∑
j=1

θjb′′j (x)

)2

dx

=
n

∑
j=1

n

∑
k=1

θjθk

∫ xn

x1

b′′j (x)b′′k (x)dx

= θ>Ωθ
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where the entries of Ω are Ωjk =
∫ xn

x1
b′′j (x)b′′k (x)dx. The resulting criterion is

Crit(s) = (Y − Bθ)>(Y − Bθ) + λθ>Ωθ

and

d
dθ

Crit(s)
∣∣∣∣
θ̂

= −2B>Y + 2B>Bθ̂+ 2λΩθ̂ = 0

yielding

(B>B + λΩ)θ̂ = B>Y .

The matrix H is such that

Ŷ = Bθ̂

= B(B>B + λΩ)−1B>Y

= HY

and thus

H = B(B>B + λΩ)−1B>

4.2.6. Estimation of the variance of the random errors

We consider the natural estimator of the variance, the residuals sum of squares

RSS =
n

∑
i=1

(Yi − Ŷi)
2 =

n

∑
i=1

(Yi − f̂ (xi))
2 =

n

∑
i=1

(Yi − s(xi))
2,

which is the basis for estimation of Var (εi) = Var (Yi − f (xi)). For linear smoothers,

E (RSS) = E
(
(Y − Ŷ)>(Y − Ŷ)

)

= E
(
(I−H)Y)>((I−H)Y)

)

= E
(
(Y − f )>(I−H)>(I−H)(Y − f )

)
− E

(
f>(I−H)>(I−H) f

)

+ 2E
(

f>(I−H)>(I−H)Y
)

= E
(

tr
(
(I−H)>(I−H)(Y − f )(Y − f )>

))
− f>(I−H)>(I−H) f

+ 2 f>(I−H)>(I−H)E (Y)

= E
(

tr
(
(I−H)>(I−H)(Y − f )(Y − f )>

))
+ f>(I + H)>(I−H) f
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and the term (I −H) f , the vector of residuals obtained by smoothing f , ought to be
small for smooth functions f (x). We can thus get a good approximation by neglecting
this quadratic form and focusing on

E (RSS) ∼= tr
(
(I−H)>(I−H)E

(
(Y − f )(Y − f )>

))

∼= σ2 tr
(
(I−H)>(I−H)

)

∼= σ2
(

n− 2 tr(H) + tr(H>H)
)

where f = ( f (x1), . . . , f (xn))> = E (Y). An appropriate estimator is

σ̂2 =
RSS

n− 2 tr(H) + tr(H>H)

If H is an orthogonal projection, H = H> = H2 and then

σ̂2 =
RSS

n− dfmodel
=

RSS
n− tr(H)

Note that tr(H>H) = ∑n
i=1 h>i hi, where h1, . . . hn are the columns of H.

4.2.7. Cross-validation

In prediction problems, for example in predicting f (x) or class(x), the class of indi-
viduals with attributes xj, one often has training data to assist in estimating f̂ (x) on

ĉlass(x). But, from the fact that these predictions work well on the training data, one
cannot conclude that they are good predictors. An independent validation on new
data is called for. The cross validation is a way out of this.

Estimating the prediction error

Define the mean predictive squared error, MPSE, as

MPSE =
1
n

n

∑
i=1

E
([

f (xi)− f̂ (xi)
]2
)

.

For linear smoothers, Ŷ = HY and thus

Ŷi = (HY)i =
n

∑
j=1

Yjhj(xi)
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with H1 = 1 and as before hj(xi) = Hij. One can show that if we leave out the ith

observation to estimate f at xi, f̂ (xi), we have

f̂i(xi) =
n

∑
j=1

h−i
j (xi)Yj

where

h−i
j (xi) :=





0 if j = i,
hj(xi)(

∑k 6=i hk(xi)
) =

hj(xi)

1−Hii
otherwise .

