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Section 1
Review of the linear model

The objective of this course is to understand and extend the theory and methodology of
linear (regression) modelling to more general settings.

In regression modelling, we attempt to devise a model for the response data formed by
combining information from predictor data.
Notation
For an independent sample, indexed, i = 1, . . . , n denote by Yi, i = 1, . . . , n the response
random variable (or dependent variable or outcome) and by Xi, i = 1, . . . , n the pre-
dictor random variables (or independent variables or covariates).1 Xi = (Xi1, . . . , Xip)
is in general a (1× p) row vector.

Note
1. In the regression model, the Xi’s will be treated as fixed constants. Further, the Xij ,
j = 1, . . . , p need not be derived from separate variables. (i.e. can include Xi1, X

2
i1, . . .).

We could also have a discrete predictor e.g. X ∈ {1, 2, . . . , L}, then

Xij =

1 if Xi = j

0 if Xi 6= j
= 1j(X)

for j = 1, . . . , L. Discrete predictors are termed factors.
2. Xij could be a transformed of another variable, for example Xij = logXi or Xij =
cos(2πXi) (harmonic regression), etc.
3. Xij could be a transform of more than one variable, e.g. XijX

(1)
i

√
X

(2)
i , etc.

We will denote observed data by lowercase variables; yi,xi = (xi1, . . . , xip) a (1 × p) for
the same individual, and by x˜j = (xij , . . . , xnj)> the (n×1) vector for j accross individuals.

The (general) linear model is defined by considering the conditional expectation of Yi,
given Xi = xi. We specify that

E (Yi|Xi = xi) = xiβ

where β = (β1, . . . , βp)> is a (p × 1) column vector of parameters. Considering all data
simultaneously we have

E (Y |X = x) = Xβ

1We will treat Xi as fixed even if we consider the tuple (Yi, Xi) as arising from a stochastic process. We
will model the stochastic variation in Yi conditional on the variation of known Xi). We don’t have to worry
about the probability distribution of the Xi’s and we can manipulate them however we like numerically.
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respectively (n × 1), where X is the (n × p) design matrix with (i, j)th element xij and
where β is (p× 1).

A probabilistic (or statistical) model is formed by considering the presence of residual
error random variables. Specifically, we write that

Y = Xβ + ε

where ε = (ε1, . . . , εn)> is a (n× 1) vector of random variables with

E (εi) = 0, i = 1, . . . , n Var (ε) = E
(
εε>

)
= Σ

where Σ is an (n×n) symmetric positive definite matrix.2 In the simplest case, Σ = σ2In,
where In is the (n×n) identity matrix, that isΣ1, . . . ,Σn are identical in terms of moments
and are uncorrelated. More commonly,3

ε ∼ Nn(0, σ2In)

so that Y |X = x ∼ Nn(Xβ, σ2In).

1.1 Estimation

In the linear model, we need to estimate β and σ2. β is estimated typically using the
least-squares criterion; we choose β to minimize

S(β) = (Y −Xβ)>Σ−1(Y −Xβ)

We minimize this quadratic form analytically by solving

∂S(β)
∂β

= 0

a (p× 1) vector of equations (since S(β) is a smoothly varying function). 4

2We could also have Σ to be also function of X, but this is not the case in this course. For example, one
could have increase in variance with increase in values of Xi, using in the linear case least squares.

3Finite-sample hypothesis testing and maximum likelihood estimation will require distributional assump-
tion about the ε, usually a normality assumption. In general, we need not be that restrictive to get optimality
results in the context of the Gauss-Markov theorem.

4Making the normality assumption, S(β) turns out to be the negative log-likelihood of the mode. We
can get the solution of this system of equations analytically.
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We have

∂S(β)
∂β

= −2X>Σ−1Y + 2X>Σ−1Xβ

so equating to zero, we obtain the normal equations that β̂ solves

(X>Σ−1X)β̂ = X>Σ−1Y

and if (X>Σ−1X) is non-singular we have

β̂ = (X>Σ−1X)−1X>Σ−1Y . (1.1)

If we make the simplifying assumption that Σ = σ2In, then this simplifies to

β̂ = (X>X)−1X>Y ,

the ordinary least square (OLS) formula.5 The estimator

β̂ = (Σ−1X)−1X>Σ−1Y

◦ for general Σ – is termed Generalized Least Squares
◦ if Σ is diagonal, say, Σ = diag (σ2

1 , . . . , σ
2
n), then we often rewrite W = Σ−1 =

diag (w1, . . . , wn) so that

β̂ = (X>WX)−1X>WY

– termed Weighted Least Squares
◦ if Σ = σ2In – termed Ordinary Least Squares.

If Σ is parametrized via a “low” dimensional parameter vector, we may hope to estimate
these parameters from the data; in the general case, we must treat Σ as a known quantity.
In the OLS case, no estimation of σ2 is necessary to estimate β.

Note
Y = Xβ + ε. If we do a Cholesky decomposition, namely if Σ = MM>, then

M−1Y = M−1Xβ +M−1ε

or

Y ∗ = X∗β + ε∗

5In the GLS case, weighted least-squares or generalized least-squares, we use usually a two-step procedure,
estimating the matrixΣ assumed to be function of few parameters, usually by some MLE equivalent method.
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where Var (ε∗) = In. A generalized least-squares problem can be converted into an ordinary
least-squares problem.6

1.2 Statistical properties

In the linear model case, properties of β̂ are easy to derive using standard results for
expectation and variance. We have unbiasedness of our estimator and

E
(
β̂
)

= β Var
(
β̂
)

= (X>Σ−1X)−1

which of course simplifies in the OLS case; if Σ = σ2In, then Var
(
β̂
)

= σ2(X>X)−1.
These results hold in generality without any normality assumption. If ε ∼ Nn(0, σ2In),
then β̂ ∼ Np(β, σ2(X>X)−1)

Typically, σ2 is unknown: it is usually estimated by

σ̂2 = 1
n− p

(Y −Xβ̂)>(Y −Xβ̂)

1.3 Hypothesis testing

In the linear setting, we can perform two types of test: test on individual parameters or for
linear restrictions.

Hypothesis tests for individual β’s can be carried out under the assumption of normal
residual errors. To test the null hypothesis

H0 : βj = bj H1 : βj 6= bj

we have the usual result that

β̂j − bj√
vjj

∼ T (n− p)

denoting the Student-t distribution with (n− p) degrees of freedom and where vjj is the jth

diagonal element of the matrix σ̂2(X>X)−1. vjj is the estimated standard error of β̂j .7

Note
Outside of the normal residual case, these results hold approximately (for finite n and

6The inversion of (X>WX) is usually a trivial problem. We can turn the problem of the generalized
least-squares into a recursive weighted least-squares. In R, there is a function for weighted least-squares,
using weights provided as an argument to the lm function.

7It turns out to be a natural statistic ( pivotal quantity); moreover it is also the Likelihood ratio test
and the Wald-test statistic for this model.
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asymptotically).8

1.3.1. Tests for linear restrictions

Suppose we have the null hypothesis

H0 : Aβ = C

which imposes q linear constraints on β, e.g. β1 = β2 = β3 = 0 or β1 = 2β2, etc.

The test of such null hypotheses (against the general alternative) is based on an F -statistic
(comparing the fit accross the two models). In this case, let β̂0 be the parameter estimates
under H0 and β̂1 be the parameter estimates under H0∪H1. That is β̂0 is computed under
the restriction imposed by H0 and β̂1 is computed under no restrictions.

Let

S(β̂0) = (Y −Xβ̂0)>(Y −Xβ̂0)

S(β̂1) = (Y −Xβ̂1)>(Y −Xβ̂1)

and note that S(β̂0) ≥ S(β̂1). Then

F = [S(β̂0)− S(β̂1)]/q
S(β̂1)/(n− p)

where S is the sum of squared residuals.9 IfH0 is true, then F ∼ F(q, n−p) (Snedecor-Fisher
distribution).10 These results are derived directly from normal distribution theory.11

1.4 Geometric interpretation

Let y = (y1, . . . , yn)> ∈ Rn an object in the n-dimensional data space.

The model space is defined by thinking about linear combinations of the (observed) param-
8These exactness properties will hold in the GLM case asymptotically and approximately. We can look

at the estimates and the interpretation for the P -value will be the same in the GLM as in the LM case.
9This can be regarded as the increase in unit misfit from unrestricted to restricted model and the

denominator is like a Σ̂ quantity – the best possible estimate of Σ assuming the general model is appropriate
10anova or aov can be used in R to test for nested models. Most statistical procedures, like the F-test

above, only work for nested models, similarly for goodness-of-fit criterion (such as information criterion as
AIC or BIC).

11It turns out that in the GLM case, no similar derivation exist – reliance on asymptotic result will be
necessary.
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eters (X). We can also think of Xβ ∈ Rn, but restricted to the p-dimensional subspace

Xp =

X : X =
p∑
j=1

λjx˜j
 ,

here λ1, . . . λn are real constants and x˜1, . . . ,x˜p are the p-columns of X. We can take a
completely geometric viewpoint and prioritize β thinking about where we can get to in Xp.
Now evidently,

y = Xβ + (y −Xβ)

where all observations are non-stochastic, y is the observed response, Xβ is the fitted value
and y −Xβ is the residual component. The least-squares criterion is to choose β̂ as

β̂ = arg min
β

(y −Xβ)>(y −Xβ)

= arg min
β

‖y −Xβ‖2

i.e. we choose β̂ to minimize the “length” of the residual vector (y − Xβ). Clearly,
‖y −Xβ‖2 is minimized when y −Xβ̂ is perpendicular to Xp and Xβ̂ is the projection
of y onto Xp, the p-dimensional subspace.

Figure 1: Projection matrix
y

Xβ̂ Xβ

therefore the vector y −Xβ̂ should be orthogonal to Xβ̂ i.e.

(Xβ̂)(y −Xβ̂) = 0 ⇒ X>y = (X>X)β̂

which means that

β̂ = (X>X)−1X>y
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assuming that X>X is non-singular. By Pythagoras’ theorem, we have

‖y‖2 = ‖Xβ̂‖2 + ‖y −Xβ̂‖2

which is a familiar sum of square decomposition. That is, ‖y‖2 is the observed sum of
squares, ‖Xβ̂‖2 the fitted sum of squares and ‖y −Xβ̂‖2 the residual sum of squares.

The optimal estimate of β, denoted by β̂, defines the point in the ‘model space’, Xβ̂, that
is nearest to y. Note that also

X>(y −Xβ̂) = X>y − (X>X)β̂

= X>y − (X>X)(X>X)−1X>y

= 0p,

the (p × 1) vector of zeros; therefore (y −X>β̂) is orthogonal to ŷ = Xβ̂ and (y −X>β̂)
is also orthogonal to X (i.e. the columns of X).

For random variable Y and estimator β̂

E
(

(Xβ̂)>(Y −Xβ̂)
)

= 0

and also

E
(

X>(Y −Xβ̂)
)

= 0p

Finally, if β0 is the true value of β, then

E
(
(Xβ0)>(Y −Xβ0)

)
= 0

E
(
X>(Y −Xβ0)

)
= 0p

Note
The expectation E(·) is done with respect to the conditional distribution of Y given X = X
at the true value β0.

12

Summary
In geometric terms, we can define β̂ as the solution to the equations

(Xβ0)>(y −Xβ0) = 0

X>(y −Xβ0) = 0p
12In general and unless stated otherwise, the expectations are with respect with respect to Y |X under

the true data generating mechanism.
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respectively a (1× 1) and (p× 1) systems, that is

n∑
i=1

p∑
j=1

xijβj(yi − xiβ) = 0

n∑
i=1

xij(yi − xiβ) = 0,

for j = 1, . . . , p.

As Xβ = E (Y |X,β) = µ(X;β), we may rewrite the previous expressions(
µ(X;β)

)>(
y − µ(X;β)

)
= 0(

µ̇(X;β)
)>(

y − µ(X;β)
)

= 0p

wjere µ̇ is the (n× p) matrix with (i, j)th element

∂µi(X;β)
∂βj

µi(X;β) = E (Y i|X,β) = xiβ.

Finally, note that

Ŷ = Xβ̂ = X(X>X)−1X>Y = HY

where H is the (n× n) ‘hat’ matrix that defined the projection of Y onto the model space.
Note that H is an idempotent matrix, i.e. H>H = H.

1.5 Aliasing and multicollinearity

In the formulation of the linear model, the design matrix X is presumed to be full rank, so
that X is a p-dimensional, the p columns of X are linearly independent, etc. If X is not
full-rank, this causes problems in inference.

Example 1.1 (Simple factor predictor)
If A denotes levels 1, 2, . . . , a so that

E (Yi|Ai = j) = µ+ αj , j = 1, 2, . . . , a

–this model is often written

1 +A

11



with parameters µ, α1, . . . , αa; the design matrix X =
(
x˜0,x˜1, . . . ,x˜a) where

x˜0 = 1>n
x˜j = (xij , . . . , xnj)>, j = 1, . . . , a

where

xij =

1 Ai = j

0 otherwise

However, x˜0 =
∑a
j=1 x˜j , the columns are linearly dependent, and a parameter is aliased. .

A constraint is required, for example (1) µ = 0 or (2) α1 = 0 (or indeed αj = 0, precisely
one j).13 Also, (3)

∑a
j=1 αj = 0, a centering parametrization, is a valid constraint. In this

course, we say “under the usual constraints”.

(1) α̂j = ȳj = 1
nj

∑n
i=1 yixij for j = 1, . . . , a and where nj =

∑n
i=1 xij , the count of

observations that have factor level j.
(2) µ̂ = ȳ1, α̂j = ȳj − ȳ1, for j = 2, . . . , a.
(3) The third looks at the center tendency in the data and look at the differences from this
as

µ̂ = 1
a

a∑
j=1

ȳj α̂j = ȳj − µ̂

Example 1.2 (Two factor predictors)
Consider a model with two factor predictors, with Factor A has a levels and Factor B has
b levels. We often write this as

E (Yi|Ai = j, Bi = k) = µ+ αj + βk + γjk = µjk

written

1 +A+B +A.B

–the main effect plus interaction models. 14 The indices run from j = 1, . . . , a and
k = 1, . . . b, therefore it appears that we have 1 + a + b + ab parameters. Thus some
parameters are aliased as we only can identify a× b distinct µ values.

13In R, in case of aliasing, the software will use a baseline category and constraint α1 = 0 and report NA
in the report.

14Where A.B denotes the interaction the effect of A is modified by the presence of B and depending on
which level we are at. A more formal and precise definition will be given shortly.
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Again, constraints must be applied. For example,

µjk =


µ if j = k = 1

µ+ αj if j = 2, . . . , a, k = 1

µ+ βk if j = 1, k = 2, . . . , b

µ+ αj + βk + γjk if j = 2, . . . , a, k = 2, . . . , b

a full factorial model.15

Note
These constraints are identifiability constraints, not constraints formulated for modelling
purposes (such as γjk = 0, etc.)

In incomplete designs, non-identifiability/aliasing can occur due to data sparsity. For
example, if A and B take respectively 3 levels, we could get the following contingency table
with two factors:

B

1 2 3

A

1 x x o
2 x x o
3 o o x

for x denoting cells with observations and o empty cells.

1.5.1. Multicollinearity

Multicollinearity exists if there is an approximate linear dependence between predictors i.e.
there exist λ1, . . . , λp such that

p∑
j=1

λjx˜j ≈ 0.

If there is a perfect multicollinearity such that

p∑
j=1

λjx˜j = 0,

15In the linear case, it is easy how the constraints fit with restrictions and relations with mean levels.
However, in the GLM case, we will get the relation in terms of transforms of the mean. You should
be comfortable with the interpretation of the parameters αj , γjk which you should be familiar with from
previous course.R uses the previous as a default when attempting to fit models of the above form.
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then X is not full rank, X>X is singular, even if there is “approximate” linear dependence,
X>X may be numerically singular, or numerically unstable on inversion.16

Note
OLS estimates are model-specific, i.e. the models

Y = X1β1 + ε

Y =
[
X1 X2

] [β1
β2

]
+ ε

may return different estimates for β1. This will occur if X>1 X2 6= 0. This persists for the
GLM case.

See picture from handout for geometric interpretation.

We could think of sequential fit– there is then no unique decomposition for the models.
Thus, it is not possible to talk about the influence of a variable when more than 2 covariates
are present. One could fit using regressors X1, then X2, or X2, then fit X1 on residuals
on the second model, or fit the two together resulting estimate –see handout for the linear
algebra results. Only when X1,X2 are orthogonal will the least square estimates remain
unchanged when doing sequential fitting versus fitting joint model – thus estimates of β are
conditional on the model fitted. The same result apply in the GLM case: in a model with
main effects plus interactions – one will often be ommiting a variable, and so we can’t pin
down the influence of a variable, say X1.

