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Chapter 1
Univariate random variables

An univariate random variable is a mapping X : Ω → R, or more specifically (Ω,A,P) →
(R,B) which is measurable. The distribution (or probabilistic behavior) of X is a proba-
bility measure on (R,B) which is induced by X:

PX(A) = P
(
{ω ∈ Ω : X(ω) ∈ A}

)

Theorem 1.1
The distribution PX of X is uniquely determined by the (cumulative) distribution function
of X, defined for all x ∈ R by

FX(x) = P(X ≤ x) = P({ω ∈ Ω : X(ω) ≤ x}) = PX((−∞, x]). (1.1)

Example 1.1
The unit exponential distribution has a CDF given by

F (x) =

0, x < 0

1− e−x, x ≥ 0.

x

f(x)
F (x)

Fact 1.2
· F describes PX uniquely and

P(X ∈ (a, b]) = F (b)− F (a) = P(X ∈ (−∞, b])− P(X ∈ (−∞, a]);

· P(X < x) = F (x−) = limu↑x F (u);

· Every CDF is non-decreasing, right-continuous and such that limx→−∞ F (x) = 0 and
limx→∞ F (x) = 1.

· Whenever F has the above properties, then F is a CDF of a random variable X.
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Be warned that the random variable corresponding to F (x) may not be unique, even though
X has a unique CDF, the opposite implication does not hold.

Example 1.2
Let X be Bernoulli, denote B(0.5). Notice that P(X = 0) = P(X = 1) = 0.5 and that

F (x) = P(X ≤ x) =


0 if x < 0

0.5 if x ∈ [0, 1]

1 if x ≥ 1.

.

Looking at Y = 1 − X, we see that Y is clearly not the same as X, but has the same
distribution as P(Y = 0) = P(Y = 1) = 0.5.

Remark
IF X and Y are random variables, then

· X = Y means that ∀ ω ∈ Ω : X(ω) = Y (ω).

· X = Y almost surely, sometimes denoted X a.s.= Y means that

P(X = Y ) = P(ω : X(ω) = Y (ω)) = 1.

· X d= Y , equality in distribution, means that the distributions of X and Y are equal,
that is their CDFs satisfy ∀ x ∈ R, FX(x) = FY (x).

Equality implies equality almost surely, which then in turns imply equality in distribution.
Each condition is weaker than the previous one.

Section 1.1. Discrete random variables

X is discrete if its CDF is a pure jump function (piecewise constant). It can be shown
that F has at most countably many jumps and S = {xi, i ∈ I}. A discrete distribution is
uniquely given by its probability mass function (PMF), which is also called the counting
density, and f(x) = P(X = x) = F (x)− F (x−), which corresponds to the jump height.

1 2 3 4
0

0.5

1
F (x)

x
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Usually, we only consider the points with a mass, f(xi) = P(X = xi) for xi ∈ S. S is known
as the support of X.

Proposition 1.3 (Examples of univariate discrete distributions)
1. Bernoulli(p), S = {0, 1}, denoted X ∼ B(p). This correspond to a binary variable,

which could be a coin toss. f(0) = 1− p and f(1) = p, so that p is the probability of
success.

2. Discrete uniform(n), S = {1, . . . , n}, denoted X ∼ U(n). The probability at every
point of the support is equal and as such f(k) = 1

n , k ∈ S. An example of application
is a die toss.

3. Binomial(n, p), S = {0, . . . , n}, denoted X ∼ B(n, p). The PMF of the Binomial
distribution is given by f(k) =

(
n
k

)
pk(1 − p)n−k, k ∈ S. If one consider a sequence of

n independent Bernoulli, then the sum follows a Binomial distribution.

4. Hypergeometric distribution, denoted H(n,K,N −K). This distribution counts
N items in total and K will denote for example defective items. Draw a sample of
small n without distribution (contrary to binomial). The probability of drawing x
defectives is given by

f(x) =
(
K
x

)(
N−K
n−x

)(
N
n

) , x ≤ n, x ≤ K,n− x ≤ N −K.

A classical example of this is the Fisher exact test, which is used to determine whether
there is any link between category, for example in assignment of two drugs. One might
want to look at whether you have complete remission in the sick mice population. The

Y N
Drug A 7 3 10
Drug B 2 7 9

9 10 19

probability of such table existing is simply governed by the Hypergeometric distribu-
tion. Hence P(X = 7) =

(10
7
)(9

2
)
/
(19

9
)
.