The estimate of the MPSE based on leave-one-out cross-validation (CV) is

M̂PSECV =
1
n

n

∑
i=1

(
Yi − f̂i(xi)

)2

=
1
n

n

∑
i=1

(
Yi −∑

j 6=i
Yj

hj(xi)

1−Hii

)2

=
1
n

n

∑
i=1

((
1

1−Hii

)(
(1−Hii)Yi −∑

j 6=i
Yjhj(xi)

))2

=
1
n

n

∑
i=1

(Yi − Ŷi)
2

(1−Hii)2

We have seen this formula in the regression case.

Generalized cross-validation

Replace Hii by tr(H)/n, the average diagonal value. This yields

M̂PSEGCV =
1
n

n

∑
i=1

(Yi − Ŷi)
2

(
1− tr

(H
n
))2

=
nRSS

(n− tr(H))2

∼= 1
n

n

∑
i=1

(Yi − Ŷi)
2
(

1 +
2
n

tr(H)

)
(4.16)

for n large. The last approximation comes from a Taylor expansion (twice), for tr(H)

is small compared to n. The criterion in eq. (4.16) is known as Mallow’s Cp . The
parameter p ≈ tr(H) and Cp yields approximately the AIC.

Estimating the smoothing parameter λ

How to choose the smoothing parameter (which could be the bandwidth λ, k/n, the
smoothing spline penalty, etc.)? A possible principle for estimation is the prediction
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error: we choose λ such that MPSE( fλ) is small! That is, in practice M̂PSECV( f̂λ) is
small; see Figure 15. In order to apply this idea, one must make a sequence of fits for
different values of λ, compute f̂λ(xi) and M̂PSEGCV and minimize it.

For the sequel, we consider the approach of Sun & Loader (1994). Note that we choose
to find a band for f̄ rather than f , thus avoiding the problem of bias.

For linear smoothers,

f̂ (x) =
n

∑
j=1

Yjhj(x).

If we base ourselves on this formula, we get

E
(

f̂ (x)
)
=

n

∑
j=1

f (xj)hj(x),

Var
(

f̂ (x)
)
=

n

∑
j=1

σ2h2
j (x).

The confidence band can be obtained as

 f̂ (x)± cασ

√√√√
n

∑
j=1

h2
j (x)


 .

The aim is to choose cα such that f̄ (x) is inside the band for all x ∈ [a, b] with probability
1− α. We want

∣∣∣ f̂ (x)− f̄ (x)
∣∣∣ ≤ cασ

√√√√
n

∑
j=1

h2
j (x)

for all x ∈ [a, b]. This is equivalent to

max
a≤x≤b

∑n
j=1 Yjhj(x)−∑n

j=1 f (xj)hj(x)

σ
√

∑n
j=1 h2

j (x)
≤ cα.

If we work on the numerator, we can make it in a single sum, which combined with
σ yields a normalized quantity Zj = (Yj − f (xj))/σ = ε j/σ. We assume normality of
the errors ε j, meaning Zj ∼ N (0, 1) are independent standard normal variables. The
problem reduces to the quantity

max
a≤x≤b

n

∑
j=1

∣∣∣∣∣∣
Zj

hj√
∑n

j=1 ≤ cαh2
j (x)

∣∣∣∣∣∣
.
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Finding the tail probabilities of this process and subsequently the constant cα such that
it holds with probability 1− α is a well-studied problem.

4.3. Kernel smoothers and local regression

4.3.1. Kernel smoothers

A kernel k(w) ≥ 0 is a positive function used to give weights to the different observa-
tions when estimating f (x), estimating Yi = f (xi) + εi where the errors εi have mean
zero and variance σ2. The Nadaraja–Watson estimator, which leads to the nearest-
neighbour smoothers, is

f̂ (x) = ∑n
i=1 wiYi

∑n
i=1 wi

=
∑n

i=1 k(xi − x)Yi

∑n
i=1 k(xi − x)

.

x1
k(x− xi)

xn

0 x 1

Figure 17: Kernel smoother window

It was published in Watson (1964) and in Nadaraja (1964). When n → ∞, the kernel
should become more concentrated. It is therefore natural to consider a scaled version
of the kernel,

kλ(w) =
1
λ

k
(w

λ

)
, λ > 0.