1.6 Interactions

An interaction between predictorsX1 andX2 in a model indicates that the expected response
is modified in a different way by changing x2 at different values of x1, i.e.

E (Y |X1 = x1, X2 = x2)− E (Y |X1 = x1, X2 = x′2)

6= E (Y |X1 = x′1, X2 = x2)− E (Y |X1 = x′1, X2 = x′2)

for at least one setting of (x1, x
′
1, x2, x

′
2). This holds if X1, X2 are covariates, factors or one

is a factor, one a covariate.

For example, if X1 is a factor with L levels and X2 is a covariate, then the model

1 +X1 +X2 +X1.X2

16This can be diagnosted; in practice, one will see massive standard errors reported, or small changes in
values (for e.g. new observations), leading to drastic changes in parameter estimates.
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implies17

E (Y |X1 = L,X2 = x2) = (β0 + β0L) + (β1 + β1Lx2)

for l = 2, . . . , L and for L = 1,

E (Y |X1 = 1, X2 = x2) = β0 + β1x2

i.e. β0L is the modification to the intercept β0 when X1 = L, β1L is the modification to
slope β1.

1.6.1. Higher order interactions

For three predictors X1, X2, X3, we may consider the three-way interaction X1.X2.X3. The
presence of such an interaction implies that two-way interactions of X1.X2, X1.X3 and
X2.X3 have different effects at different levels of the omitted variable. For example, the
combined effect of X1 and X2 evidenced via the interaction X1.X2 is different when X3 =
x3 compared with when X3 = x′3.18

1.6.2. Interactions without main effects

The common convention is to consider only models in which interactions are included only
in conjunction with the corresponding main effects, i.e. the model

1 +X1 +X2 +X1.X2 (1.2)

is “legitimate”, whereas

1 +X1 +X1.X2 (1.3)

is not “legitimate” as the implication of (1.3) is that X2 is influential in the model only for
certain specific values of X1.

17In R, interactions are fitted using the colon symbol :. In this course, we will always fit interactions
only when already fitting the corresponding main effects, otherwise we get an insensitive model and it put
constraints on the X – this is common in the LM and GLM settings.

18While two-way interaction indicates modifications to main effect by adding the other variable; in a
similar fashion, the three-way interaction will mean that there is an interaction of the ommitted variable on
the two-way interaction.
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Example 1.3
For the two factor predictors, model (1.3) might imply

E (Y |X1 = j,X2 = k) =


β0, if j = 1; k = 1, . . . , L

β0 + β1j if j = 2, . . . J ; k = 1

β0 + β1j + γjk if j = 2, . . . , J ; k = 2, . . . L

so that at j = 1, changing X2 has no effect, but for j = 2, . . . , J , changing X2 does have an
effect.

Example 1.4
For covariates, consider

E (Y |X = x) = β0 + β2x
2. (1.4)

If we location-scale transform x to z, i.e. set x = µ+ σz. 19 The model becomes

E (Y |Z = z) = β0 + β2(µ+ σz)2

= β0 + β2(µ2 + 2µσz + σ2z2)

= β′0 + β′1z + β′2z
2

which has a linear term in it. The polynomial regression without linear term in it is after
transformation involving a linear term. This means that if we want to fit model (1.4), we
can’t use such transformation. 20

1.7 Residuals

The vector of fitted values ŷ = Xβ̂ allows us to form the vector of residuals

R = Y − Ŷ = Y −Xβ̂

= (In −X(X>X)−1X>)Y

= (In −H)Y

with observed values

r = (In −H)y.
19Related to the γjk coefficient.
20In the case of covariates, putting ineractions, but ommiting a main effect yields a specific restriction on

the location onX-axis of the variable ; i.e. we can’t location-shift the axis. For such an example, consider the
transformation from Farenheit to Celcius. See Nelder and McCullagh on this for more extensive discussion
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As we have seen, by construction

ŷ>r = ŷ>(y −Xβ̂)

= ŷ>(Y − ŷ) = 0

and

x˜>j r = x˜>j (y −Xβ̂) = 0, j = 1, . . . , p

However, also, the model assumption that the ε components have constant variance and are
uncorrelated can be check by inspection of the observed residuals. Patterns in the residual
plots of x˜j versus r indicate violation of the zero mean assumption made for ε. 21

The residuals are constructed as

R = Y − Ŷ = (In −H)Y

which imply

Var (R) = (In −H)Var (Y ) (In −H)>

= σ2(In −H);

elements of H are terms of order 1/n, (i.e. decay very quickly), therefore Var (R) ≈ σ2In.

21r will impose heteroscedasticity and induce correlation in the residuals, so we can only capture mild
violations of the assumptions.
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Section 2
Generalized Linear Models

We now aim to extend the idea of “regression” modelling to other types of response data;
we seek a model for E (Y |X = x) but wish to relax the assumptions of additive, zero mean
residual errors.

2.1 The Exponential Family of Distributions

Suppose first that the probability density (or mass function) of Y given model parameters
(θ, φ) takes the form

fY (y; θ, φ) = exp
{
yθ − b(θ)
a(φ) + c(y, φ)

}
for specific functions a, b, c. If φ is known, this model is referred to as the exponen-
tial family, whereas if φ is unknown, it is referred to as the exponential-dispersion
family.22

Note
The support of fY cannot depend on (θ, φ) [and a(φ) > 0].

θ is the canonical parameter, φ is the dispersion parameter.

If `(θ, φ; y) = log fY (y; θ, φ), it is straightforward to verify

EfY
( ˙̀
θ(θ, φ;Y )

)
= 0

where

˙̀(θ, φ; y) = ∂

∂θ
`(θ, φ; y)

and

EfY
(῭
θθ(θ, φ; y)

)
+ E

(( ˙̀
θ(θ, φ; y)

)2) = 0

where

῭(θ, φ; y) = ∂2

∂θ2 `(θ, φ; y).

22We are restricting our attention with two unknown parameters models, namely the case with θ unknown
and φ known (one unknown parameter distribution) and the case where θ, φ are unknown. This covers many
one-dimensional distributions of interest.
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Here, θ is 1-dimensional, ` is suitably differentiable with respect to θ and all expectations
are taken with respect to the “true” data generating mechanism (DGM), all expectations
finite.

In the exponential family, we have

E (Y ) = ḃ(θ) = ∂

∂θ
(b(θ)) = µ, say.

Var (Y ) = a(φ)b̈(θ) = a(φ) ∂
2

∂θ2 b(θ).

This implies that

Var (Y ) = a(φ)V (µ)

i.e. we have an explicit mean-variance relationship.23

Example 2.1 (Poisson model)
Let Y ∼ P(λ), a Poisson random variable. We write

fY (y;λ) = λye−λ

y! = exp {y log(λ)− λ− log(y!)}1y≥0,y∈Z+

In this example, the canonical parameter is θ = log(λ), the dispersion parameter φ = 1,
therefore we can rewrite the density as

fY (y; θ) = exp
{
yθ − eθ

φ
− log(y!)

}
therefore b(θ) = eθ, ḃ(θ) = eθ, b̈(θ) = eθ and E (Y ) = eθ = µ,Var (Y ) = eθ = µ and
V (µ) = µ.

Example 2.2 (Gamma model)
Let X ∼ G(α, β), a Gamma random variable with density

fY (y;α, β) = βα

Γ(α)y
α−1e−βy1y>0

= exp {(α− 1) log(y)− βy + α log(β)− log(Γ(α))}

Consider a reparametrization that explicitly involves E (Y ) = α/β = µ.

23Examples of continuous random variables that are not exponential family include uniform, Weibull,
Student, discrete uniform, notably. In certain cases, we can get separation and V (µ) may be the identity.
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e.g. set µ = α/β, ν = α if and only if α = ν, β = ν/µ so that

fY (y;µ, ν) = 1
Γ(ν)

(
νy

µ

)ν
exp

{
−νy
µ

}
1
y

1y>0.

Set θ = −1/µ, a(φ) = 1/ν which imply b(θ) = − log(−θ), ḃ(θ) = −1/θ = µ and b̈(θ) =
1/θ2 = µ2, thus

Var (Y ) =
(

1
ν

)
µ2.

so there is a quadratic relationship between the mean and the variance, V (µ) = µ2. More
details are given in the handout.

Example 2.3 (Bernoulli model)
Let Y ∼ B(π), a Bernoulli random variable with mass function

fY (y;π) = πy(1− π)1−y1y∈{0,1}

= exp
{
y log

(
π

1− π

)
+ log(1− π)

}
.

Set
θ = log

(
π

1− π

)
i.e. π = eθ

1 + eθ
, 1− π = 1

1 + eθ
, φ = 1

therefore

b(θ) = log(1 + eθ), ḃ(θ) = eθ

1 + eθ
(= π) = µ and b̈(θ) = eθ

(1 + eθ)2 (= π(1− π))

implies that V (µ) = µ(1− µ).

Example 2.4 (Binomial model)
Let Y ∼ B(m,π) a binomial random variable withm > 0, fixed integer with mass function

fY (y, π) =
(
m

y

)
πy(1− π)m−y10≤y≤m

= exp
{
y log

(
π

1− π

)
+m log(1− π) + log

[(
m

y

)]}
In this form, E (Y ) = mπ and Var (Y ) = mπ(1 − π). This form is less appealing as E (Y )
depends on m. So consider the data transformation from y 7→ y/m. For the “new” data, we
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have

fY (y, π) = exp
{
my log

(
π

1− π

)
+m log(1− π) + log

[(
m

my

)]}
1y∈{0, 1

m ,
2
m ,...,

m
m}

= exp

y log
(

π
1−π

)
+ log(1− π)

1/m + log
[(

m

my

)]1y∈{0, 1
m ,

2
m ,...,

m
m}

Set

θ = log
(

π

1− π

)
b(θ) = log(1 + eθ) φ = 1

m

and

E (Y ) = π = eθ

1 + eθ
= µ

Var (Y ) = π(1− π)
m

= µ(1− µ)
m

= φV (µ)

where V (µ) is again equal to µ(1− µ).

2.2 Link functions

We seek to connect the expected response to the set of predictors. Let

µ(x) = E (Y |X = x)

and suppose that µ(x) depends on a finite dimensional parameter β, in particular µ(x;β) ≡
µ(xβ) = µ(η).24 where

η = xβ =
D∑
j=1

xjβj

x is (1× p) vector and β a (p× 1) vector. η is termed the linear predictor (linear in the
parameters β1, . . . , βp).

In the linear model, µ(x;β) = xβ and typically we do not constrain µ, i.e. µ(x;β) takes
values on the whole real line.

However, for some response data, we shoud seek to impose constraints. For example, if
Y ∼ B(π), then E (Y ) = π, but we have that 0 < π < 1. Thus, if we have Y ∼ B(π(x)),
then we should constrain µ(x) to the same range.

24Thus depends on the inner product.
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In this case, if β = xβ takes values on R (i.e. with x,β unconstrained in general), the
transformation

µ(η) = eη

1 + eη
, −∞ < η <∞

ensures that 0 < µ(η) < 1. In this case,

η + log
(

µ

1− µ

)
= log

(
π

1− π

)
.

The relationship between µ and η is specified by a link function – in the above example,
the link function is given by

g(t) = log
(

t

1− t

)
termed the logistic (logit) link , while the inverse of the link function

g−1(t) = et

1 + et
,

is termed expit function.

Other possible link functions that may be used here include

1. the probit link , where η = Φ−1(µ), where Φ denotes the inverse standard normal
CDF.25 In this case

µ = Φ(η).

2. the complementary log-log , where

η = log(− log(1− µ))

⇒ µ = 1− e−e
η

The link function is usually chosen to be a monotonic increasing function.
Note
Here, the link function may be based on any cumulative distribution function.26

The choice of a link function is a modelling choice.27

25Maps the probabilities back to the quantiles scale.
26For example, in the above we had the logistic distribution, the normal distribution and the Gumbel

distribution CDFs. These are the one Nelder used.
27Standard comparison methods for model selection won’t generally be appropriate, residuals could be

looked at, but it is relatively tricky. More often is a sensibility analysis used.
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In some situations, an obvious link function is implied.

Example 2.5 (Binomial (rescaled))
We rescale the data so that Y ∈ {0, 1/m, . . . , 1}. Recall that

fY (y, π) = exp

y log
(

π
1−π

)
+ log(1− π)

1/m + log
[(

m

my

)]
so that the canonical parameter is

θ = log
(

π

1− π

)
.

But π ≡ µ in this case, so the logit link is perhaps the most natural choice.

If the link function is chosen such that θ = η, the link function is termed the canonical
link function.

It is easy to derive. In the Poisson case, the canonical link is

g(t) = log t,

while for the Gamma, the canonical link is the reciprocal

g(t) = 1
t

and the right hand side is positive.28

Note
If η = θ using the canonical link,

fY (yi, θi, φ) = exp
(
yiθi − b(θi)

a(φ) + c(φ, yi)
)

= exp
(
yixiβ − b(xiβ)

a(φ) + c(φ, yi)
)

For data y1, . . . , yn (independent, but not identically distributed), the likelihood is

Ln(β, φ,y,x) = exp
(∑n

i=1 yixiβ −
∑n
i=1 b(xiβ)

a(φ) +
n∑
i=1

c(yi, φ)
)

28The canonical link may not be suitable, since g(t) may not be positive; it may thus not be a sensible
and a link function as the log may be more appropriate
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therefore
∑n
i=1 xijYi is a sufficient statistic for βj , for j = 1, . . . , p.29

To recapitulate, for the exponential-dispersion family,

fY (y; θ, φ) = exp
(
yθ − b(θ)
a(φ) + c(y, φ)

)
where

E (Y ) = ḃ(θ) = µ

Var (Y ) = a(φ)b̈(θ) = a(φ)V (µ)

with linear predictor

ηi = xiβ =
p∑
j=1

xijβj .

We model µ = E (Yi|Xi = xi) by setting µ = g−1(η).

Example 2.6 (Failure of “O”-rings, Challenger catastrophe)
See handout.

2.3 Estimation

Statistical inference for GLMs is usually based on the maximum likelihood principle.

For independent data y1, . . . , yn, the likelihood is given by

L(θ,y) =
n∏
i=1

fYi(yi;θ) ≡ Ln(θ)

The log-likelihood is

`n(θ) = logLn(θ) =
n∑
i=1

log fYi(yi;θ)

The maximum likelihood estimate, θ̂n, is defined by

θ̂n = arg max
θ

`n(θ)

and θ̂n is typically compute by differentiating `n(θ) with respect to θ, and equating to zero.

∂`n(θ)
∂θ

= 0p

29Nowadays, the dimension reduction is less important as fourty years ago, unless sample size are very
large
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generally a (p× 1) system. Write ˙̀
n(θ) for ∂`n(θ)/∂θ; the system of equations to be solved

has components

∂`n(θ)
∂θj

= 0, for j = 1, . . . , p

In general, θ̂n is such that ˙̀
n(θ̂n) = 0p must be found numerically.30

Note
By a Taylor approximation, for θ in the parameter space Θ ⊆ Rp in a neighborhood of θ̂n,
we have

`n(θ) = `n(θ̂n) + (θ − θ̂n)> ˙̀
n(θ̂n) + 1

2(θ − θ̂n)> ῭
n(θ̂n)(θ − θ̂n) + remainder

i.e.

`n(θ) ' `n(θ̂n) + (θ − θ̂n)> ˙̀
n(θ̂n) + 1

2(θ − θ̂n)> ῭
n(θ̂n)(θ − θ̂n)

where ῭
n(θ) is the (p× p) matrix of second derivatives

∂`(θ)
∂θj∂θk

, for j, k = 1, . . . p.

But ˙̀
n(θ̂n) = 0, so on rearrangement we have that

`n(θ̂n)− `n(θ) ' −1
2(θ − θ̂n)> ῭

n(θ̂n)(θ − θ̂n)

and thus near the mode of `(θ), the function behaves like a quadratic function in θ. Thus

exp
(
`n(θ̂n)− `n(θ)

)
= Ln(θ̂n)
Ln(θ) = exp

(
1
2(θ − θ̂n)> ῭

n(θ̂n)(θ − θ̂n)
)

In a GLM, θ is replaced by β = (β1, . . . , βp)>.