A classical property of this distribution is the following. Suppose that both N,K →
∞ in a way such that K/N → p ∈ [0, 1]. If n is fixed, then the support of the
Hypergeometric will become simply {0, . . . , n} with f(x) =

(
n
k

)
px(1− p)n−x.

5. Poisson distribution, denoted P(λ), where λ > 0. The probability mass function is
given by

P(X = k) = e−λ
λk

k!
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with k = 0, 1, . . .. The number k could represent for example the number of costumers
per hour at a store, or the number of mutations in a given DNA stretch.

Similarly to the Hypergeometric, the Poisson is related to the Binomial in the following
way. The Poisson describes the number of rare events. Let pn ∈ (0, 1) be such that
npn → λ as n→∞.. Then Xn ∼ B(n, pn). Then

P(Xn = k) =
(
n

k

)
pkn(1− pn)n−k n→∞−−−−→ e−λ

λk

k! .

6. Geometric distribution, denoted G(p) with p ∈ (0, 1). Its support is given by
{0, 1, . . .} with PMF

f(x) = px(1− p)

where p is the probability of failure. In a sequence X1, X2, . . . of Bernoulli B(p) trials,
X describes the waiting time until the first zero (or success).

7. Negative binomial is a more interesting distribution, that can be viewed as a gener-
alization of the Geometric distribution. It is denoted NB(r, p) where r ∈ N, p ∈ (0, 1).
A special case of this is for r = 1, in which case you recover the G(p) distribution. The
PMF has the form

f(k) =
(
r + k − 1
r − 1

)
pk(1− p)r,

k counting the number of failures, r, p are fixed. Another way of writing this, which
will count the waiting time until the rth success, is by taking s = k + r; then the
probability of having the rth success in the sth trial

P(rth success in sth trial) =
(
s− 1
r − 1

)
ps−r(1− p)r.

The latter form is more widely used.

We now move on to continuous random variables.

Section 1.2. Continuous random variables

First a remark. One must be careful as X can be called continuous if F is a continuous
function (in which case it has no jump). Another used definition is that X is absolutely
continuous if for every x ∈ R, the distribution function can be written as

F (x) =
∫ x

−∞
f(t)dt (1.2)
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for some non-negative function f , which will be called the density of F (or X). These
definitions are obviously not the same: continuity doesn’t imply absolute continuity, but
the converse implication is true. The latter is assured to have a derivative. For example,
Cassela and Berger describe a continuous random variable as one assumed to have a density.

In practice, if there are no ties in the data, we can safely assume that X has a density (as
long as the context does not tell us otherwise).

Some notes on densities.
Note

1. A density f needs not be unique, but f(x) = F ′(x) for almost all x (meaning that, for
a given f , {x : f(x) 6= F ′(x)} has Lebesgue measure 0).

2. If f : R→ R is such that

· f is nonnegative

·
∫∞
−∞ f(t)dt = 1.

then f is a density of a continuous random variable X and vice-versa. If h ≥ 0 and∫∞
−∞ h(t)dt = k 6= 1, then setting f = h/k will always yield a density.

3. The density in the absolutely continuous case and the probability mass function in
the case discrete case play similar roles, hence the notation .

Example 1.3
The exponential distribution E(1) has a density given by f(x) = F ′(x) = e−x if x > 0 and
0 otherwise.

Definition 1.4 (Support)
The support of a random variable X is the set

S = {x ∈ R : P (x− ε < X < x+ ε) > 0 ∀ ε > 0}

Remark
The support is always a closed set. In most cases we will discuss, S will be of the form
S = {x ∈ R : f(x) > 0}. This is possible since we are dealing with density, there is no mass
point and ∀ x, P(X = x) =

∫ x
x
f(t)dt = 0.

Proposition 1.5 (Examples of univariate continuous distributions)
1. Uniform distribution, denoted U(a, b) with density given by

f(x) = 1
b− a

, x ∈ [a, b].
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If X ∼ U(0, 1) and we set

Y =

1 if X ≤ p ∈ (0, 1)

0 if X > p
,

then P(Y = 1) = P(X ≤ p) = p and Y ∼ B(p).