As n increases, λ goes to zero.

1
λ k
(

xi−x
λ

)

k(xi − x)

0 x 1

Figure 18: Scaled version of kernel smoother for λ < 1.

If n is large, |x2 − x1|, the gap between two consecutive x-values, is 1/(n− 1) ≈ 1/n
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and

n

∑
i=1

k(xi − x)|x2 − x1| ≈
∫

R
k(u)du,

where the right-hand side of the equation is the Riemann integral. The convention is
to take

∫
k(u)du = 1, meaning k(u) is a probability density. It is also useful to add the

constraints
∫

uk(u)du = 0
∫

u2k(u)du < ∞.

The Nadaraja–Watson estimator for large n is

f̂ (x) =
1
n

n

∑
i=1

k
(

xi − x
λ

)
1
λ

Yi

and the bias depends on
∫

k2(u)du and λ2
∫

u2k(u)du, while the variance is of order∫
k2(u)du/(nλ). The choice of kernel has a small influence on the asymptotic proper-

ties. The kernel smoother is asymptotically unbiased if λ(u) → 0 as n → ∞. There is
a huge literature on kernel smoothers: they are a useful tool and easy to analyze. The
main difficulties are “border effects”: how should one modify the kernel?

4.3.2. Local regression

This notion, proposed by Cleveland (1979), bears the acronym loess, which stands for
local weighted scatterplot smoothing. The estimate f̂ (x) is the fitted local regression at
x (estimated via a weighted least squares fit).

Example 4.4 (Constant and linear local regression)
1. constant regression: consider f̂ (x) = θ over the domain x ∈ [0, 1] with weights
wi = k((xi − x)/λ)/λ. We fit θ by θ̂ which minimizes ∑n

i=1 wi(Yi − θ)2. This is equiv-
alent to minimizing the least square criterion

−2
n

∑
i=1

wi(Yi − θ̂) = 0,

leading to the Nadaraja–Watson estimate

θ̂ = f̂ (x) = ∑n
i=1 wiYi

∑n
i=1 wi

.

2. linear regression: consider the model

f̂ (u) = θ̃0 + θ1u = θ0 + θ1(u− x)
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where θ̃0 = θ0 − θ1x. Our weighting function wx
i = 1

λ k((xi − x)/λ) and we seek to
minimize

n

∑
i=1

wi [Yi − θx
0 − θx

1 (xi − x)]2 .

The solution is
(

θ̂x
0

θ̂x
1

)
=
(

Xx
>WxXx

)−1
Xx
>Wxy

where

Wx = diag (wx
1 , . . . , wx

n)

Xx =




1 x1 − x
...

...
1 xn − x




We thus have that the intercept is given by

f̂ (x) = θ̂x
0 =

n

∑
i=1

Yihi(x)

where (h1(x), . . . , hn(x)) is the first row of (Xx
>WxXx)−1Xx

>Wx.
The weights (h1(x), . . . , hn(x)) adapt to x and thus the linear loess estimator is not a
kernel estimator. It behaves well at the borders.

Remark 4.1
The smoothing spline can be approximated by a kernel estimator.

4.4. Orthonormal basis

Consider f (x) ∈ L2([0, 1]) and data (xi, Yi), where Yi = f (xi) + εi. The space L2([0, 1])
has an (orthonormal) basis Φ1(λ), Φ2(λ), . . . such that

∫ 1

0
Φi(x)Φj(x)dx = δij =





1 if i = j

0 if i 6= j.

We can thus express f (x) as

f (x) =
∞

∑
i=1

θiΦi(x).

If n is large,

θj =
∫ 1

0
f (x)Φj(x)dx
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leading to an estimator

θ̂j =
1
n

n

∑
i=1

YiΦj(xi).

Among the most famous examples of orthonormal basis are the following.