Example 2.7 (Binomial response with factors (discrete predictors))
Suppose we have Y1, . . . , Yp with Yj ∼ B(mj , πj) for j = 1, . . . , p. Then by analytical
calculations, we have

π̂j = yj
mj

, for j = 1, . . . , p

We may write this as a GLM, by considering a factor predictor X taking p levels. In the
30Recall that maximum likelihood estimator has lowest variance asymptotically among the class of unbi-

ased parametric estimators. In R, there are many algorithms implemented to do routinely the optimization;
we will see some examples of that later on in the course.
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canonical parametrization, with the canonical link, we set

βj = ηj = log
(

πj
1− πj

)
so that

πj = eβj

1 + eβj
≡ expit(βj),

for j = 1, . . . , p. By invariance of ML estimation,31

β̂j = log
(

π̂j
1− π̂j

)
= log

(
yj

mj − yj

)
We however usually work with constrasts; consider the reparametrization where

ηj = α0 + δj ,

for j = 1, . . . , p. with the identifiability constraint δ1 = 0. Under the canonical link, we
have

πj = exp(α0 + δj)
1 + exp(α0 + δj)

for j = 1, . . . , p. By invariance,

δ̂j = log
(
π̂j/(1− π̂j)
π̂1/(1− π̂1)

)
for j = 2, . . . , p and α̂0 = logit(π̂1).

Note

δj = log
(
πj/(1− πj)
π1/(1− π1)

)
⇒ eδj = πj/(1− πj)

π1/(1− π1)

where πj/(1− πj) is the odds or the success in a Bernoulli trial for factor level j, so that
eδj is the odds ratio comparing factor level j to factor level 1.

31We will see later that only in the saturated model can we solve for the maximum likelihood parameter
in this way.
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In the new parametrization, we have

Ln(α0, δ2, . . . , δp) =
p∏
i=1

(
mj

yj

)(
eα0+δj

1 + eα0+δj

)yj ( 1
1 + eα0+δj

)mj−yj
=

n∏
i=1

(
mj

yj

)
exp (yj(α0 + δj))

(
1

1 + eα0+δj

)mj
Therefore

`n(α0, δ2, . . . , δp) = const +
p∑
j=1

(
yj(α0 + δj)−mj log 1 + eα0+δj )

)
and so

∂`n
∂α0

=
p∑
j=1

(
yj −mj

eα0+δj

1 + eα0+δj

)

=
p∑
j=1

(yj −mjπj)

=
p∑
j=1

(yj − µj)

we have thus
∂`n
∂δj

= yj −mjexpit(α0 + δj)

= yj −mjπj

= yj − µj

for j = 2, . . . , p. [Recall the linear model case] This is an example of saturated model
where we had as many parameters as we had data points.

Rather than a factor predictor, we may have a continuous predictor

Example 2.8 (Binomial response with covariate (continuous predictor))
Suppose Y1, . . . , Yn are independent with Yi ∼ B(mi, πi) i.e. for data point i , we have a
single covariate xi, where we model

πi = expit(β0 + β1xi)

for i = 1, . . . , n, i.e.

logit(πi) = log
(

πi
1− πi

)
= β0 + β1xi
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and (β0, β1) are the parameters of the model to be estimated. The log-likelihood is

`n(β0, β1) = const +
n∑
i=1

(
yi(β0 + β1xi)−mi log

(
1 + eβ0+β1xi

))
and we get the same estimating equations as before by partial differentiation

∂`n
∂β0

=
n∑
i=1

(yi −miexpit(β0 + β1xi))

=
n∑
i=1

(yi −miπi)

=
n∑
i=1

(yi − µi)

and
∂`n
∂β1

=
n∑
i=1

(yi −miexpit(β0 + β1xi))xi

=
n∑
i=1

xi(yi −miπi)

=
n∑
i=1

xi(yi − µi)

These forms are again identical to what we would have for the linear model. 32

2.4 Iteratively reweighted least-squares

Note
For the Binomial case, Yi ∼ B(mi, πi), we rescaled Yi → Yi/mi and referred to 1/mi as the
“dispersion”. However, for a Binomial sample with m values m1, . . . ,mn, this representation
requires a different “dispersion” parameter for each i.

Thus we instead choose to write the dispersion function

ai(φ) = φ

wi

for i = 1, . . . , n where wi is a known ‘weight’, i.e. previously we wrote

fYi(yi;πi) = exp

yi log
(

πi
1−πi

)
+ log(1− πi)

1/mi
+ log

[(
mi

miyi

)]
32This is prioritizing the orthogonality of the residuals with the covariates, generalized in the GLM setting.
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which we now rewrite as

fYi(yi;πi) = exp

wi
[
yi log

(
πi

1−πi

)
+ log(1− πi)

]
φ

+ log
[(

mi

miyi

)]
i.e. φ = 1 and wi = mi.

For the GLM model based on an exponential-dispersion family model parametrized by
coefficients β = (β1, . . . , βp)>, we have the score equations

∂

∂βj
`n(β, φ) =

n∑
i=1

wi
φ

(
yi
∂θi
∂βj
− ∂b(θi)

∂βj

)
= 0

for j = 1, . . . , p or equivalently

n∑
i=1

wi
φ

(
yi −

∂b(θi)
∂θi

)
∂θi
∂βj

= 0.

We have that

E (Yi) = ḃ(θi) = µi

Var (Yi) = ai(φ)b̈(θi) = φ

wi
V (µi)

Thus, the score equations can be rewritten

n∑
i=1

wi
φ

(yi − µi)xij
ġ(µi)V (µi)

assuming a link function g(t) where 33

ηi = xiβ = g(µi).

Indeed, the log-likelihood for a single observation, in canonical form, is given by

`(y; θ, φ) =
yθ − b(θ)
a(φ)

+ c(y, φ)

and we require an expression for ∂`/∂βj . By the chain rule,

∂`(y; θ, φ)
∂βj

=
∂`(y; θ, φ)

∂θ

dθ
dµ

∂µ

∂η

∂η

∂βj

and from ḃ(θ) = µ and b̈(θ) = V , we derive dµ/dθ = V (µ) and from η =
∑

xjβj , ∂η/∂βj = xj

which leads to the above result

33In order to compute, ∂θi
∂βj

, we need to know what link function is used.
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Consider the random variable g(Yi): by a (first-order) Taylor approximation, we may write

g(Yi) ' g(µi) + (Yi − µi)ġ(µi)

Let

Zi = ηi + (Yi − µi)ġ(µi)

= xiβ + (Yi − µi)ġ(µi).

We have that 34

E (Zi) = ηi = xiβ

Var (Zi) = Var (Yi) (ġ(µi))2

= (ġ(µi))2 φV (µi)
wi

≡ vi

Thus

Zi = xiβ + εi

for i = 1, . . . , n where Var (εi) = vi and we may estimate β using least-squares using this
linear model formulation via

β̂ =
(
X>WX

)−1 X>Wz

if we treat the Zi’s as known quantities, where

W = diag (v−1
1 , . . . , v−1

n )

a weighted-least square problem. So an iterative procedure can be constructed as follows:

Algorithm 2.1 (Iteratively reweighted least-squares)
1. Initialize: choose β(0) (or µ̂(0)

i ) to give η̂(0)
i = g

(
µ̂

(0)
i

)
.

2. Compute

Ẑ
(1)
i = η̂

(0)
i +

(
yi − µ̂(0)

i

)
ġ
(
µ̂

(0)
i

)
3. Form

Ŵ
(1)
i = wi(

ġ
(
µ̂

(0)
i

))2
V
(
µ̂

(0)
i

)
34Since (Yi − µi)ġ(µi) is a zero-mean random variable whose variance can be determined separately from

the mean of Zi.
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and

W (1) = diag
(
ŵ

(1)
1 , . . . , ŵ(1)

n

)
where wi are specified by the choice of the model.
4. Compute

β̂
(1)

=
(

X>W (1)X
)−1

X>W (1)Ẑ(1)

5. Return to 2. with updated

η̂
(1)
i = xiβ̂

(1)
, µ̂

(1)
i , Ẑ

(1)
i

and proceed through 3.-5.
This procedure produces a sequence of estimates β̂

(1)
, β̂

(2)
, . . . , β̂

(t)
which will (in most

cases) 35 converge to a fixed point.
6. Stopping rule: stop iterating when β̂

(t)
, µ̂(t) and η̂(t) do not change.

This algorithm is known as iteratively reweighted least-squares and under regularity
conditions and as n→∞,

β̂
d−→ N

(
β, I(β)−1)

where β̂ is the fixed point of the algorithm (i.e. the value of β̂
(t)

at termination). 36

Here

I(β) = 1
φ

X>WX, [W ]ii = wi

V (µi) (ġ(µi))2

where µi is estimated by µ̂i = xiβ̂.

At termination, we check that the score equations are solved by β̂. Some R code is provided
to fit a Poisson model on page 16 of the handout.

2.5 Quadratic algorithms

Consider the score function ˙̀
n(θ) arising in a parametric statistical model, and a first-order

approximation to ˙̀
n(θ) about some arbitrary point θ = θ0, a (p× 1) vector. Thus

˙̀
n(θ) ' ˙̀

n(θ0) + ῭
n(θ0)(θ − θ0)

35In which case either no solution to the score equations or poor starting values choice.
36Properties of convergence for this algorithm are hard to study since function changes with every newly

collected dataset, and depends on the link function and the data.

31



where ῭
n(θ0) is a (p× p) matrix of mixed partials. Rearranging gives

θ = θ0 +
(῭
n(θ0)

)−1 ( ˙̀
n(θ)− ˙̀

n(θ0)
)

Quadratic approximation

We have

θ ' θ0 + (῭
n(θ0))−1 ( ˙̀

n(θ)− ˙̀
n(θ0)

)
Replacing θ by θ̂n, ˙̀

n(θ̂n) = 0p, a (p× 1) vector so

θ̂n ' θ0 − (῭
n(θ0))−1 ˙̀

n(θ0)

This suggest a recursive approach to finding θ̂n

◦ Initiate θ0 at some value θ̂0

◦ for m = 1, 2 . . . , define

θ̂m = θm−1 − (῭
n(θm−1))−1 ˙̀

n(θm−1)

◦ track {θ̂m} until convergence i.e.∣∣∣θ̂m − θ̂m−1

∣∣∣ < ε1 or
∣∣∣ ˙̀n(θ̂m)

∣∣∣ < ε2

for tolerances ε1, ε2.

This is termed Newton’s method or Newton-Raphson method . As a variant on this
algorithm, if feasible, we may replace −῭

n(θ) by its expectation

In(θ) = −E
(῭
n(θ)

)
= E

( ˙̀
n(θ) ˙̀

n(θ)>
)

where the second equality holds in the Exponential family. Recall

˙̀
n(θ) = ∂`n(θ)

∂θ
=

n∑
i=1

∂

∂θ
log fY (y,θ)

῭
n(θ) = ∂2`n(θ)

∂θ∂θ>
=

n∑
i=1

∂2

∂θ∂θ>
log fY (y,θ)

respectively (p × 1) and (p × p) and where In(θ) is the n-data Fisher information, where
In(θ) = nI(θ) and where I(θ) is the unit Fisher information .
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The recursion based on

θ̂n = θ̂n−1 + (In(θ̂n−1))−1 ˙̀
n(θ̂n−1)

is termed Fisher scoring.37 Often, in this algorithm, In(θ̂n) is replaced by estimates of
the unit information, the so-called observed information38

Î(θ̂n) =


− 1
n

n∑
i=1

∂2`i(θ)
∂θ∂θ>

∣∣∣∣∣
θ=θ̂n

1
n

n∑
i=1

(
∂`i(θ)
∂θ

)(
∂`i(θ)
∂θ

)>∣∣∣∣∣
θ=θ̂n

Example 2.9 (Poisson regression)
Suppose Yi ∼ P(µi) and µi = exp(xiβ) (i.e. the canonical log link), where

xi = (xi1, . . . , xip)> (1× p)

β = (β1, . . . , βp) (p× 1)

We have

`n(β) =
n∑
i=1

(−µi + yi log(µi)) + const

⇒ ˙̀
n(β) =

n∑
i=1

(
−∂µi
∂β

+ yi
∂ log(µi)
∂β

)
a (p× 1) system, where the partial derivatives are given by

∂µi
∂βj

= ∂

∂βj
exp(xiβ)

= xij exp(xiβ)

= xijµi

37In R, glm uses the Fisher scoring algorithm, which is very efficient.
38Sample averages in place of the true Fisher information, in large sample the latter is more stable, but in

moderate sample size, we have no guarantee. The estimate still depends on n in the sense that the bigger
the sample, the better the approximation
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for j = 1, . . . , p and where xiβ =
∑p
j=1 xijβj . Now, we also need

∂`n(β)
∂βj

=
n∑
i=1

(
−xijµi + yi

µi
xijµi

)

=
n∑
i=1

xij(yi − µi)

for j = 1, . . . , p and the matrix of mixed partials is given by
∂`n(β)
∂βj∂βk

= −
n∑
i=1

xijxikµi

for j = 1, . . . , p and k = 1, . . . , p.

Thus Newton’s method uses the recursion for m = 1, 2, . . .

β̂m = β̂m−1 −
(
D(β̂m−1)

)−1 ˙̀
n(β̂m−1)

where D(β) is the p× p matrix with (j, k)th element

−
n∑
i=1

xijxik exp(xiβ)

Note that in this case

E
(
∂2`n(β)
∂βj∂βk

)
=

n∑
i=1

xijxikµi

(as the expectation is over the distributions of Y ’s for fixed x’s).

Example 2.10 (Binomial data)
Let Y1, . . . , Yn, with Yi ∼ B(mi, πi) and πi = expit(ηi) = eηi/(1 + eηi), ηi = xiβ, i.e.
ηi = log

(
πi

1−πi

)
= logit(πi), chosing the canonical link. Thus

`n(β) =
n∑
i=1

yixiβ − log(1 + exp(xiβ))
1/mi

+ const

⇒ ∂`n(β)
∂βj

=
n∑
i=1

xij(yi − µi)
1/mi

However, if xiβ = Φ−1(πi), the probit link, the likelihood derivatives are more difficult to
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compute. In that case,

`n(β) =

∑n
i=1 yi log

(
Φ(xiβ)

1−Φ(xiβ)

)
+ log(1− Φ(xiβ))

1/mi
+ const

Now ∂`n(β)
∂βj

depends on both Φ and φ, respectively the standard normal CDF and PDF.
Thus a more complicated estimating equation is obtained.

2.6 Asymptotic properties

This review of asymptotic properties is explained on pages 18 to 21 in the handout; this is
only a brief review. The key results for likelihood-based estimation and testing are

◦ consistency : θ̂n
p−→ θ0, for θ0 is the “true” value.

◦ asymptotic normality

√
n(θ̂n − θ0) d−→ Np

(
0p, (I(θ0))−1)

Note
We have

1√
n

˙̀
n(θ0) =

√
n

(
1
n

n∑
i=1

˙̀
i(θ0)

)

=
√
n

(
1
n

n∑
i=1

ḟY (Yi;θ0)
fY (Yi;θ0)

)
d−→ Np(0p, I(θ0))

which allows for score test.

This result follows by the Central Limit theorem applied to the iid quantities that appear
in the sum. Thus, for large n, we have

θ̂n
·∼ Np

(
θ0,

1
n

(
Î(θ̂n)

)−1
)

where Î(θ̂n) is the estimated or observed Fisher information; as before, we use the estimate

Î(θ̂n) =

 1
n

∑n
i=1

˙̀(yi; θ̂n) ˙̀(yi; θ̂n)>

− 1
n

∑n
i=1 Ψ(yi, θ̂n)
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both (p× p) matrices, where

Ψ(y; θ̂n) = ῭(y; θ̂n) = ∂2`(y;θ)
∂θ∂θ>

∣∣∣∣
θ=θ̂n

.

The diagonal elements of
(
Î(θ̂n)

)−1
yield the estimated (squared) standard errors for the

elements of θ̂n, and we may perform hypothesis tests concerning θ using the test statistics

θ̂nj

ŝe(θ̂nj)
·∼ N (0, 1) if θ0j = 0

–such a statistic is termed a Wald statistic . To extend to multivariate tests, we rely on
the distributional result that if Y ∼ Np(0,Σ), then

Y >Σ−1Y ∼ χ2
p.

–we may apply this result to (sub)vector(s) (of) θ̂n to obtain a test statistic for simultaneous
testing.39

2.6.1. Likelihood ratio tests

To compare two competing hypotheses, we typically use the Likelihood Ratio Test (LRT).

If

H0 : θ ∈ Θ0

H1 : θ ∈ Θ1

we use the statistic

λ(y) =
supθ∈Θ0 Ln(θ)

supθ∈Θ0∪Θ1 Ln(θ) = Ln(θ̂n0)
Ln(θ̂n)

Clearly λ(y) ≤ 1; if λ(y) ≤ k, for some k < 1, we reject H0 in favor of H1. Two cases to
consider

1. H0 completely specifies the model parameters.
2. H0 partially specifies the model parameters.

For (1), it can be show (using a Taylor series expansion and the CLT; see handout) that
−2 log(λ(Y )) d−→ Q ∼ χ2

p under H0. For (2), if H0 has k1 free parameters, H1 has k2 “free”
parameters, with k2 > k1, where “free” means unspecified by the hypothesis. As H0 is a

39This result is in fact the exact analog to the linear model one, leading up to Fisher-F test
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restricted version of H1, then −2 log(λ(Y )) d−→ Q ∼ χ2
k2−k1

.40

The likelihood ratio test structure is built to compare nested models. Nesting for GLMs
corresponds to restrictions on the terms in the linear predictor e.g. ηi = β0 + β1xi whereas
H1 : ηi = β0 + β1xi + β2x

2
i for i = 1, . . . , n. (as in the linear model).