2. Exponential distribution, denoted E(α) for α > 0. The density is given by

f(x) = αe−αx, x ∈ (0,∞).

This distribution is well-known for its memoryless property. Suppose we are interested
in

P(X ∈ (x, x+ ε]|X > x) = 1− e−α(x+ε) − 1 + e−αx

e−αx

= 1− e−αε

= P(X ≤ ε).

3. Gamma distribution, G(α), α > 0. Recall the Gamma function given by

Γ(α) =
∫ ∞

0
tα−1e−tdt. (1.3)

We have that Γ(α+1) = αΓ(α) and Γ(n) = (n−1)! for n ∈ N. The Gamma distribution
has density

f(x) = xα−1e−x

Γ(α) , x > 0.

A special case of the Gamma is when α = 1, in which case we recover the Exponential
distribution with parameter 1. The Gamma distribution can be extended to a more
general form. If we have G(α, β), then α is the shape parameter, β > 0 is the scale
parameter and the distribution is in this case is

f(x) = xα−1e−
x
β

βαΓ(α) , x > 0.

When α = 1, we get E(1/β) and when α = 1/2, β = 2 we get χ2(ν) distribution.

4. Normal distribution, denoted N (µ, σ2), µ ∈ R, σ > 0. The density is

f(x) = 1√
2πσ

exp
(
− (x− µ)2

2σ2

)
, x ∈ R.
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For any µ, σ2 then the probability of being one, two or three standard deviations away
from the mean is

P(X ∈ [µ− σ, µ+ σ]) ≈ 68%

P(X ∈ [µ− 2σ, µ+ 2σ]) ≈ 95%

P(X ∈ [µ− 3σ, µ+ 3σ]) ≈ 98%.

5. Student-t distribution, denoted t(ν), ν > 0, with density

f(x) =
Γ
(
ν+1

2
)

√
νπ Γ

(
ν
2
) (1 + x2

ν

)− (ν+1)
2

, t ∈ R.

An interesting special case of the Student-t distribution is the Cauchy distribution,
which arises when ν = 1, yielding

f(x) = 1
√
πΓ
( 1

2
) 1

1 + x2 = 1
π(1 + x2) .

Remark (Other univariate distributions)
Beware that not all univariate distributions have a PMF or a density (PDF). If F is a pure
jump function, then X is discrete. If X has a PDF, then F is continuous and in particular
P(X = x) = F (x)− F (x−) = 0.

Sometimes the random variable falls in neither of these categories.

Example 1.4
Let X be the lifetime of a lightbulb and X ∼ E(1). Suppose we observe the lightbulb for
only 1 year, so that we actually see X? = min(X, 1). The CDF of X? will be

F ?(x) = P(X? ≤ x) =


0 if x < 0

P(X ≤ x) = 1− e−x if x ∈ [0, 1)

1 if x ≥ 1.

Here, F ? is neither continuous nor is a pure jump function. Observe that P(X? = 1) = e−1.
In this case, we say that the point 1 is an atom of the distribution F ?. In other words, X?

is neither discrete nor does it have a density. In this case, we have to work directly with the
CDF. A naive idea would be to define a density like

(F ?)(x) =

0 if x ≤ 0, x ≥ 1

e−x, if x ∈ (0, 1).
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x

F (x)

Figure 1: CDF of X?

But this doesn’t work as
∫∞
−∞(F ?)(x)dx < 1.

Any CDF F can be rewritten in the form

F (x) = p1F1(x) + p2F2(x) + p3F3(x)

where pi ∈ [0, 1] such that p1 + p2 + p3 = 1 and F1, F2, F3 are themselves CDFs such that
F1 is discrete (pure jump function with countably many discontinuities), F2 is absolutely
continuous (having a density), F3 is a singular CDF (is continuous, but has no density).
One such example of CDF corresponding to F3 is the Devil’s staircase, which is continuous
but has derivative equal to zero almost everywhere. F3 is less rare in the case of random
vectors. This decomposition is the so-called Lebesgue decomposition.

Example 1.5
Coming back to our example with a rounded exponential, we could set

· F1(x) = 1(x ≥ 1) and p1 = e−1

· F2(x) has density

f2(x) =

0, if x < 0

e−x/(1− e−1), if x ∈ (0, 1)

with p2 = 1− e−1.