1. Haar wavelet (1907): consider

Ψjk = 2j/2Ψ0

(
2jx− k

)

0 1
0

1

−1

Φ0(x)

0 1
2

1
0

1

−1

Φ1(x) = Ψ0(x)

0 1
2

1
0

√
2

−
√

2

Φ21(x)

0 1
2

1
0

√
2

−
√

2

Φ22(x)

Figure 19: First four Haar wavelet functions

The function Φ0 is the father wavelet, while Φ1(x) = Ψ0(x) is the mother wavelet.
2. Fourier (trigonometric basis)
On [−π, π], take the functions Φ1(x) = 1/

√
2π, Φ2(x) = cos(x)/

√
π, Φ3(x) =

sin(x)/
√

π, Φ4(x) = cos(2x)/
√

π, . . . {Φ} is a periodic basis, but is not localized.
3. Orthogonal polynomials

f̂ (x) =
n

∑
i=1

θ̂iΦi(x)

Define

Zj = θ̂j =
1
n

n

∑
i=1

YiΦj(xi)

The random variables θ̂j have interesting properties, as E
(
Zj
)
= θj + O

(
1
n

)

E
(
Zj
)
=

1
n

n

∑
i=1

E (Yi)Φj(xi)

∼=
∫ 1

0
f (x)Φj(x)dx

∼= θj.

In a similar fashion,

Cov
(
Zj, Zk

) ∼= E
(
ZjZk

)
− θjθk
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∼= 1
n2

n

∑
i=1

σ2Φj(xi)Φk(xi) +
1
n2 θjθk

n

∑
i=1

Φj(xi)
n

∑
l=1
l 6=i

Φk(xl)− θjθk

∼= σ2

n

∫ 1

0
Φj(x)Φk(x)dx + θjθk

∫ 1

0

∫ 1

0
Φj(x)Φk(y)dx dy− θjθk

=
σ2

n

∫ 1

0
Φj(x)Φk(x)dx

and thus Var
(
Zj
) ∼= σ2/n and Cov

(
Zj, Zk

) ∼= 0 approximately for k 6= j and n large.

4.5. Shrinkage

Assume now that Z = (Z1, . . . , Zn)> ∼ Nn(θ, σ2I/n). We consider a paradox due to
Charles Stein: suppose we consider arbitrary estimates θ̂(Z) = (θ̂1(Z), . . . , θ̂n(Z))>

and we wish to minimize the risk

R(θ̂, θ) =
n

∑
j=1

E
((

θ̂j − θj
)2
)

. (4.17)

In the context of the smoothing problem, this is the summed mean squared error. The
“naive estimator” of θ is θ̂ = Z; if θ̂j(z) = zj, the MLE for a one-sample from the
n-dimensional distribution, then the risk is R(θ̂, θ) = n · (σ2/n) = σ2. Stein (1964)
showed that an estimator that shrinks Z towards zero,

θ̂JS =

(
1− (n− 2)σ̂2

‖Z‖2

)
Z,

has lower risk than the sample observations, meaning

R(θ̂JS, θ) < R(Z, θ)

for dimension n > 3. This case was further generalized by Stein (1981).

Proposition 4.7 (Stein’s unbiased risk estimate)
Assume that Z ∼ Nn(θ, Σ) and that θ̂(z) is an estimator of θ such that g(z) = θ̂(z)− z
is differentiable where, as usual, g(z) = (g1(z), . . . , gn(z))>. If we consider the risk
function defined in eq. (4.17), the statistic

R̂(z) = tr(Σ) + 2 tr(ΣD) +
n

∑
i=1

gi(z)2

with D = (Dij)
n
i,j=1 where Dij = ∂gi/∂zi, is unbiased, that is E

(
R̂(Z)

)
= R(θ̂, θ).

This is called Stein’s unbiased estimate of risk. If one applies this to the smoothing
problem, one first estimates θ̂j naively and subsequently shrinks the small values (those
satisfying |θ̂j| ≤ λ) to zero.
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θ̂i = zi

θ̂i = zi + λ

θ̂i = zi − λ

zi

θ̂i

Figure 20: Shrinkage estimate

Proof For simplicity, consider the case Σ = σ2In. We first need a lemma.