2.6.2. Model comparison

Different models for µi = E (Yi|Xi = xi) yield different log-likelihood values. The simplest
model is where µ̂i = µ̂0 ( the null model) (independence on x). In constrast to that,
the most complex model where µ̂i = yi, (µ̂i is the “fitted value”). This one is a fit which
matches the data exactly. For other models, we have

µ̂ = µ(xiβ̂) ≡ g−1(xiβ̂),

where g−1 is the inverse link function.

Let

θ̄ = θ(µ̂01n) θ̂ = θ(µ̂) θ̃ = θ(y)

be (n × 1) vectors of canonical parameters derived under the three scenarios (null model,
weighted and fitted values). For the (weighted) Exponential-Dispersion family

`n(θ) =
n∑
i=1

[
wi(yiθi − b(θi))

φ
+ c(yi, φ)

]

where θ = (θ1, . . . , θn)>. Therefore, we can compute 2(`n(θ̃)− `n(θ̂)). We have that

2(`n(θ̃)− `n(θ̂)) = 2
n∑
i=1

wi
φ

[
yi(θ̃i − θ̂i)− (b(θ̃i)− b(θ̂i))

]
= D(y; µ̂)

φ

where D(y; µ̂) is termed the deviance of the fitted model that defines µ̂. The quantity
D∗(y; µ̂) = D(y; µ̂)/φ is termed the scaled deviance .

40The likelihood ratio test belong to Neyman-Pearson theory, it is explicit that the model appearing in the
numerator is nested in the model appearing in the model in the denominator; the numerator is a restricted
version and we have an explicit nesting of the models. The ANOVA F-test is a special case of the LRT; the
theory which enables this result doesn’t hold for non-nested models. One needs to Taylor-expand one of the
model to get to the second; there is no guarantee that you can do that if the models are not nested.
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Example 2.11
In the Poisson model,

`n(θ) =
n∑
i=1

(−µi + yi log(µi)) + const

In the full model, µ̂i ≡ yi. We can define the scaled deviance quantity as

2
(
`n(θ̃)− `n(θ̂)

)
= 2

n∑
i=1

(
yi log

(
yi
µ̂i

)
− (yi − µ̂i)

)
= D(y, µ̂)

In the binomial model, Yi ∼ B(mi, πi), where as usual we look at the proportion scale Yi/mi.
In this case,

`n(θ) =
n∑
i=1

(
yi log(µi) + (1− yi) log(1− µi)

1/mi
+ const

)

The full model has µ̂i ≡ yi, so we again have a simple deviance formula,

2
(
`n(θ̃)− `n(θ̂)

)
= 2

n∑
i=1

mi

(
yi log

(
yi
µ̂i

)
+ (1− yi) log

(
1− yi
1− µ̂i

))

The deviance measures the discrepancy in fit between full and fitted models. According
to likelihood ratio (LR) theory, under regularity condition (and asymptotically)

2
(
`n(θ̃)− `n(θ̂)

)
= −2 log(λ(y)) ·∼ χ2

n−p

if the model represented by θ̂ is an adequate model with p parameters.

In expectation, if the fitted model is adequate, D(y; µ̂)/φ ≈ n− p which defines a heuristic
model adequacy assesment (i.e. if D(y; µ̂)/φ ≈ n − p, then the model can be considered
adequate).

Note
If φ is unknown, a (consistent) estimator of φ is

φ̂ = D(y; µ̂)
n− p

Note
R terms the D(y; µ̂) quantity the “residual deviance”, n− p is termed the “residual degrees
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of freedom”.41

Suppose φ is known, but two nested models are fitted. Recall

Definition 2.1 (Nested model)
A model MA is nested inside model can be obtained from model MB by the imposition of
equality constraints at the interior of the parameter space.42 Say MA has pA parameters,
and MB has pB parameters, with pB > pA (i.e. we consider fixing pB − pA quantities to
obtain MA from MB)

Then, looking at the difference in deviance between MA and MB

D(y; µ̂A)−D(y; µ̂B)
φ

= 2(`n(θ̂B)− `n(θ̂A)) ·∼ χ2
pB−pA

if MA is an adequate simplification of MB .

In summary: for the Poisson and Binomial cases, φ = 1, thus we have an assesment of

1. model adequacy: D(y; µ̂)/(n− p) ≈ 1?
2. model comparison: D(y; µ̂A) − D(y; µ̂B) ·∼ χ2

pB−pA provided MA is an adequate
simplification of MB .

2.6.3. Pearson X2 statistic

The statistic

X2 =
n∑
i=1

(
yi − µ̂i√
Var (µ̂i)

)2

is also a measure of goodness-of-fit or model adequacy.43 Under the usual asymptotic
arguments (namely Central Limit Theorem),

yi − µi√
Var (µi)

·∼ N (0, φ)

under regularity conditions (see McCullagh and Nelder). Therefore, when n is large,
X2

φ

·∼ χ2
n−p

41Analogous to the linear model, and since asymptotically the deviance is χ2 distributed. There is some
logic to that terminology, although it is not used by textbook. The “null deviance” corresponds to the
deviance under the null model.

42Using a point on the boundary, say setting a parameter to ∞, then the asymptotic theory of LR breaks
down.

43This statistic would work even for moment-based estimation and used for model adequacy assesment.
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Note
To estimate φ, we may use φ̂ = X2/(n− p)

2.7 Residuals

For the GLM setting, several types of residual quantity may be considered.

◦ Pearson residual

rpi = yi − µ̂i√
Var (µ̂i)

(
= obs-fitted

ŝe(fitted)

)
The residuals should be zero mean and constant variance if the model is adequate.44

Note
For a Poisson model with canonical log link, we have that ˙̀

n(β) =
∑n
i=1 x

>
i (yi − µi) a

(p × 1) system as before. As ˙̀
n = 0p, we must have

∑n
i=1 x

>
i (yi − µ̂i) = 0 i.e. we have

x˜j(y − µ̂) = 0 for j = 1, . . . , p i.e. a plot of x˜j versus y − µ̂ should reveal no systematic
variation in mean level.
Note
Although the Pearson residual is zero mean and constant variance (under correct specifi-
cation), the distribution may be highly skewed. 45

◦ Anscombe residuals :
Consider a transform y → A(y) made to ensure that the distribution of A(y) is approxi-
mately normal.46 If Y follows and Exponential-Dispersion family distribution, then it can
be shown that

A(t) =
∫ t

−∞

dµ
V

1
3 (µ)

defines the appropriate transformation.47

Example 2.12
If Y ∼ P(µ), V (µ) = µ. In that case, we have that

A(t) =
∫ t

0

dµ
µ

1
3

= 3
2 t

2
3

44The residuals will be odd-looking compared to the linear model, where you have a continuous response.
If yi is discrete values, the appearance of the residuals plot may exhibit lines, for common values of yi or
µ̂i. Ignore those strange features and look at the more general aspect of the plot.

45Rescaling and shifting will take care of the two first moments, but does not impose restrictions on the
higher moments. The normality assumption does not hold

46Akin to Box-Cox transforms, which can be applied in any regression context.
47The V function is the one that appears in the Exponential-dispersion family equations.
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i.e. we consider transformed Y → 3
2y

2
3 and hence define the residual by

A(yi)−A(µ̂i)
Ȧ(µ̂i)

√
V (µ̂i)

with A(t) = 3
2 t

2
3 where Ȧ(t) = d

dtA(t). Recall that

Var (Y ) = V (µ) ⇒ Var (A(y)) '
(
Ȧ(µ)

)2
V (µ)

so that in the Poisson case,48 we examine

rAi =
3
2

(
y

2
3
i − µ̂

2
3
i

)
µ̂

1
6
i

.

◦ Deviance residuals: Recall that the deviance is defined via

2(`n(θ̃)− `n(θ̂)) = 2
φ

n∑
i=1

wi

(
yi(θ̃i − θ̂i)− (b(θ̃i)− b(θ̂i))

)
= 1
φ

n∑
i=1

di

where

di = 2wi
(
yi(θ̃i − θ̂i)− (b(θ̃i)− b(θ̂i))

)
The deviance residual49 is defined by

rdi = sign(yi − µ̂i)
√
di

where

sign(t) =

+1 if t > 0

−1 if t < 0.

Discussion 2.1 (R example – residual plot for Poisson model)
Look at the handouts for a toy example of residuals plots for a Poisson model, using a
constant-mean response model versus a model including the continuous covariate used to
generate the data (p.22). Looking at the residual plots, we see that the model underfits
X for low values. There are specific features that arise because of the nature of the data.
Looking at the Pearson residuals, the Anscombe residuals and the deviance residuals, we

48For the Poisson case, a more obvious transformation would be take to take logarithm, or for the square
root. The transformation is solely for the final stage of residuals check. The variance estimate should be
zero mean and symmetrically distributed.

49Not to be confused with residual deviance in R which stands for deviance
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notice they are more or less the same at the tail for the low values of X. The normal
approximation holds well; the low response end; the residual for the GLM data exhibit
features: strong lines, since the Y are discrete values. The message should be that such
structures are inevitable because of the nature of the data. We have a lot of zero counts
potentially for values of X between 80 and 120, and the transform still yields zero, which is
clear in the plot of Figure 4.

This completes the basic theory for GLM. We now jump into particular sets of data and
particular models.
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Section 3
Models for count data

Discussion 3.1
In this section, we examine Poisson response data and count data; we could look at factors
levels count to begin with. Consider the example in the handout, with data on tymor type
and location site on page 24.

With a linear model, we could explain the difference in mean with factor variable. Here, we
can think of replications data for different individuals; we will think of them as aggregate
count; we want to model the variation in expected count to see if there was some systematic
variation.

We have an investigation of death rate due to cancer, for nine age groups, we have counts of
lung cancer death, and the corresponding (approximate) population corresponding to those
combinations. Ignoring the population, we could look at the main effect plus interaction
model ignoring the variation in population size. Accounting for the population size, its not
obvious that we should look at a Poisson model. We could look at a Binomial model. We
can turn however to the approximation of the Binomial distribution by a Poisson likelihood
and fit a Poisson GLMs. We would have a GLM where log(µi) = log(mi) + log(πi) and we
will have to include fixed mi in the model, such a term is called an offset .

In the Scottish Lip cancer, there are difference in districts due to economic activities, size
and geographic features (latitude and longitude). This comes more into a spatial modelling
of a Poisson process; the bigger the area you look at, the higher the count observed should
be. Aggregation to that level (Scotland versus region), the count should be high. We will
be looking at how to analyze such data.

We have further examples with contingency tables, either two-way or multi-way.

3.1 Poisson regression and log-linear models

Recall for Yi ∼ P(µi), with canonical link θi = log(µi) = xiβ and g(t) = log(t). Other
possible links are the identity link (g(t) = t) or the square-root link (g(t) =

√
t).

3.1.1. Approximations

(a) Y ∼ P(µ) implies Y−µ√
µ

·∼ N (0, 1) for large values of µ (i.e. large count rate) using the
Central Limit theorem.

(b) Transformation to constant variance: if S = h(Y ), by a Taylor approximation

S ' h(µ) + (Y − µ)ḣ(µ) + (Y − µ)2

2 ḧ(µ)
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If h(t) =
√
t,50 then

S = Y
1
2 ' µ 1

2 + (Y − µ)
2µ 1

2

yielding

E (S) ' µ 1
2

Var (S) ' 1
4µVar (Y − µ) = 1

4

and Var (S) does not depend on µ (for µ large). This is called a variance stabilizing
transformation. In fact, McCullagh and Nelder go in detail on p. 196 and show

E
(
Y

1
2

)
' µ 1

2

(
1− 1

8µ

)
Var

(
Y

1
2

)
' µ 1

4

(
1− 3

8µ

)
which work up to order 1/µ.

(c) Transform to symmetry: h(t) = t
2
3 , an Anscombe transform, and

E
(
Y

2
3

)
' µ 2

3

(
1− 1

9µ

)
Var

(
Y

2
3

)
' 4µ 1

3

9

(
1 + 1

6µ

)

3.1.2. Log-likelihood

`n(µ) =
n∑
i=1

(yi log(µi)− µi) + const

3.1.3. Deviance

The deviance in the Poisson case is given by

D(y; µ̂) = 2
n∑
i=1

(
yi log

(
yi
µ̂i

)
− (yi − µ̂i)

)
50Transforming the original y and not the mean
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If g(µi) = ηi = β0 +
∑p
j=1 xijβj , then

∂`n(β)
∂β0

=
n∑
i=1

µ̇i0

(
yi
µi
− 1
)

where

µ̇i0 = ∂µi
∂β0

.

Under the canonical log link,

∂µi
∂β0

= ∂

∂β0

exp

β0 +
p∑
j=1

xijβj


= exp

β0 +
p∑
j=1

xijβj


= µi

which implies that
∂`n
∂β0

=
n∑
i=1

yi − µi = 0

to yield estimates. Therefore, at β = β̂, we have

n∑
i=1

(yi − µ̂i) = 0

and therefore the deviance reduces to

2
n∑
i=1

yi log
(
yi
µ̂i

)
.
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3.2 Implementation in R

3.2.1. Types of Poisson data

1. Factor predictors only
◦ counts cross-classified by one or more factors
◦ “contingency table”
◦ no obvious “response” variable other than the count itself

(a) Two-way tables (two factors) (into an I × J table).51

(b) Multiway tables (three or more factors)
2. Factor predictors and covariates
◦ individual-level analysis possible

3. Offset models
Suppose that we choose to model the expected value for the ith datum as µi = Eig

−1(ηi)
say where Ei is a known constant. Ei allows us to consider systematic variations in E (Yi)
which is not dependent on the predictors.
In the Poisson case, with log link, we have

log(µi) = log(Ei) + ηi

= log(Ei) + xiβ

and log(Ei) is termed an offset. We can consider log(Ei) as a predictor with known
coefficient equal to 1.

Example 3.1 (Cancer dataset, page 24)
We have a two-way contingency table with two factors, type and site, with respectively
4 and 3 levels; one might want to test whether the type of cancer is independent of the
location.

We have log(µjk) = log(µ) + αj + βk for j = 1, 2, 3, 4 and k = 1, 2, 3. This would be
classical of a two-way ANOVA. This model is overparametrized, we thus set identifiability
constraints. In R, the first level of each factor is used as the baseline group, thus α1, β1 are
zero.52 There are four basic models to consider:

M0 : null model

M1 : tumour type only main effect model

M2 : site only main effect model

M3 : tumour type plus site additive main effects model
51We will be interested in symmetry and other simple structures for tables
52Same as in the linear regression case.
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A fifth model, with interactions, could be considered and everything for can be computed
without fitting the model. The number of parameters of the model, to assess the adequacy
of the model, can be determined by the same rules as for the linear model with factors.

M0 : 1

M1 : 1 + (4− 1) = 4

M2 : 1 + (3− 1) = 4

M3 : 1 + (4− 1) + (3− 1) = 6

We can perform model comparison via analysis of deviance comparisons: since all models
are nested within M3, we can compare the deviance change against a χ2 distribution with
degrees of freedom p2 − p1. The easiest way to select the best model is to start with the
more complicated model and try to simplify it, that is compare in this case M3 with M2.
The change in deviance

∆Deviance : 196.9− 51.795 = 145.105

∆rdf : 6− 3 = 3

To test H0: M2 is an adequate simplification of M3, compare ∆ Deviance with χ2
∆rdf – here

χ2
3(0.95) = 7.815, so we reject H0, since the value of the test statistic is more extreme than

the critical value. Similarly, M1 is shown not to be an adequate simplification of M3. Is M3

an adequate model? For M3 to be considered adequate, we would need to

Deviance
dof = 51.795

6 = 8.6325

to be near 1. We can conclude that M3 is not adequate to explain the data.

The interaction model, given by

tumor + site + tumor:site or tumor*site

fits the data exactly as µ̂jk = yjk using MLE. Here, we refer to this model as the saturated
model. The deviance for this model will be by construction zero, since the fitted model
is the most complicated model in this case. There is no utility fitting that structure; we
can’t compute the standard errors; we could exploit the Poisson structure to estimate the
variance using the relationship between mean and variance using the estimated mean. Note
that R also reports the AIC, which could be used for model comparison. Recall that AIC is
based on the likelihood approximation, and that the lowest value of AIC indicates better fit,
subject to the penalty for model complexity. Also recall that it can only be used for nested
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models, we can use it for comparable likelihood (for example two models with different data
transformation, for example log and identity transformation). You cannot use it to compare
link functions, as you are fundamentally changing the structure of the data.