Thus, we can write F (x) = p1F1(x) + p2
∫ x
−∞ f2(t)dt.

Section 1.3. Random vectors

A random vector is a mapping X : (Ω,A,P) → (Rd,Bd), where X = (X1, . . . , Xd) where
each Xi are random variables.
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Definition 1.6 (Cumulative distribution function)
A cumulative distribution function FX of X is a mapping F : Rd → [0, 1] given by

F (x1, . . . , xd) = P(X1 ≤ x1, X2 ≤ x2, . . . , Xd ≤ xd) = P

 d⋂
j=1
{Xj ≤ xj}

 .

Working with F in d = 2, then P(X1 ∈ (a1, b1], X2 ∈ (a2, b2]), which using the inclusion-
exclusion principle is equal to F (b1, b2)− F (a1, b2)− F (b1, a2) + F (a1, a2). These half-open
intersections are intersection-stable and generate the Borel σ-field. This motivates the fol-
lowing

Figure 2: Viewing 2−monotonicity with sets
b2

a2

a1 b1

F (a1, a2) F (b1, a2)

F (a1, b2) F (b1, b2)

The above express P(A∪B∪C∪D)−P(A∪C)−P(A∪B)+P(A) since they are disjoint sets. In terms
of areas, this is (A+B +C +D)−(A+C)−(A+B)+A = D hence P(x1 < X < x∗

1, x2 < X2 < x∗
2).

Without (4), we could build F and get a defective d.

Theorem 1.7
A CDF determines the distribution of a random vector X uniquely.

As in the univariate case, we will need to impose some conditions for a function F to be a
CDF
Theorem 1.8
A function F is a CDF of some random vector X if and only if

1. F (x1, . . . , xd)→ 0 if at least one xi → −∞.

2. F (x1, . . . , xd)→ 1 if xi →∞ for all i ∈ {1, . . . , d}.
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3. Right-continuity: F is “right-continuous” in the sense that

lim
ti→xi
ti≥xi

F (t1, . . . , td) = F (x1, . . . , xd) ∀ i ∈ {1, . . . , d}.

4. All the open boxes for the open intervals is non-decreasing; in the case d = 2, ∀ a1 ≤
b1, a2 ≤ b2, we need

F (b1, b2)− F (b1, a2)− F (a1, b2) + F (a1, a2) ≥ 0.

For generally, for arbitrary d ∀ a1 ≤ b1, . . . , ad ≤ bd∑
vertices of (a1,b1×(ad,bd]

F (c1, . . . , cd)(−1)v(c) ≥ 0

where ci ∈ {a1, bi} and where v(c) = |{#i : ci = ai}|. 1

Remark
The above has the same interpretation as∑

ci∈{ai,bi}
i=1,...,d

(−1)v(c)F (c1, . . . , cd) = P(X1 ∈ (a1, b1], . . . , Xd ∈ (ad, bd])

Property (4) is called delta-monotonicity or quasi-monotonicity.

The last condition may fail much more often than in the univariate case.

Case 1: X is discrete
We have S = {(x1, . . . , xd) : P(X1 = x1, . . . , Xd = xd) > 0} is at most countable and∑

(x1,...xd)∈S

P(X1 = x1, . . . , Xd = xd) = 1.

The distribution of X is completely characterized by its “density” (probability mass func-
tion), which is a function f : Rd : [0,∞) and

f(x1, . . . , xd) = P(X1 = x1, . . . , Xd = xd).

Example 1.6 (Multinomial distribution)
We have n objects, d + 1 categories, each object falls into category j with probability

1In dimension one, we needed that F be non-decreasing, we needed P(X ∈ (a, b]) ≥ 0 as to compute this
as F (b)− F (a).
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pj ∈ [0, 1] with p1 + . . . pd+1 = 1. This comes up often in biostatistics. We can count the
number of objects falling in categories 1, . . . , d, so that X = (X1, . . . , Xd) has PMF given
by

P(X1 = n1, . . . , Xd = nd) = n!
n1! · · ·nd!nd−1!p

n1
1 pndd p

nd+1
d+1

where n1, . . . , nd ≤ n and n1, . . . , nd ≥ 0.