Lemma 4.8
Let u(x) be a differentiable function of X ∼ N (µ, σ2). It follows that

σ2E
(
u′(X)

)
= E (u(X)(X− µ)) .

Proof of Lemma 4.8 This is true because

σ2
∫

u′(x)
1
σ

φ

(
x− µ

σ

)
dx = σ2u(x)

1
σ

φ

(
x− µ

σ

)∣∣∣∣
∞

−∞

+ σ2
∫

u(x)
1
σ

(
x− µ

σ

)
φ

(
x− µ

σ

)
dx

using integration by part. The first term vanishes upon evaluating φ(x) at ±∞. �

In our simplified setting, tr(Σ) = nσ2 and

tr(ΣD) = σ2
n

∑
i=1

∂gi
∂zi

(zi).

Applying the lemma to

σ2E
(

∂gi
∂Zi

)
= E (gi(Zi − θi))

E
(

R̂(Z)
)
=

n

∑
i=1

E
((

Zi − θi
)2
)
+ 2

n

∑
i=1

E
((

θ̂i − Zi
)(

Zi − θi
))

+
n

∑
i=1

E
((

θ̂i − θi
)2
)
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We leave as exercise to calculate R̂(z). One finds that, for a well chosen λ,

R̂(z) =
n

∑
i=1

(
σ2 − Zσ2I|Zi |<λ + min{Z2

i , λ2}
)
< nσ2.

�
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Wilcoxon, F. (1945). Individual Comparisons by Ranking Methods. Biometrics Bulletin,
1(6), 80–83.

90



Index
asymptotic relative efficiency, 9, 63

B-robust estimate, 24, 25
Bahadur slope, 65
bandwidth, 69
basis

Fourier, 85
Haar wavelets, 85

breakdown point, 30

cross-validation, 79, 80

derivative
Fréchet differential, 21
Gâteaux differential, 21

Dirac-δ distribution, 19

estimating equation, 11

Fisher consistency, 13
Fisher information, 7

expected, 7
observed, 7

Fisher’s scoring algorithm, 7

gross-error sensitivity, 24

Hampel’s
3 point estimator, 24
lemma, 28

Heavyside function, 19
Hölder continuity, 68
Huber’s

minimax solution, 31
regression proposal, 41

influence function, 19
interquartile range, 30

kernel smoother, 82
Kullback–Leibler divergence, 6

L-estimator, 18
least absolute deviation, 41
least median of squares (LMS), 41
linear rank statistic, 48
local power, 51
local-shift sensitivity, 24
locally MP test, 50
loess, 83

M-estimator, 11
asymptotic normality, 14
asymptotic variance, 17
Fisher consistent version, 28
influence function, 19

Mallow’s Cp, 80
Mann–Whitney test, 49

mean and variance, 54
maximum likelihood estimator, 5

asymptotic normality, 7
mean square prediction error, 79
median absolute deviation (MAD), 30
minimax theory, 31

Nadaraja–Watson estimator, 82
Newton-Raphson algorithm, 7

orthonormal basis, 84

Pitman alternative, 61
Pitman efficacy, 61, 62
Prohorov metric, 9
ψ function, 11

Huber function, 20
mean, 20
median, 20

R-estimator, 18
rank test, 46

asymptotic distribution, 54
linear rank test, 50
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scores, 48
redescending estimator, 24, 42
regression constant, 56
regression diagnostics, 37

Cook’s distance, 40
LOO residuals, 40, 80

rejection point, 24
$ function, 11
robustness, 9

S-estimator, 42
score generating function, 53
sensitivity, 40
sensitivity curve, 10
shrinkage, 86
sign test, 46
skipped mean, 24
spline, 70

natural, 72
optimality, 72
smoothing, 72
space, 70

Stein’s estimate, 86
Stein’s paradox, 86

Tukey’s bisquare, 24, 42

U-statistics, 50

Wilcoxon’s
signed rank test, 47
two-sample test, 48
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