Example 3.2 (Lung cancer incidence, page 27)
In the lung cancer example on page 30, we can approximate the Binomial variables with low
rate by a Poisson model. The counts cannot be directly compared since the population size
from each case is very different. Then, if X ∼ B(m,π) we can consider for X the Poisson
approximation X ·∼ P(λ) with λ ≈ mπ. Taking logs, we get for the data

log(µi) = log(mi) + log(πi)

– we are interested in the rate per thousand of death in the population, πi; thus the offset
Ei would be the mi term. We have four smoking groups (smoke) and age group (age).
Taking into account the fact that we have to account the population size are different using
an offset. Again consider a canonical link function. We have similar models as before. The
syntax in R to use an offset is via ~offset(). Since in this case pop is the population size, we
need the offset to be on the log scale, so we get in this case glm(dead~offset(log(pop)).

We could perform and analysis of deviance, with M3 beating off M2; the simplication is not
adequate; the variation seems to be explained by M3, and the approximation is close to 1,
so the model seems to capture well features of the data.

Looking at the summary, we have (Intercept), whose parameter correspond to the baseline
with levels 1 in both case.

Example 3.3 (Scottish Lip Cancer data)
This is an example of Poisson regression with covariates and factor predictors. We have an
offset setting, with again depending on the population size by region. The expected number
of cases takes into consideration how populous or geographically extended the region is
and what would be expected taking these factors into account. We can get a sequence of
model fits using anova command in the GLM. We are fitting one parameter per covariate in
this case. Deviance in the table indicates the difference between the residual deviances.
Model 3 is the best among the chosen model, but is not adequate to explain the data.

3.2.2. GLM Analysis Checklist

1. Fit and compute deviances for a range of models exhibiting a nesting structure
2. Use “Analysis of Deviance” to compare nested models. We compare the change in
deviance ∆Deviance/φ ·∼ χ2

∆r.d.f, i.e. if ∆Deviance/φ is ‘not too large’, we do not reject
te simpler model as an adequate simplification of the more complex model.
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Note
If φ is unknown, it can be replaced by an estimated value φ̂ in the analysis of deviance.53

R uses the Pearson-based estimate

φ̂ = 1
n− p

n∑
i=1

wi

(
yi − µ̂i√
V (µ̂i)

)2

– other estimates may be used, and model-based (ML) estimates of φ may also be used.
In the Analysis of Deviance, we compute φ̂ under the more complex model.

3. Test the ‘final’ model for adequacy, looking at Deviance/φ ·∼ χ2
n−p if the model is

adequate. We use the heuristic check that

Deviance
φ

≈ n− p

for an adequate model.
4. Inspect the residuals

3.2.3. Information Criteria

We define the AIC to be −2`n(β̂) + 2p and the BIC to be −2`n(β̂) + p log(n). We can
compare models using AIC or BIC, choosing the lowest value to yield the “best” model.54

Note
Only compare nested models.55

Example 3.4 (Scottish Lip Cancer model selection)
See handout on page 31. The analysis of variance quantity can be carried out using the
anova command. Model glm2.off from the Analysis of Deviance is given as the most
significant fitted model, and the value of Deviance change from model glm2.off to model
glm3.off gives 0.276 against χ2

1, so the later model does not yield significative improvement
in fit. Increase in latitude implies increase in Lip cancer. Inspecting the residual deviance
over degrees of freedoms, we have 159.71/53 ≈ 3, so the model is not adequate, even though
it was best among the considered models. We can add an additional interaction effects, as
we have two continuous covariates. Comparison in the model in terms of deviance yield

53R does not scale the deviance, therefore in models like the Gamma or the inverse Gaussian, one needs
to scale appropriately the difference in deviance.

54Doesn’t take into account potential aspects of interest such as residuals and predictive capacities. Note
that we would like asymptotically to select the right model provided it is within the compared models. Recall
that AIC is an inconsistent model criterion. The performance in finite sample is rather unpredictable.

55In general, how to compare non-nested models is unanswered. One could use predictions p(y∗|y) ≈
p(y∗|β̂) using hold-back sample data or future forecast for data available. Another possible option is cross-
validation, taking random subsets of size 10% or 25% and check the discrepancy between fitted values and
residual values.
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that the interaction yield a significant improvement in deviance, thus we know include the
significantly (yet not strongly significant) negative interaction between latitude and work
in AFF. It is rather hard to interpret. Again, the heuristic comparison for model adequacy
shows that the interaction model is not adequate in explaining the variation in the data.
One could also have compared the AIC values: 373.69 vs 368.84, so the later model would
have been selected on this basis.

Adding higher order terms and quadratic terms could be used here, but no significative im-
provement would result. The assumption of the Poisson model of mean-variance equality re-
lationship may not be valid. We could use the extension to the quasi-Poisson quasipoisson.
Under this model, the parameter estimates stay the same (we are using the same link func-
tion, and as such estimates for µi yields identical estimates to poisson), but the standard
errors change and as a result the P -values (standard errors are scaled by φ̂ 1

2 ). Note the dis-
persion parameter is 2.95, as opposed to 1 with the Poisson family. We still have E (Yi) = µi

and Var (Yi) = φµi, but where φ is unknown and estimated using the Pearson residuals.
The parameters estimates may no longer be significant, as the Poisson model is not valid.
Due to the small sample size, we have little power to detect the effect of AFF, and it is
questionable whether AFF significant. The AIC is not reported since the quasipoisson is
based on an estimating equation rather than a likelihood, and as such no justification for
using. Could use the pseudo-likelihood in place, and compute the objective function.

Other links could be used and could be potentially of interest, for example using either
family=poisson(link=identity) or family=poisson(link=sqrt). Neither should im-
prove on the log link.

Example 3.5 (Political Affiliations of College Students)
The data is provided in a 4× 3 two-way table. To explain the affiliation, we have the same
form as previously, with the offset excluded, featuring constant mean, either covariate, the
additive and the interaction model (or saturated model). We could use backward model
selection, starting from the saturated model.

Comparing the additive and the full fctorial model, we have 6 degrees of freedom, and the
deviance for the saturated model is of course zero by construction. Comparing the model
with the interaction yields the difference 16.39 against a χ2

6 distribution, which has 0.95
quantile is 12.59, so the change in deviance is significant and we reject model 1 (additive:
A+ C) as an adequate simplification of model 2 (the saturated model: A ∗ C). We should
not entertain any simplification from the full factorial model A ∗ C = A+ C +A.C.

The analysis of deviance comparing one factor against the additive model yields strong
significance of both factors. Only the “saturated” model A ∗ C is adequate. Using the log
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link, this model sets the usual contrast parametrization

log(µjk)


β1 j = k = 1

β1 + β
(A)
j , j = 2, 3, 4; k = 1

β1 + β
(C)
K j = 1; k = 2, 3

β1 + β
(A)
j + β

(C)
k + γ

(AC)
jk j = 2, 3, 4; k = 2, 3

We can compute even in the case of a single data point the standard errors and translate
them into statements about the β’s using invariance of the δ-method. We cannot in this
model compare the common influence of a factor. We cannot evaluate the adequacy of the
model, and cannot address the Poisson assumption in this model. Under this model, the
fitted values is precisely the data point.

We could have specialized model, with for example constant level for Independent for the
four college types, while for Democrats, we could have significant changes accross college.
Specific values in the above parametrization could then be set to zero. The model cannot
be easily fitted in R. The levels of the factors would be by assumption different. We are
usually making the assumption that the levels are exchangeable, whereas the assumptions
that say β(C)

3 = 0 says different and cannot be fitted routinely.56

Example 3.6 (Classroom behavior data)
Data can be found page 30, the analysis is present on page 35 of the handout. Again, we
perform backward selection approach.

We look at an Analysis of Deviance and conclude the Deviant model and Adversity factors
are significant; note the sequential fitting of the anova function.

1. Starting with the saturated model deviant*atrisk*adversity, on line 19-20, we drop
the three way interaction as ∆ Deviance is 0.943 and the change in degrees of freedom
is (2 − 1)(2 − 1)(3 − 1) = 2, so as the 0.95 quantiles of the chi-square distribution is
χ2

2(0.95) = 5.99, we can drop the 3-way interaction (that is the model without 3-way
interaction is an adequate simplification of the saturated model).
2. Drop 2-way interaction atrisk:adversity. In this case ∆ Deviance=10.378 and
∆rdf=(2 − 1)(3 − 1) = 2, but this time, we reject the hypothesis that the simpler model
omitting atrisk:adversity is an adequate simplification.
In R, when anova does the comparison, it will drop the terms sequentially regardless of any
considerations for the pertinence of the covariates; its a one way sequence of models, there
is no including-excluding variables. On lines 95-105, we have the Analysis of Deviance
for the two way interacts. We should proceed to re-introduce the atrisk:adversity, but
56You would need to maximize the likelihood yourself.
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drop other two-way interactions. For this, update could be used. See Exercise 2, Q1.57

For the “all main effects plus all 2-way interactions” model, the deviance is 0.943 and the
residual degrees of freedom are 2, so φ̂ ≈ 0.47. We might conclude from that that the
Poisson model is adequate. There is less variation for Poisson than one would expect, this
underdispersion is not particularly worrying.

3.3 Goodness-of-fit

The deviance test says that for an adequate model,

D(y; µ̂)
φ

·∼ χ2
n−p

What if φ is unknown? In this case, we may replace φ by φ̂ from the Pearson estimator, i.e.

φ̂ = 1
n− p

n∑
i=1

(
yi − µ̂i√
V (µ̂i)

)2

Similarly, for the model comparison analysis of deviance test,

D0 −D1

φ

·∼ χ2
p1−p0

wher D0, p0 are the deviance and degrees of freedom for the simpler model and the cor-
responding for D1, p1 for the more complicated model. We may again replace φ by φ̂ to
complete the test.

This follows as the estimation of φ̂ is based on a consistent procedure, and the fact that
for both Pearson and Deviance-based estimators, we have (asymptotically) variation that
can be ignored. We have that

(D0 −D1)/φ(p1 − p0)
D/φ(n− p)

d−→ F(p1 − p0, n− p)

where φ̂ computed from the “adequate model”, which corresponds to the D quantity in
the denominator above.58 The two χ2 distributions divided by their degrees of freedom
are asymptotically independent. The assumption for convergence is under the null that the
simpler model is adequate. Thus

(D0 −D1)/(p1 − p0)
D/(n− p)

·∼ F(p1 − p0, n− p) as n→∞

57Note that in R, you can use the step function to do backward and forward selection based on deviance,
AIC or BIC, with option direction ="both".

58This may (not necessarily) be M1.
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–but this dependence on n is problematic, as the asymptotic result is for large n.

Thus, as ν →∞, χ2
ν/ν

p−→ 1, the above is therefore approximately distributed asymptotically
to

(D0 −D1)/(p1 − p0)
D/(n− p)

d−→
χ2
p1−p0

p1 − p0

as required.

Pearson X2

For the Poisson model,

X2 =
n∑
i=1

(yi − µ̂i)2

µi

–the familiar form of the chi-squared statistic. For a two-way contingency table,

X2 =
J∑
j=1

K∑
k=1

(
yjk − µ̂jk√

µ̂jk

)2

Asymptotically (in the µjk),

X2 ·∼ χ2
n−p

for a model with p parameters that defines the µ̂jk (and the model is adequate).

Here, n = J × K. For the main effects only model, p = (J − 1) + (K − 1) + 1, i.e.
p = J +K − 1.59 We thus have n− p = JK − (J +K − 1) = (J − 1)(K − 1) i.e. if the main
model is adequate,

X2 ·∼ χ2
(J−1)(K−1).

This is related to the chi-squared test of ‘independence’. In the main effects model under
the log link, we have that

log(µjk) = β
(A)
j + β

(B)
k

for j = 1, . . . , J ; k = 1, . . . ,K (plus the usual identifiability constraints). This means,
µjk = exp(β(A)) exp(β(B)

k ) = λ
(A)
j λ

(B)
k (i.e. the two factors modify µjk in an independent

fashion).
59Corresponding to the main factors plus the baseline
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Note
Recall that the deviance in models with an intercept takes the form

D(y, µ̂) = 2
n∑
i=1

yi log
(
yi
µ̂i

)
= G2

– this form always pertains when we deal exclusively with factor predictors.

For the change in deviance,

D0(y, µ̂(0))−D1(y, µ̂(1)) = 2
n∑
i=1

yi log
(
µ̂

(1)
i

µ̂
(0)
i

)

3.4 Contingency tables

A table of counts formed by cross-classifying subjects by two or more factors is termed a
contingency table. We have considered

◦ main effects
◦ interactions
◦ saturated models

Other models of interest can be considered. For simplicity, consider three factors A,B,C
with J,K,L levels respectively.

The independence model A+B + C is

log(µjkl) = β
(A)
j + β

(B)
k + β

(C)
l

This model has 1 + (J − 1) + (K − 1) + (L− 1) parameters. The next model of interest is
the partial independence model, which we can express as A+B ∗C = A+B+C+B.C,
with three mains effects and the interactions between B and C. This means

log(µjkl) = β
(A)
j + β

(B)
k + β

(C)
l + γ

(BC)
kl

– classification by factor A is independent of cross-classification by B and C, i.e. A ⊥ (B,C)
and A is independent of B and C. We will distinguish between the cases of independence,
with A + B + C as opposed to partial independence A + B ∗ C so A ⊥ (B,C) i.e. the
effect of A on the (expected) response is independent of the joint effect of (B,C) – at each
level of A, the joint distribution of responses at levels of (B,C) is identical. We see

log(µjkl) = β
(A)
j + β

(B)
k + β + l(C) + γ

(BC)
kl
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– for fixed j the contribution to the expected response (on the log transformed scale) from
factors (B,C) is always

β
(B)
k + β

(C)
l + γ

(BC)
kl

whatever value of j is chosen. We also have conditional independence of the form
A+B + C +A.B +B.C ≡ (A ∗B) + (B ∗ C). In the linear predictor, we got

log(µjkl) = β
(A)
j + β

(B)
k + β

(C)
l + γ

(AB)
jk + γ

(BC)
kl

– conditional on B, the factors A and C influence the expected response independently and
A ⊥ C|B 60 – in the two-way tables defined by the levels k = 1, . . . ,K, the factors A and C
affect the response in an independent fashion.

Graphically,

A

C

B

B

C

A

A test for conditional independence can be based on the analysis of deviance for the two
models

H0 : A+B + C +A.B +B.C and H1 : A+B + C +A.B +A.C +B.C

3.5 Structured log-linear models for square tables

For two factors A,B where A and B have the same number of levels (i.e. a square contin-
gency table), we may also inspect tailored models. e. g. economic status, for longitudinal
study, one would suspect that for multiple observations of a variable, say location, would
stay in the same country or state, and otherwise the migration to another province say
would happen at random.

◦ Quasi-independence:
We have

log(µjk) = β
(A)
j + β

(B)
k + 1j=kγj

–more complex than the independence model due to the extra J parameters γ1, . . . , γJ ; this
model relaxes the strict independence model, and we can compare it with the independence
60Influence of the factors on the response, not the factors themselves

55



model using analysis of deviance. This model contains

1 + (J − 1) + (J − 1) + J

corresponding respectively the intercept, the row effects β(A)
j for j = 2, . . . , J , the column

effects β(B)
k for k = 2, . . . , J and the diagonal γ1, . . . , γJ .

◦ Symmetry:

log(µjk) = log(µkj) (i.e. γjk = γkj)

In this model, the number of parameters is given by the cells on the diagonal and the lower
triangular,

1 + (J − 1) + J(J − 1)
2

This comes about for example in genetics for tests of association based on a symmetry for
transmission of alleles.
Note
This model implies marginal homogeneity – the distribution of counts across levels of
A is identical to the distribution accross levels of B. For e.g., if J = 3,

µ11 µ12 µ13
µ21 µ22 µ23
µ31 µ32 µ33

By the Poisson assumption, for j = 1, . . . , J

Yj• = Yj1 + Yj2 + Yj3 ∼ P(µj1 + µj2 + µj3)

∼ P(µ1j + µ2j + µ3j)

so the distribution of Yj• is the same as the distribution of Y•j .

We have

log(µjk) = β
(A)
j + β

(B)
k + γ

(AB)
jk

out with the constraints

β
(A)
j = β

(B)
k if j = k

γ
(AB)
jk = γ

(BA)
kj if j 6= k

◦ Quasi-symmetry
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This model relaxes the marginal homogeneity assumption by setting

log(µjk) = β
(A)
j + β

(B)
k + γ

(AB)
jk

with only the constraints

γ
(AB)
jk = γ

(BA)
kj if j 6= k

are imposed.