Multinomial distribution (d = 2) has three parameters M(n, p1, p2) and the probability
mass function is

f(x, y) = n!
x!y!(n− x− y)!p

x
1p
y
2(1− p1 − p2)n−x−y

where x, y ∈ {0, . . . , n}, x+ y ≤ n.

We next show a construction due to Albert Marshall and Ingram Olkin, who wrote a book
about stochastic ordering and wrote in 1983 a paper on “A Family of Bivariate Distributions
Generated by the Bivariate Bernoulli Distribution.”

Proposition 1.9 (Construction of bivariate distributions)
Start with a Bivariate Bernoulli with a random pair (X,Y ), with probabilities

P(X = 0, Y = 0) = p00 P(X = 1, Y = 0) = p10

P(X = 0, Y = 1) = p01 P(X = 1, Y = 1) = p11

where p00, p01, p10, p11 ∈ (0, 1) and p00 + p10 + p01 + p11 = 1. Clearly, X ∼ B(p10 + p11)
and Y ∼ B(p01 + p11). Look at the bivariate binomial we could take a sequence of bivariate
Bernoulli, that is (X1, Y1), . . . , (Xn, Yn) are independent B2(p00, p01, p10, p11). One can set
X =

∑n
i=1Xi, Y =

∑n
i=1 Yi. For example, if we have(

0
1

) (
1
1

) (
0
0

) (
0
0

) (
0
1

) (
1
0

)

and taking the numerator for X and Y for the denominator, we get X = 2, Y = 3. (X,Y )
has a bivariate Binomial distribution. We have

f(k, l) = P(X = k, Y = l)

=
min(k,l)∑

a=max(0,k+l−n)

n!
a!(k − a)!(l − a)!(n− k − l + a)!p

a
11p

k−a
10 pl−a01 pn−k−l+a00

with a = #
(

1
1

)
and k − a such

(
1
0

)
, l − a of

(
0
1

)
and the remaining number as

(
0
0

)
and

where k, l ∈ {0, . . . , n}. For higher dimensions, we need to specify 2d probabilities and it
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rapidly becomes intractable. One can also verify that the distribution of X or Y alone are
binomial.

For the bivariate Poisson, we can view the Poisson as the limit of a Binomial, having
np01 → λ01, np11 → λ11, np10 → λ10 and λ01, λ10, λ11 ∈ (0,∞). and we can show that as
n→∞, one obtains

f(k, l) =
min(k,l)∑
a=0

λa11λ
k−a
10 λl−a01

a!(k − a)!(l − a)!e
−λ11−λ01−λ10 k, l ∈ N

which is a Bivariate Poisson distribution, it is possible to show that Z1 ∼ P(λ10), Z2 ∼
P(λ01), Z3 ∼ P(λ10) and X = Z1 + Z3, Y = Z2 + Z3 and we take the pair (X,Y ). The
thunderstorm in Quebec in Montreal, some could be jointly happening in either or both.

As an exercise, try to construct the Bivariate Geometric, where X denote the waiting time
for “1” in the first component and Y for “1” in the second component.

Just getting a multivariate distribution with constraints by just writing down the PMF, this
may not be easy to do. We will see other techniques later in the course.

We will now conclude our survey of random vectors with cases where we have continuous
random vectors.

Case 2: X is continuous (that is F , the CDF ofX is a continuous function. X is continuous
if and only if P(X1 = x1, . . . , Xd = xd) = 0 for all x1, . . . , xd ∈ R.We say thatX has density
if there exists f : Rd → [0,∞) such that f is measurable and such that ∀ x1, . . . , xd ∈ R,

F (x1, . . . , xd) =
∫ x1

−∞
· · ·
∫ xd

−∞
f(t1, . . . , td)dtd . . . dt1

as a d-fold integral.

Figure 3: CDF F (a1, a2) for a distribution

x1

x2

a1

a2
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If F has a density, then

f(x1, . . . , xd) = ∂F

∂x1 . . . ∂xd
almost surely

If F has density f , then F is continuous but not conversely. 2

Example 1.7
Let

F (x1, x2) = 1− e−2x1 − e−2x2 + e−2x1−2x2 = (1− e−2x1)(1− e−2x2)

when x1, x2 > 0. What about the density? If we look at

∂F

∂x1∂x2
= 4e−2x1−2x2 = f(x1, x2)

for x1, x2 ≥ 0 and indeed,

F (x1, x2) =
∫ x1

0

∫ x2

0
4e−2t1e−2t2dt2dt1.