In R, the quasi-symmetry model cannot be fitted routinely using the glm function; however,
the gnm library allows for such model fitting (using the Diag and Symm functions). The
Swedish election data on page 40 of the handout provides an example of such code with
simple parametric models. Quasi-symmetry and quasi-independence fit are much better
compared to the independence or symmetry. We cannot compare the quasi-independence
against the quasi-symmetry; this is not possible since the models are not nested. A model
in which people switch for parties in a similar political stripe rather than at random voting
is more plausible. The models (rather than the individual parameters) are really of interest
here. See also Exercise 2 for more discussion of this.

3.6 Iterative proportional fitting

For a two-factors models, parameter estimation under a log-linear specification can be carried
out analytically. For example, the model A+B, 61 parametrized as

log(µjk) = β0 + β
(A)
j + β

(B)
k

for j = 1, . . . , J and k = 1, . . . ,K with constraints
∑J
j=1 β

(A)
j =

∑K
k=1 β

(B)
k = 0. Under this

setting, we have that, given β(B)
1 , . . . , β

(B)
K

β̂0 = 1
J

J∑
j=1

log
(
yj•

ω
(B)
•

)

β̂
(A)
j = log

(
yj•

ω
(B)
•

)
− β̂0

where

ω
(B)
• =

K∑
k=1

eβ
(B)
k =

K∑
k=1

ω
(B)
k

say. So given β(B)
1 , . . . , β

(B)
K we can estimate β0, β

(A)
1 , . . . , β

(A)
J . Therefore, a simple iterative

scheme to estimate all parameters is
61The constant, saturated or one factor can be done routinely using MLE
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◦ fix β(B)
1 , . . . , β

(B)
K , estimate β(A)

1 , . . . , β
(A)
J and β0 as β̂(B)

1 , . . . , β̂
(A)
J , β̂0.

◦ fix β(A)
1 , . . . , β

(A)
J to the estimated values, then estimate β(B)

1 , . . . , β
(B)
K , β0

◦ Iterate until convergence.

The MLE calculation for a log-linear additive model is explained in more details in the
handout on iterative estimation for Poisson log-linear model. A more complicated model
with three factors is given in section 3.6 in the handout on page 43. Indeed, we have in the
two case that

log(µjk) = β0 + β
(A)
j + β

(B)
k

and we perform ML estimation on the ‘pseudo’-data

y
(B)
jk = yjk exp

(
−β(B)

k

)
Before moving to Binomial data (which we will see can be viewed as Poisson model con-
ditional on sums, which turn out to be binomial distributed), we have a last discussion on
Poisson models.

3.7 Overdispersion and underdispersion

In the Poisson model, the dispersion parameter φ is set to be 1. For modelling purposes, this
is restrictive and in practice, we often observe count data where there is evidence of overdis-
persion (i.e. Var (Y |X) > E (Y |X)) or underdispersion (i.e. Var (Y |X) < E (Y |X)). We
can look at the construction of a parametric model which looks at overdispersion, using the
negative binomial distribution.

Model for overdispersion

Suppose Y |Z = z ∼ P(µz) where µ > 0, Z ∼ fZ such that P (Z > 0) = 1 for E (Y ) > 0.
Using the iterated expectation and iterated variance formulas, we can easily verify that

E (Y ) = EZ
(
EY |Z (Y |Z = z)

)
= µEZ (Z)

and

Var (Y ) = EZ
(
VarY |Z (Y |Z = z)

)
+ VarZ

(
EY |Z (Y |Z = z)

)
= µEZ (Z) + µ2VarZ (Z) .

The most common construction has Z ∼ G(θz, θz) i.e. EZ (Z) = 1 and VarZ (Z) = 1
θz

for
θz indicating the dependence on the distribution of Z. Therefore, for Y , we have E (Y ) =
µ,Var (Y ) = µ+ µ

θz
.

The choice of the Gamma mixing distribution is partly encouraged by the fact that this
makes Y ∼ NB(µ, θz), the negative binomial distribution. It can be viewed as a sum of
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geometric distributed random variables, or a location shift of the binomial distribution such
that the support is supp(Y ) = {0, 1, 2, . . .} where

fY (y;µ, θz) = Γ(θz + y)
Γ(θz)y!

(
µ

µ+ θz

)y (
θz

µ+ θz

)θz
1y∈Z+

This parametrization is most useful as it is parametrized in terms of the mean; it is a more
useful parametrization for GLM than having a probability parameter say p ≡ µ

µ+θz .

Note
It is clear from the construction that as θz →∞, this model reverts to the Poisson model (we
have asymptotically a Poisson distribution from standard distribution theory, as Z become
degenerate at 1).

In a GLM setting, this model can be adapted to allow dependence on covariates and factors:
specifically, we would set

g(µi) = xiβ

where g is some link function, in the Poisson case for e.g. log(µi) = xiβ. This model can
be estimated in a straightforward fashion and be used to model count data: it is a standard
parametric model that can be estimated using ML.

In R, the function glm.nb in the MASS library can be used to estimate β and θz. For example

glm.nb(formula, · · · link = log)

and if θz was very large, we could conclude about the appropriateness, all things being
equal, of the Poisson model assumption. See page 45 on the handout.62

Note
If θz is estimated, comparison with the Poisson model in terms of fit (for the same linear
predictor specification) is not straightforward. If ϕ = 1

θz
, the negative binomial model

reduces to the Poisson if ϕ = 0, therefore the Poisson model is nested inside the negative
binomial, so we may compare models using the likelihood ratio test of the hypotheses

H0 : ϕ = 0 against H1 : ϕ > 0

but as ϕ = 0 is a point on the boundary of the parameter space, the problem is non-
62Direct comparison of these models is not however straightforward; one might wonder about the existence

of a nesting structure here. If we think of 1/θz = 0 is setting the value of the parameter at the boundary of
the parameter space will destroy the regularity of the testing, so the problem becomes non-regular.

59



regular; the asymptotic distribution of the test statistic is no longer a simple χ2
1.63 It can

be shown that the likelihood ratio statistic, when appropriately transformed

−2
(
`(P)
n (β̂)− `(NB)

n (β̂, ϕ̂)
)

d−→ V

where V has a mixture distribution.

P (V = 0) = 1
2 and P (V ≤ v) = 1

2 + 1
2

∫ v

0
fQ(t)dt

where Q ∼ χ2
1, namely a mixture of a point mass at zero and χ2

1 with equal probability.
We have thus P (V > v) = 1

2
∫∞
v
fQ(t)dt, so we only need to divide the P value by half of

what it would be under the regular case, i.e. LRT is completed by using this non-standard
asymptotic distribution to compute critical regions or P values.

Underdispersion is regarded as a less important problem and is less studied. It is however
possible to construct underdispersed models.

Models for underdispersion

The zero-inflated Poisson model has probability mass function

fY (y;π, µ) = πδ{0}(y) + (1− π)e
−µµy

y! 1y∈Z+

i.e.

P (Y = 0) = π + (1− π)e−µ

P (Y = y) = (1− π)e
−µµy

y! for y = 1, 2, . . .

This is a simple two parameters parametric model which can be estimated in R using the
library vglm or VGAM). For some settings of (µ, π), this model exibits underdispersion – π, µ
can be made dependent on predictors in the GLM setting.

63As the validity of the Taylor series expansion around the parameter is not valid; for this particular kind
of test, see Lawless (1987) and Chernoff (1954).
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Section 4
Models for Binomial and Multinomial Data

Binomial data arise as counts of “positive” responses when two possible outcomes may be
observed in a sequence of independent trials. We assume

Y ∼ B(m,π)

with m fixed and known. As before, we will consider the transform Y 7→ Y/m, so that

E (Y ) = π, Var (Y ) = π(1− π)
m

= φV (π)

In a GLM setting, we consider Y1, . . . , Yn independent, but allow π to be dependent on i

and then πi to vary with covariate/factor predictor values. We model

ηi = xiβ = g(π)

for link function g.

Multinomial data arise when K ≥ 3 outcomes may be observed in the original independent
trials. For datum i, we have Y i = (Yi1, . . . , YiK) – (a K components vector) and write

Y i ∼M(mi, π1, . . . , πK)

with mi a fixed, known positive integer. In this model, the joint mass function for the vector
random vector Y i is

fY i(yi) ≡ fYi1,...,YiK (yi1, . . . , yiK) = mi!
yi1! · · · yiK !π

yi1
1 πyi22 · · ·πyiKK

for 0 ≤ yik ≤ mi,
∑K
k=1 yik = mi, yik integer-valued where 0 ≤ πk ≤ 1 and

∑K
k=1 πk = 1.

This is aK−1 dimensional discrete multivariate distribution determined byK−1 parameters
as

yiK = mi −
K−1∑
k=1

yik

πK = 1−
K−1∑
k=1

πk.
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We have

E (Yik) = miπk, for k = 1, . . . ,K

Var (Yik) = miπk(1− πk) for k = 1, . . . ,K

Indeed, marginally Yik ∼ B(mi, πk). It transpires that multivariate margins e.g. fY1,Y2,Y3

and conditional distributions (e.g. fY1,Y2|Y3,Y4 , etc.) are also multinomial. In the original
full multinomial model, it can be shown that

Cov (Yij , Yik) = −miπjπk.

There is thus negative correlation between the variables. 64

4.1 Binomial Model and Logistic Regression

Suppose Yi ∼ B(mi, πi), for i = 1, . . . , n. Transform Yi to the proportion scale: Yi 7→ Yi/mi

and consider the likelihood for those new data. By previous constructions, the likelihood is

fYi(yi, πi) = exp

yi log
(

πi
1−πi

)
+ log(1− πi)

1/mi
+ log

(
mi

miyi

)
and recall that the canonical parameter θi = log

(
πi

1−πi

)
with dispersion parameter φ = 1

and weight wi = mi. Here, µi = E (Yi) = πi therefore the canonical link is given by
θi = logit(πi) so the canonical link is the logistic or logit link

g(t) = log
(

t

1− t

)
.

The likelihood for the corresponding GLM with linear predictor ηi = xiβ yields the log
likelihood

`n(β) =
n∑
i=1

yi log
(

πi
1−πi

)
+ log(1− πi)

1/mi
+ constant


=

n∑
i=1

wi
(
yixiβ − log(1 + exiβ)

)
+ constant

64Indeed, if Y1 is large, since the variables sum to one, this entails Y2 has to be small.

62



thus

∂`n(β)
∂β

=
n∑
i=1

mi

(
yix
>
i −

exiβ

1 + exiβ
x>i

)

=
n∑
i=1

mi(yi − πi)x>i

a (p× 1) system usually. This requires solving numerically ∂`n(β)/∂β = 0, yielding β̂.

Saturated model

In this setting, we set π̂i = yi for i = 1, . . . , n. The deviance statistic is easy to derive as

D(y, π̂) = 2
n∑
i=1

mi

(
yi log

(
yi/(1− yi)
π̂i/(1− π̂i)

)
+ log

(
1− yi
1− π̂i

))

Note
Suppose mi = 1 for i = 1, . . . , n (a Bernoulli setup); in this case, the deviance is then

D(y; π̂) = 2
n∑
i=1

(yi log yi + (1− yi) log(1− yi)− yilogit(π̂)− log(1− π̂))

Now yi = 0 or yi = 1, so

yi log(yi) = (1− yi) log(1− yi) = 0

Therefore

D(y; π̂) = −2
n∑
i=1

yixiβ̂ − 2
n∑
i=1

log(1− π̂i)

= −2β̂
>
X>y − 2

n∑
i=1

log(1− π̂i).

But
∂`n(β̂)
∂β̂

=
n∑
i=1

(yi − πi)x>i = 0p

which entails that X>y = X>π̂ where π̂ = (π̂1, . . . , π̂n)>.65 Replacing this equality into
65This is a simple moment equation.

63



the deviance term, we have

D(y; π̂)− 2η̂>π̂ − 2
n∑
i=1

log(1− π̂i)

where η̂ = Xβ̂, thereforeD is a function of β̂ (that is, given β̂, the quantityD is fixed). Now
as n→∞, β̂ p−→ β0, the true value, by usual consistency properties of MLE. Asymptotically,
D is a function of β0.66 That is, we don’t have D(y; π̂) ·∼ χ2

n−p for large n uniformly across
β0 values, i.e. deviance assessment for the binomial model with each mi = 1, the properties
of the deviance statistic are non-standard; it should not be used to assess goodness of fit of
a given model.

Consider the simpler case Yi ∼ B(1, π), the Pearson X2 statistic

X2 =
n∑
i=1

(yi − ȳ)2

ȳ(1− ȳ) = n

see McCullagh and Nelder for a proof. This is fixed to the sample size, – no use as a goodness
of fit statistic. Furthermore, the deviance in this model turns out to be

−2n (ȳ log(ȳ) + (1− ȳ) log(1− ȳ))

– asymptotics depend on the true value of π.

Example 4.1 (Plots of uncertainty and deviance for Bernoulli with m = 1)
See the plot for m = 1; we have regular asymptotic, that is consistency of β p−→ β0, and the
uncertainty corresponding to the inverse of the Fisher infomation, which depends on values
of β usually. The deviance plot however is not χ2

n−p and the distribution depends on the
parameters very heavily, the deviance is too large when the deviance is small, and too small
when the value of β is large; the asymptotic distribution must be derived for any particular
value of β. The problem persists when m = 3, 5 or even m = 100; it starts looking good
when m = 1000, the problem has dissipated.

We will see that the problem is alleviated for deviance comparison, as we can get a valid
expansion.
Example 4.2
Deviance comparison for models, with Yi ∼ B(1, πi), withM1 : logit(πi) = β0 +β1xi against
M0 : logit(πi) = β0 i.e. to test H0 : β1 = 0, we can use χ2

1 and this is what we observe
uniformly in the plots. We see a QQ-plot for 1000 replicates with a sample size of 1000.

66Whenever we did deviance analysis, we managed to get a pivotal quantity that did not depend on β0,
thus the asymptotics derived earlier do not hold
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Figure 2: Deviation from true parameter βtrue as a function of the parameter estimate
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Figure 3: Deviance plot as function of number of observations and value of β1
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Figure 4: Densities estimates and QQ plot for β1 − βtrue
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Plotting the chi-square empirical quantiles against the χ2
1 alleged hypothetical distribution.

The plot is good, with some deviances in the tails.

Thus, although deviance itself as a goodness-of-fit is not reliable, the comparison in deviance
is.

Example 4.3 (Horseshoe crab data)
A single binary response with a continuous covariates. In R, for binomial data, we have to
supply both mi, yi data. Thus, in this case, you can supply only one column, since we have
binary data, so I(satell>0) as a factor is ok. Otherwise, we can supply cbind(mi−yi, yi),
or yi/mi with weights= mi.

The next bit of the code reformulate the data, with a categorization according to deciles of
the width. The last part of the code gives the fitted value. In model m2, since part of the
explanatory power is passed from width to I(width^2), we need to compare the changes
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in deviance. The plot illustrates the categorized data proportion. The analysis of deviance
shows that the latter inclusion of the quadratic term is not necessary.

A Wald test is perhaps more reliable as a one-parameter test, if

Wn = β̂2

se(β̂2)

The comparison of the analysis of deviance can be though of as a multivariate version of
the Wald test, and asymptotically equivalent. Here W 2

n
·∼ χ2

1, and we can assess using the
test. Since we cannot use the model assessment criterion that Dev/(n − p) ·∼ χ2

n−p, as the
asymptotics depend on the data generating mechanism. We could have left skew, right skew,
offset to the left or the right, etc. For m < 10, for assessment of the adequacy of the model,
the deviance criterion is completely unreliable. The asymptotics are more subject to break
down than Poisson data.

Example 4.4 (Aids and AZT)
We are looking at the presence of absence of symptoms for a drug for HIV. We could
legitimately use the Poisson likelihood for this data, with four points with two levels and
two factors. This is somewhat similar to the models which were seen earlier on, with
null model, either factor (azt or race), additive factor (azt+race) and a saturated model
(azt*race). This is a 2× 2× 2; although the data could be regarded as grouped data, we
could convert those groups into individual data to later include covariates. We would need
to supply four lines in the data frame. Here, we do the individual data analysis. For all
quantities of interest with factors, the two approaches will give same results and estimates.
In this case, we can use saturated models and still have residual degrees of freedom available,
so we do not fit exactly the data. Looking at the effect of race from the summary, we see
that the factor appears not significant. Indeed, the race term is not necessary based on the
analysis of deviance. The azt estimate gives a contrast between the treated and the control
groups. We are fitting the model

logit(πjk) = log
(

πjk
1− πjk

)
= β0 + β

(AZT)
Y

so for control, we get β0 and the treated groups effect is β0 + β
(AZT)
Y on the logit scale.

Here, the Intercept is -1.0361 and β(AZT)
Y = −0.7218. The odds are decreased when AZT

is administered. The log-odds ratio gives

log
(
π21/(1− π21)
π11/(1− π11)

)
= β

(AZT)
Y
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πjk– j indexes AZT=yes (j = 2), for k = 1 and 2. Recall that an odd is

p(E)
1− p(E) and the log-odds log

(
p(E)

1− p(E)

)
so the log-odds ratio for E,F is given by

log
(
p(E)/(1− p(E))
p(F )/(1− p(F ))

)
This is perhaps more interesting to compare when we have azt and race; make sure you
understand the indexing and interpretation.

Example 4.5 (Birthweight data)
We want to predict the low birthweight; the low indicator is a discretization of a covariate.
The 2.5kg cutoff has a meaning full interpretation and is a quantity of interest. Including all
covariates but actual birthweight, with smoking, race all having three levels, ptl indicator
of premature birth. We use the drop1 command to remove a single term; in fact many could
be dropped. This seems to be justified on the base of the level, dropping ftv, age and ui.
In the end, we keep weight of the mother (lwt) and race, smoking, ptd and ht factors.
We could also add polynomial terms to this model.

The theory we developed for GLM holds in the case of Binomial data, we could use residuals
when n is large, but we are still in look for an adequacy assessment of the model. We now
look at the links between the two models we have seen for count data, using the canonical
links for both models.

4.2 Logistic regression and log-linear models

Note
If Y1 ∼ P(µ1) and Y2 ∼ P(µ2) and Y1 ⊥⊥ Y2, namely the two are independent. Then

Y1|Y1 + Y2 = m ∼ B(m,π) where π = µ1

µ1 + µ2
.

Consider a simple log linear model for Poisson data y1, y2 in this setting:

log(µ1) = β0

log(µ2) = β0 + β1

Then

`(β0, β1) = y1β0 + y2(β0 + β1)−
(
eβ0 + eβ0+β1

)
+ const.
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We now do an additional reparametrization; set ψ = eβ0 + eβ0+β1 = eβ0(1 + eβ1). Ignoring
constant terms,

`(β1, ψ) = (y1 + y2) log(ψ)− ψ + y2β1 − (y1 + y2) log(1 + eβ1)

= `M (ψ;m) + `Y2|M (β1; y2,m)

where m = y1 + y2. `M (ψ;m) is the likelihood that would arise from datum M = Y1 +Y2 ∼
P(ψ) being observed to equal m and `Y2|M (β1; y2,m) is the conditional likelihood for Y2

given M = m, with Y2|M = m ∼ B(m,π) for some π ≡ π(β1).

To estimate β1, we may restrict attention to `Y2|M . In the conditional Binomial model,

β1 = log
(
µ2

µ1

)
but from the conditional likelihood formed, we can deduce that β1 = logit(π) which implies
in turn

π = µ2/µ1

1 + µ2/µ1
= µ2

µ1 + µ2
.

This result extends to more than two random variables.

If Y1, . . . , YK with Yk ∼ P(µk) independent Poisson for k = 1, . . . ,K. Then

(Y1, . . . , Yk)

∣∣∣∣∣
K∑
k=1

Yk = m ∼M(m,π1, . . . , πK)

where πk = µk/
∑K
l=1 µl for k = 1, . . . ,K.

Suppose we model

log(µk) = β0 + β1xk

for some continuous covariate x taking values x1, . . . ,xK for the K random variables. Let

ψ =
K∑
k=1

exp (β0 + β1xk) = exp(β0)
K∑
k=1

exp (β1xk) .

Reparametrize to ψ,β1; we have for the log-likelihood

`n(ψ,β1) = `M (ψ;m) + `Y |M (β1; y1, . . . , yK ,m)
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where

`m(ψ;m) = m log(ψ)− ψ is the Poisson log-likelihood

`Y |M (β1;y,m) = β1

K∑
k=1

xkyj −m log
(

K∑
k=1

eβ1xk

)
is the multinomial log-likelihood

and

πk = exp (β1xk)∑K
l=1 exp (β1xl)

Therefore all the information concerning β1 lies in the conditional likelihood denoted `Y |M
for Y1, . . . , YK−1

∣∣∣∑K
k=1 Yk = m

For the extension: again, Yk ∼ P(µk) page 57), but now log(µk) = β0 +βk, for k = 1, . . . ,K
and β1 ≡ 0 (i.e. the model with one factor predictor). Here let

ψ =
K∑
k=1

exp (β0 + βk) = exp (β0)×
K∑
k=1

exp (βk) = exp (β0)×
(

1 +
K∑
k=2

exp (βk)
)
.

Again, we have

`n(ψ, β2, . . . , βK) = `M (ψ;m)
(1)

+ `Y |M (y1, . . . , yk;m,β2, . . . , βK)
(2)

with

(1) : m log(ψ)− ψ

(2) :
K∑
k=1

ykβk −m log
(

K∑
k=1

exp (βk)
)

Here, we have a multinomial (conditional likelihood) with

πk = eβK∑K
l=1 e

βl
= eβK

1 +
∑K
l=2 e

βl

and therefore, equivalent inferences available for Poisson and Binomial/Multinomial formu-
lations (under the chosen canonical links).
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Interpreting the parameters in a logistic regression

For binary regression with a logistic link, we have

π(x) = P (Y = 1|X = x) = exp(xβ)
1 + exp(xβ) = expit(xβ)

that is

xβ = log
(

π(x)
1 + π(x)

)
= logit(π(x))

the log-odds on Y = 1 at X = x. For continuous predictors,

logit(π(x)) = β0 + β1x

∴ log
(
π(x1)/(1− π(x1))
π(x0)/(1− π(x0))

)
= β1(x1 − x0).

Here β1 measures the change in log-odds for unit change in x. For a factor predictor taking
two levels,

X

1 2

Y

0 π01 π02

1 π11 π12

and

logit(πik) =

β0 if k = 1

β0 + β2 if k = 2

and therefore

log
(
π12/(1− π12)
π11/(1− π11)

)
= β2

and β2 is the log-odds ratio. If X takes K levels,

log
(
π1k/(1− π1k)
π11/(1− π11)

)
= βk for k = 2, . . . ,K

and βK is the log-odds for level k relative to baseline. Models with factor predictors only
lead to contingency tables

◦ one factor: 2×K table
◦ two factors: 2×K × L table
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4.3 Case-control and 2 × 2 designs

Consider a binary response Y with 0 indicates “unaffected” and 1 “affected” and a single
binary factor X taking value 0 if “unexposed” and 1 if “exposed”.

Two possible experimental designs

1. Prospective approach:
At the start of study, discover X and follow up to discover Y
2. Retrospective approach:
Observe Y to determine inclusion in study, then measure X.

In the resulting 2× 2 table where we have

X
0 1

Y
0 Y00 Y01
1 Y10 Y11

For (1), we can condition on the column totals m•0, m•1, while for (2), we must condition
on the row column m0•, m1•.

These assumptions only allow us to study certain conditional probabilities.

1. Y•k ∼ B(mk, πk) for k = 0, 1 i.e. Binomial in the columns where πk = P (Y = 1|X = k)
for k = 0, 1 whereas in
2. Yj• ∼ B(mj , $j) for j = 0, 1 i.e. Binomial in the rows and $j = P (X = 1|Y = j) for
j = 0, 1.

Scientifically, we are interested in P (Y = 1|X = 0) versus P (Y = 1|X = 1); that is, what
is the effectiveness rate within the people that were exposed or not (e.g. treatment or
therapy or exposed/not exposed to a noxious substance in the environment), but not
P (X = 1|Y = 0) versus P (X = 1|Y = 1).

Can design (2) informs us about any quantities of interest? Yes, as by Bayes theorem

π1 = P (Y = 1|X = 1) = P (X = 1|Y = 1) P (Y = 1)
P (X = 1) = $1

P (Y = 1)
P (X = 1)

therefore
π1

1− π1
= P (X = 1|Y = 1)

P (X = 1|Y = 0)
P (Y = 1)
P (Y = 0) = $1

$0

P (Y = 1)
P (Y = 0)

and
π0

1− π0
= P (X = 0|Y = 1)

P (X = 0|Y = 0)
P (Y = 1)
P (Y = 0) = 1−$1

1−$0

P (Y = 1)
P (Y = 0)
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Therefore, dividing π1
1−π1

by π0
1−π0

yields

π1

1− π1
π0

1− π0

= $1/(1−$1)
$0/(1−$0)

and the odds ratio in the designs are precisely equal. The odds ratio can be estimated
equivalently from the two designs (1) and (2). These retrospective design is extremely
common in epidemiology. It is only an odds ratio, and we cannot learn about π’s, roughly
approximating the denominator 1−π0

1−π1
≈ 1 for very rare disease and get π1/π0. The condi-

tions under which this hold are very specific.

There are many measures of interest for contingency tables, namely rate of incidence,
odds on incidence, risk difference risk ratio, odds ratio, excess relative risk,
etc. These measures are on the prospective design; all the quantities are estimable. For
definitions, we refer the reader to page 58. With any given link function, these quantities
can be estimated. Usually, in epidemiology, π is often times the identity link; the measure
can be transformed back to the scale of the data. Depending of the measure used, the
standard errors may change.

For the retrospective case, the use of the Delta method is necessary and transformations of
π̂j quantities such as logit(π̂i) are needed to derive the properties of the estimators.

Example 4.6 (Handout -Smoking and lung cancer case-control study)
We have

ψ̂ = π̂11/π̂01

π̂10/π̂00
= y00y11

y01y10

in this particular example, by invariance properties of the maximum likelihood estimates.
The standard error is the square root of the sum of the reciprocal of counts. We derive
a Wald-type test statistic for the log-odds ratio. From the handout, we have log(ψ̂) ·∼
N
(
log(ψ), y−1

00 + y−1
01 + y−1

10 + y−1
11
)
. We have a strong significant effect of smoking of lung

cancer, the statistic is big and positive so the effect is positive (smoking increases incidence
of lung cancer). Since zero is excluded from the 95% confidence interval, we conclude that
the effect is significant. On the log-odds ratio scale, we want the quantity to exclude 1.
We cannot study the prevalence of cancer from this table, since the number of cases and
controls matched is selected a priori.

Example 4.7 (Aspirin and Myocardial Infarction Randomized trial)
This prospective study is a randomized trial with a placebo group. We have fairly low
case of fatal myocardial infarction. What is interesting here is that the Wald statistic is
negative, so relatively “yes” (i.e. taking aspirin) is associated with “no” response, meaning

74



that aspirin is protective against fatal myocardial infraction.

One might argue whether other measures should be used in place of the odds-ratio. Here,
the confidence interval is monotonically transformed using exp(·) for the log-scale. We have
PE/(1-PE) with the odds ratio. Don’t fall in the epidemiological tendency of confounding
the risk ratio with the log-odds ratio; they are not the same (only approximate) and you
should clearly state the necessary assumptions.

Extension to 2× 2×K

Suppose we have Y,X,Z with X,Y are binary response and factor with Z – factor predictor
taking K levels (for e.g. multicenter case-control study). We need to model

P (Y = 1|X = 1, Z = k) = π11k

P (Y = 1|X = 0, Z = k) = π10k

for each k = 1, . . . ,K. We might be interested in comparing

ψk = π11k/(1− π11k)
π10k/(1− π10k)

– odds ratio in the kth 2 × 2 table; think of it as a K parallel contingency tables. We
can use the binomial GLM approaches in the 2 factor problem. We can fit main effects
and interaction between X and Z to explain the variation in Y. e.g. fit Y~X+Z or Y~X*Z.
See Exercise 3. To summarize the relation between Y and X of interest, one needs to get
average over the levels of Z in some sense, if no simple relationship holds and Z modifies
the interaction between the variables.
Note
Other link functions than logit may be used (e.g. probit, complementary log-log, etc.)

4.4 Overdispersion for Binomial data

Suppose Yi ∼ B(mi, πi) for i = 1, . . . , n. Now we can write Yi
d=
∑mi
j=1 Yij where Yij ∼ B(πi)

are independent. If we allow πi to be a random quantity,

E (πi) = λi (0 < λi < 1)

Var (πi) = κλi(1− λi) (κ > 0)

then

E (Yi) = miλi

Var (Yi) = miλi(1− λi)[1 + (mi − 1)κ]
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by repeated application of the iterated variance formula and remark that [1+(mi−1)κ] ≥ 1.
Indeed, since Eπ

(
π2
)

= Varπ (π) + (Eπ (π))2 = λ(κ(1− λ) + λ)

VarY (Y ) = Eπ
(

VarY |π (Y )
)

+ Varπ
(

EY |π (Y )
)

= mEπ (π(1− π)) +m2Varπ (π)

= mλ(1− [κ(1− λ) + λ]) +m2κλ(1− λ)

= mλ(1− λ)[1 + (m− κ)]

as claimed.

The variance of the new Yi is greater than that implied by the binomial model, i.e. the
model with

E (Yi) = mi

Var (Yi) = φmiλi(1− λi)

with φ > 1 is a suitable model for overdispersion. This model is not based on a particular
parametric model: however, we may still model.

log
(

λi
1− λi

)
= xiβ

The attention went from modelling π to modelling its expected value λi and use the esti-
mating function/equation

n∑
i=1

(yi −miλi(β))x>i = 0

to estimate β. Finally, we may use

φ̂ = 1
n− p

n∑
i=1

(yi −miλi(β̂))2

miλi(β̂)(1− λi(β̂))

to estimate φ. This formulation represents ‘clustering’ amongst the Yij , j = 1, . . . ,mi around
πi.

This is what is used in R under the quasibinomial family. For purely parametric approach,
take πi ∼ B(απ, βπ). This leads to a closed form for the distribution of Yi, which is the so-
called Beta-Binomial model (exercise).

Zero-inflation model with a point mass can be used to model underdispersion. It is very
hard to introduce model for underdispersion, some proposals include power constructions
(taking power of a discrete distribution and renormalizing – one can increase as well in that
way by taking low powers). Other methods include the use of a Markov chain that has
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any stationary distribution that you want by specifying the probability transition matrix.
Inference is incredibly difficult to do for those models, they are artificial in a way.

4.5 Multinomial responses

Here, each response Yi can take on of the K values, Y i ≡ (Yi1, . . . , YiK) is polytomous.

The multinomial distribution is used for such data; it has PMF (proportional to)

K∏
k=1

πyikik

for datum i, where πik is defined for an individual by πik = P
(
Y

(R)
i = k|Xi = xi

)
in general.

Therefore, the log likelihood is

n∑
i=1

K∑
k=1

yik log(πik)

where, in a GLM, we specify

g(πik) = xiβ

(where Y (R)
i = k ⇔ Yik = 1, Yij = 0 ∀ j 6= k)

Multinomial data

Let Yi ∼M(mi, π1, . . . , πK) and Yi
d=
∑mi
j=1 Yij where Yij ∼M(1, π1, . . . , πK) independent

for j = 1, . . .mi. See the handout for grouped representation; we could also have rows
with one entry for each individual, for the individual-level representation. To fit the
model, we use the multinom function from the nnet library. We can also use a log-linear
model and interpret the results as arising from Poisson model.

Example 4.8 (Birth malformation data)
See the data on page 60; the log-linear model has 3 or 6 parameters, with different (and
category-specific) responses. We can have constant intercept for the model for the different
outcomes, or use a model where the counts are varying with dose level. We lose a parameter
when moving from the Poisson to the Multinomial representation.

The fit using the multinom function exploit the link between Poisson log-linear model and
Multinomial logistic models, i.e we can fit the model where πk(xi) = P (Yij = k|Xi = xi)
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for j = 1, . . . ,mi and k = 1, . . . ,K where

log
(
πk(xi)
π1(xi)

)
= β0k + xiβ1k

That is,

πk(xi) = exp (β0k + xiβ1k)
1 +

∑K
l=2 exp (β0l + xiβ1l)

The choice of category 1 as a baseline is arbitrary, but it is the default in R.

Moving from the three parameters Poisson model to the two parameter Multinomial model,
we lose one parameter, namely the baseline. It reports the coefficients, standard errors
and residual deviance and AIC. In the example, we add the non-baseline slope. Although
there are differences in the three level of outcome; the fact there are different π for different
outcome categories already indicates the change. The more important is that the proportions
in each row change as the dose level change. It is that dependence of the covariates that we
are interested in (i.e. the slopes).

Recall that for identifiability, β01 = β11 = 0.

This imposes the specific dependence structure and how the changes in covariates impacts
the proportions. When dropping the logistic link, however, we will see that the formulation
used above does not hold anymore.