Let us now take some more interesting cases

Example 1.8
Take Z ∼ E(2) and set X = Z, Y = Z. If we want to obtain the

P(X ≤ x, Y ≤ y) = P(Z ≤ x, Z ≤ y) = P(Z ≤ min(x, y))

= 1− e−2 min(x,y), x, y ≥ 0

and this is a valid distribution function, we could also sketch the distribution.

Figure 4: Illustration of P(Z ≤ min(X,Y ))

x

y

1− e−2x

1− e−2y

0

0

0

It has a kink at this line, but we are interested in its existence only almost everywhere. It
2The order of partials does not matter in this case. Note that this is only an implication.
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does not exist along the line x = y. Our only candidate is 0 everywhere, so this distribution
function has no density.

Example 1.9 (Marshall-Olkin distribution)
This distribution describes the lifetime of some component, e.g. two engine airplane. We
take Z1 ∼ E(1), which is the failure time of the first engine only, and Z2 independent of Z1,
which is again exponential with parameter 1 for only the second engine fails. Z3 ∼ E(1) is
independent of Z1 and Z2, which denotes the event for failure of both engines.

Take X = min(Z1, Z3) to be the lifetime of the first engine, Y = min(Z2, Z3) the lifetime of
the second engine. If we want to describe the joint distribution of X,Y and

P(X ≤ x, Y ≤ y) = 1− P(X > x)− P(Y > y) + P(X > x, Y > y)

= 1− P(min(Z1, Z3) > x)− P(min(Z2, Z3) > y) + P(min(Z1, Z3) > x,min(Z2, Z3) > y)

= 1− P(Z1 > x)P(Z3 > x)− P(Z2 > y)P(Z3 > y) + P(Z1 > x,Z3 > x,Z2 > y,Z3 > y)

= 1− e−2x − e−2y − e−x−y−max(x,y)

only if x, y > 0.

Figure 5: Marshall-Olkin distribution: P(X ≤ x, Y ≤ y)

x

y

F2

F1

0

0

0

Illustration of values of the CDF for

F1 = 1− e−2x − e−2y − e−2x−y

F2 = 1− e−2x − e−2y − e−x−2y.

Let’s differentiate and see what happens. The distribution is continuous

∂F1

∂x∂y
= 2e−2x−y

∂F2

∂x∂y
= 2e−x−2y
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If we integrate it out,∫ ∞
0

∫ ∞
0

f(t1, t2)dt1dt2 =
∫ ∞

0

∫ ∞
0

2e−2t1−t2dt1dt2 +
∫ ∞

0

∫ ∞
0

2e−t1−2t2dt1dt2 = . . . = 2
3

This is an example of a CDF F which is continuous, but does not have a density! This is
because there is probability that the first event to happen is the joint failure

R illustration of the three cases, as a line has measure zero for the second case, the distri-
bution is singular and we only see realization concentrated on the line (no area). This is
also the set of points for which the derivative did not exist.

The third example looks like a blend on the two. There is a clustering of points along this
line, where the common shock happens first. The first case is absolutely continuous, the
second is singular and the third is neither.

Proposition 1.10 (Multivariate Normal)
This distribution is denotedNd(µ,Σ) where µ = 0. and Σ ∈ Rd×d is the variance-covariance
matrix which has to be positive definite (for the density to exist) and symmetric. In the
standard case, µ = 0 and Σ = I, namely the identity matrix and the density is given by

f(x1, . . . , xd) = 1
(2π) d2

e−
1
2 (x2

1+···+x2
d) = 1

(2π) d2
exp

(
1
2x
>x

)
and in the more general case

f(x1, . . . , xd) = 1
2π d2 |Σ| 12

exp
(
−1

2
(
x− µ)>Σ−1(x− µ)

))
.

Note that the variance-covariance matrix has the form for d = 2 given by Σ =
(

1 ρ
ρ 1

)
.