Other models for multinomial response

◦ Cumulative logit: for ordinal response (i.e. ordered categorical), we instead con-
struct a model for the cumulative logits.
That is, P

(
Y

(R)
i ≤ k |Xi = xi

)
= π1(xi) + · · ·+ πk(xi) is the probability of observing a

response in categories {1, . . . , k} and we model

log

 P
(
Y

(R)
i ≤ k |Xi = xi

)
1− P

(
Y

(R)
i ≤ k |Xi = xi

)
 = log

(
π1(xi) + · · ·+ πk(xi)

πk+1(xi) + · · ·+ πK(xi)

)

as a function of the covariates. To construct the likelihood for this model, we need explicit
forms for πk(xi) by inverting this more complicated link function. Note that

πk(xi) = P
(
Y

(R)
i = k |Xi = xi

)
= P

(
Y

(R)
i ≤ k |Xi = xi

)
− P

(
Y

(R)
i ≤ k − 1 |Xi = xi

)
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◦ Proportional odds model: in this case, we look at

logit
(

P
(
Y

(R)
i ≤ k |Xi = xi

))
= β0k + xiβ1

where β1 is common for all k and β01 < β02 < · · · < β0(K−1).67 For scalar xi,

logit
(

P
(
Y

(R)
i ≤ k | X1

))
− logit

(
P
(
Y

(R)
i ≤ k | X2

))
= (x1 − x2)β1.

Therefore the (cumulative) log-odds quantities change linearly with changes in x for each
k. Inference follows from the likelihood involving πk(xi)

Example 4.9 (Mental impairment)
We have 40 observations with ordered categories for outcome. We have two covariates
to model, socio-economic status and number of life events (LE). There is an underlying
continuous variable and we discretize the continuum into four categories.

The fitting is done using the polr function from the MASS library, used in exactly the same
way as the glm function. The response is recorded on an individual basis, 12 in the first
category, 12 in the second, and 7 and 9 for the last categories.68 1|2 corresponds in our
notation to β01 (i.e. the probability left of k). Note that the non-intercept terms are
reported on the negative scale, i.e. −β̂1. See the note on page 68. We can carry analysis of
deviance using the drop1 function and drop ses on the basis of the 5% level. We can use
the VGAM library via the vglm. The default uses the ≥ probabilities, and to get the model
corresponding to the class notes, use reverse=F option. The number of degrees of freedom
is here 3×40−5 instead of 35, since VGAM treats the data as vector, and the degree of freedom
for the multivariate data would be counts of individuals; it differs with the interpretation
we have had up to this point. Otherwise, the output is more standard and the sign for the
parameters is correct in this model.

There are many families available in the VGAM library, for adjacent categories, the usual
multinomial fitting the logit, cumulative odds, etc. The probabilities odds and prob-
abilities reported y the model, whether logit(P (Y = k|X = x) ,P (Y = k + 1) /P (Y = k)
or P (Y = k + 1) /P (Y = k or Y = k + 1) yielding πi(x) can be compared for the different
models.

67In this case, using the last category as the baseline and look at k = 1, . . . , k − 1 since the cumulative
probability is 1. We can also look at P

(
Y

(R)
i ≥ k | Xi = xi

)
would lead naturally to the choice of k = 1

as the baseline.
68Since the data was ordered in the table to begin with.
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Model checking for binomial/multinomial data

For binomial/multinomial data, Pearson’s chi-squared measureX2 may be used for “grouped”
data. (Mi > 1) with Yi ∼ B(mi, πi) where

X2 =
n∑
i=1

(yi −miπ̂i)2

miπ̂i(1− π̂i)

is approximately χ2
n−p distributed when n is large – this formula for X2 extends to the

multinomial case. For individual level data (mi = 1), the asymptotic approximation is
poor. For binomial responses, we instead look at different tailored measures to look at
goodness of fit.

Misclassification statistics

For binomial data, Yi ∈ {0, 1}, we form the table where

Ŷi =

0 if π̂i < τ

1 if π̂i ≥ τ

for some threshold τ : with a+ b+ c+ d = n. The resulting misclassification table gives an

Table 1: Misclassification table (or confusion matrix)
Predicted

Ŷi
0 1

True 0 a b
Yi 1 c d

indication of how well the model predicts the observed data – we may report misclassification
rates or the sensitivity and specificity of the model.

Definition 4.1 (Sensitivity and specificity)
We define the sensitivity to be α(τ) = d

c+d , for the proportion of correctly predicted ones,
and the specificity as β(τ) = a

a+b for the proportion of true zeros. If we think about
plotting the functions as τ changes.

This leads the receiver operating characteristic curve (ROC curve), which plots α(τ) versus
1 − β(τ) for 0 < τ < 1. A “good” model is one that classifies zeros and ones accurately
when the threshold τ is optimally chosen: such as model has an ROC curve that, for some
τ , is near to the (0,1) corner of the unit square. This can be formalized by inspecting the
area under the ROC curve (AUC), which should be near 1 for a “good” model.
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–“optimal” choice of the threshold is the value of τ defining the point on the ROC curve
closest to (0, 1).

However, we may think that badly predicting zero for one is worst thing than mispredicting
a one as a zero. This leads to differential concern for misclassification; we can change the
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calculation to adjust for this fact. A more potent criticism is a purely within sample proce-
dure. You might want to build an increasingly complex model to get no misclassification;
however, as in the linear regression setting when driving the R2 statistic by adding irrelevant
covariates. There is no penalty for the complexity for the model, just as for the Pearson
X2 statistic. It is thus not enough; using a hold-back sample of say 10% and look at the
predictive ability for this residual data. Training set (test set) construction is widely used
for this kind of model. Note that there is also a package in R to plot the ROC curve.

4.6 Conditional Inference

The idea is to substitute in sufficient statistic in the place of “nuisance parameters”, pa-
rameters that are associated with the covariates are not nuisance parameters, however,
parameters such as the intercept tells us nothing about the influence of the parameters on
the model.

Conditional Logistic Regression

Let Yi ∼ B(πi(xi)) where logit(πi(xi)) = β0 + xiβ. In this setup, β is the parameter of
interest, while β0 is a nuisance parameter. By standard arguments (the full details are given
in the printed notes), we can access for n data under the logistic link model write

Ln(β0,β) = exp (T1(y)β0 + T 2(x,y)β)∏n
i=1 (1 + exp (β0 + xiβ))

where

T1(y) =
n∑
i=1

yi T 2(x,y) =
n∑
i=1

yixi

are sufficient statistics for β0,β respectively.

Consider conditioning on T1(y) = t and computing the conditional likelihood

L(T1)
n (β, t) = P (Y1 = y1, . . . , Yn = yn | T1(y) = t)

= exp (T 2(x,y)β)∑
z∈Y1(t1) exp (T 2(x, z)β)

where

Y1(t1) =
{
z = (z1, . . . , zn) :

n∑
i=1

zi = t

}

When n is small, we may view this method as being attractive as we have one less parameter
to estimate and the enumeration of the z is easier to do. The generality of this approach is
not obvious, but we may use this procedure for other nuisance parameters.
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Stratification or matching, or small number of observations are occasions where we would
one to use a conditional likelihood approach and not estimate the nuisance parameters.
This approach is no free lunch, since there is same additional computational burden to
the estimation of the sum in the denominators, possibly large. Marginalization over strata
may be quite a large computation to do. The distribution is intractable from a Bayesian
perspective, since the numerator and denominator both involve the parameters, so we cannot
avoid the calculation. In matched pairs analysis, we could use this to marginalize some of
the observations.

4.7 Matched pair

This generalizes to more than the simple 2×2 table case, but the former is most illustrative
for our purposes.

The design for the data collected at two time points: j = 1, 2. For a collection of individuals,
we record a binary response at j = 1 and j = 2.69 The cell counts in the resulting 2 × 2
table can be modeled using M(n;π00, π01, π10, π11), assuming n individuals are sampled
independently from the population. Inference about π00, . . . , π11 is straightforward.70 – we
use the ML estimates

(π̂00, π̂01, π̂10, π̂11) = 1
n

(n00, n01, n10, n11)

However, the focus of interest is the difference between the ‘marginal’ probabilities, i.e.
π1? = π10 +π11 = P (Y = 1 at j = 1). Similarly, π?1 = π01 +π11 = P (Y = 1 at j = 2) . The
estimation of π?1 and π1? by invariance of the MLE estimates. The problem now is that
those estimates π̂1? and π̂?1 are dependent. In fact,

Cov (π̂1?, π̂?1) = π00π11 − π01π10

n

In this study, we wish to test, π̂1? = π̂?1 (which implies π0? = π?0) – this is an assumption
of marginal homogeneity. Let δ = π1? − π?1, then δ = 0 ⇒ π1? = π?1 ⇒ π10 = π01,
corresponding to a symmetry structure. So if δ̂ = π̂1? − π?1 we have by the Delta method

√
n(δ̂ − δ) d−→ N (0, V (π))

where V (π̂) = (π̂10 + π̂01) − (π̂10 − π̂01)2.71 For more details, see the handout. The test
69The multinomial is still a valid model, conditioning on a sample size, with observations arising from a

target population with observations picked at random observed twice.
70Giving 2n observations with independent pairs
71This is not a score test, and we should be using under the null with the second term being equal to

zero. Both tests, along with the Wald test, are equivalent on the null and use asymptotic and large sample
approximation results. The tests are not equivalent under the alternative. Not squaring the test allows to
get the direction of the result, as opposed to the squared Wald statistic, where W 2

n ∼ χ2
1.
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statistic is one of a symmetry test.

Example 4.10 (Prime minister approval)
See the handout. The analysis and testing is easy to get, however the big difference is in
the dependence structure for the multinomial data. For the conditional analysis, we can use
the clogit function in R. The function looks at the binary respond for approve, disapprove.
The strata function (from the survival library) identifies the pairs. You supply 3200
observations with an id. variable. The Z statistic is rather similar to the one above, but
it uses a different formulation. We have not written the parametric model for this, so the
coefficient is not interpretable yet, but we will derive shortly that the parameter is actually
an odds ratio. If there is pairing in a experiment, one has to acknowledge it.

Conditional logistic regression for matched pairs or stratified data

Let (Yi1, Yi2) be the responses for study j = 1, 2, . . . for individual i; πij = P (Yij = 1) is the
probability of “Y = 1” response for individual i on study j. Consider the model

logit(πij) =

β0i if j = 1

β0i + ζ if j = 2

This is indicating that the data is not IID; individuals are acknowledged to be different, with
somewhat similar effect to a random effect model. That is, β0i measures an individual-level
(stratum-specific) component of the response probabilities. Thus ζ is the common log-odds
ratio comparing Y = 1 responses for j = 2 with j = 1.

See the indications. This model has n + 1 parameters (one per data pair), since we have
2 observations per individual, we could have identifiability. However, theory with models
in which the number of parameters grows linearly with the number of data points is not
standard. The likelihood Ln(β01, . . . , β0n, ζ) for the data is

n∏
i=1

(
expit(β0i)yi1(1− expit(β0i))1−yi1expit(β0i + ζ)yi2(1− expit(β0i + ζ))1−yi2

)
We may thus consider the β0i as nuisance parameters and replace them with sufficient
statistic and condition on those. We see from the interpretation that individuals that do
not change their mind do not affect the likelihood value, while those who change from one
strata to the other contribute to the evaluation of ζ. We have

P (Yi1 = yi1, Yi2 = yi2 | Si = s) =

1 if (s, yi1, yi2) = (0, 0, 0) or (2, 1, 1)
eyi2ζ

1+eζ if (s, yi1, yi2) = (1, 0, 1) or (1, 1, 0)
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The parameter ζ̂ has a different form, given by ζ̂ = log
(
n01
n10

)
and ŝe =

√
n−1

01 + n−1
10 .

The conditional likelihood approach is very appealing when the number of parameter is very
large or grows with the data.
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Section 5
Special Topics

5.1 Gamma GLM

The Gamma model for continuous response Y can form the basis of a GLM. The canonical
parameter is θ = − 1

µ , the cumulant function is b(θ) = − log(−θ) and the dispersion param-
eter is φ = 1/ν assuming G(µ, ν) where E (Y ) = µ,Var (Y ) = µ/ν (here, α = ν, β = ν/µ in
the usual variance formulation).

The link function is the “inverse”, yet in R we have g(t) = 1
t so the minus sign is removed

and as such the interpretation is changed. The log link g(t) = log(t) is also a plausible
choice, which would capture more perhaps of the extreme variability.

The linear predictors are

η = β0 + β1x

η = β0 + β1/x

η = β0 + β1/x+ β2x

In the clotting example, we assume that the two subjects are IID. It is possibly the case
that with log(t) with reconstruction of the mean was sensible, since the values could be
negative. The analysis is fairly straightforward; the one slightly different of the output is
the dispersion parameter which is not fixed to 1. This does not make a difference for the
analysis of deviance.

We could add a binary indicator for difference in the patient. The fit using the Pearson
residuals looks okay; it is easier to evaluate with continuous family of response like standard
residual plots as compared to the discrete data case. The way the clothing time affects
the patient is similar, by looking at the parameter estimate and significance. Note that
the dispersion parameter changes when fitting a different model, for example the additive
model. In this case, all parameters seem very significant, and the additive model is more
appropriate at explaining the data.
Note
To compute the Analysis of Deviance test statistics, to compare nested models, we use

∆Deviance
φ̂

·∼ χ2
∆df

where φ̂ is computed for the more complex model.

Using the drop1 function with test="Chisq" allows to look at single term deletion. In the
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end, both interactions will be dropped. There is significant difference in patient type, but
the dependence on log(u) and 1/ log(u) is the same for both patients.

The gamma model can be extended like the binomial by allowing for different dispersion for
different individuals.
Note
If Yi ∼ G and E (Yi) = µi, Var (Yi) = µ2

i

νi
where νi = wiν with wi fixed (known quantity) but

possibly changing with i. Then the individual-level dispersions can be incorporated using
“case weights” yielding for example the Deviance.

D(y; µ̂) = −2
n∑
i=1

wi

[
log
(
yi
µ̂i

)
−
(
yi − µ̂i
µ̂i

)]

–introduced using the weights argument in glm. Finally, the dispersion estimate given in
R is the Pearson based estimate of φ = 1

ν is

φ̂ = 1
n− p

n∑
i=1

(
yi − µ̂i
µ̂i

)2

if wi ≡ 1 ∀ i.

The Gamma model is used in survival analysis or reliability analysis. The tractability is
however not as easy as with a Weibull or an exponential distribution, can’t use glm function
unless there is no censoring, i.e. we can’t fit censored data using this technology.

5.2 Quasi-likelihood

The GLM estimating equations (score equations) take the general form

n∑
i=1

wi
yi − µi

V (µi)ġ(µi)
xij = 0, j = 1, . . . , p

where µi is a function of the unknown parameters β and in this case g is the link function:

ηi = xiβ

g(t) defines the relationship between ηi and µi i.e. g(µi) = ηi.

Suppose now we relax the need for a ‘distribution-based’ construction of the estimating
equation, i.e. break the link encapsulated by V (µ). Instead, let E (Yi) = µi and Var (Yi) =
σ2V (µi) for an arbitrary V (·) returning a positive quantity.

Let Ui = Yi−µi
σ2V (µi) . Then E (Ui) = 0 and Var (Ui) = (σ2V (µi))−1 and also −E

(
∂Ui
∂µi

)
=
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1
σ2V (µi) thus Ui has the same properties as a score random variable.

S(Yi,θ) = ∂

∂θ
log fT (Yi;θ).

Therefore, we could use

n∑
i=1

Ui(β) = 0 (p× 1)

to estimate β estimators derived as the solution to this “quasi-score” equation are consis-
tent and asymptotically normally distributed.

The corresponding ‘quasi-likelihood’ is obtained from the form of Ui, i.e. the quasi-likelihood
contributions the form

Q(µi, yi) =
∫ µi

yi

(
yi − t
σ2V (t)

)
dt

and the quasi-deviance Di(µi; yi) = −2σ2Q(µi, yi).

Asymptotic variance

If g(µ) = Xβ (n×1), V (µ) = diag (V (µ1), . . . , V (µn)) an (n×n) covariance matrix, B(µ)
is the n× p matrix with (i, j)th term [B]ij = ∂µi

∂βj
for i = 1, . . . , n and k = 1, . . . , p and

U(β) = 1
σ2B

> (V (µ))−1 (Y − µ)

an (n × 1) system. Then E (U(β)) = 0n and Var (U(β)) = 1
σ2B

>V −1B and β̂ satisfies
U(β̂) = 0n (an (n× 1) system).

Thus

E
(
β̂
)
' β

Var
(
β̂
)
' σ2

(
B>V −1B

)−1
.

When n is large, by analogy with weighted least squares, β̂ is computed using recursive
methods e.g. Fisher scoring

β̂
(t+1)

= β̂
(t)

+
(
B̂

(t)>
V̂

(t)−1

B̂
(t)
)−1

B̂
(t)
V̂

(t)−1

(y − µ(t))
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yields β̂, B̂, V̂ and σ̂2 where

σ̂2 = 1
n− p

n∑
i=1

(
Yi − µ̂i√
V (µ̂i)

)2
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