Proposition 1.11 (Multivariate t)
Standard case is where ∀ x1, . . . , xd ∈ R, ν > 0, we have

fX(x1, . . . , xd) =
Γ
(
ν+d

2
)

Γ
(
ν
2
)
ν
d
2 π

d
2

[
1 + 1

ν
x>x

]− ν+d
2

In the more general case, we have µ = (µ1 · · ·µd)> and Σ ∈ Rd×d is a positive definite and
symmetric with joint density given by

fX1,...,Xd(x1, . . . , xd) =
Γ
(
ν+d

2
)

Γ
(
ν
2
)
ν
d
2 π

d
2 |Σ| 12

[
1 + 1

ν
(x− µ)>Σ−1(x− µ)

]− d+ν
2
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Chapter 2
Marginals, conditional distributions and dependence

Section 2.1. Marginal distributions

The univariate margins of X (or F ) are the CDF of the individual random variables
X1, . . . , Xd. The CDF of Xi can be obtained from

Fi(x) = lim
xj→∞
i6=j

F (x1, . . . , xi−1, x, , xi+1, . . . , xd)

Using the previous examples,

Example 2.1

F (x1, x2) = 1− e−2x1 − e−2x2 + e−2x1−2x2

F̃ (x1, x2) = 1− e−2 min(x1,x2)

F ∗(x1, x2) = 1− e−2x1 − e−2x2 + e−x1−x2−max(x1,x2)

where (X1, X2) ∈ [0, 1]2. Let (X1, X2) ∼ F, (X∗q , X∗2 ) ∼ F ∗, (X̃1, X̃2) ∼ F̃ and X1
d= X2,

X̃1
d= X̃2 and X∗1

d= X∗2

Now we have

F1(x1) = lim
x2→∞

F (x1, x2) =

1− e−2x1 if x1 > 0

0 if x1 < 0

and notice that we have F1(x1) = limx2→∞ F (x1, x2) = F ∗1 (x∗1) = limx∗2→∞ F ∗(x∗1, x∗2) and
equal to F̃1(x̃1) = limx̃2→∞ F̃ (x̃1, x̃2); thus X1, X

∗
1 , X̃1 ∼ E(2).

Themorale is that F specifies the marginal CDFs F1, . . . , Fd uniquely, but not vice versa.

If we were given the density rather than the CDF, we could still work our way through to
obtain the margins.

Lemma 2.1
If F has density (PMF) f , then for all i ∈ {1, . . . , d}, we have Xi has density (PMF) fi
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given by for all x ∈ R,

fi(x) =
∫ ∞
−∞
· · ·
∫ ∞
−∞

f(x1, . . . , xi−1, x, xi+1, . . . , xd)dx1 . . . dxd

=
∑
x1

· · ·
∑
xd

f(x1, . . . , xi−1, x, xi+1, . . . , xd)

in the first case for densities, which is d−1 integrals, while the other case is for PMF, where
the sum is over all variables xj but not x. Note that if the joint distribution has a density,
then any margin has a density but not conversely.

Example 2.2
Let

f(x, y) = e−y1(0<x<y<∞)

Figure 6: Illustration of the density f(x, y) = e−y1(0<x<y<∞)

x

y

e−y

0

0

0

0

We are interested in f1, the density of X. Then

f1(x) =
∫ ∞
−∞

e−y1(0<x<y<∞)dy =
∫ ∞
x

e−ydy = e−x

for x ≥ 0 so X ∼ E(1).

For the second parameter, the density f2 of Y is

f2(y) =
∫ y

0
e−ydx = ye−y

for y > 0 and we conclude that Y ∼ G(2), which is the Gamma distribution.
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Example 2.3
Let (X,Y ) ∼M(n, p1, p2) with PMF given by

n!
x!y!(n− x− y)!p

x
1p
y
d(1− p1 − p2)n−x−y

if x, y ∈ {0, . . . , n} and x+ y ≤ n.

For the margin of X,

f1(x) =
n−x∑
y=0

n!
x!y!(n− x− y)!p

x
1p
y
2(1− p1 − p2)n−x−y

= n!
x!(n− x)!p

x
1

n−x∑
y=0

(
n− x
y

)
py2(1− p1 − p2)n−x−y

= n!
x!(n− x)!p

x
1(p2 + 1− p1 − p2)n−x

=
(
n

x

)
px1(1− p1)x

and so X ∼ B(n, p1) and Y ∼ B(n, p2).

Exercise 2.1
· Compute the margins of the bivariate Normal (can try for an easier time withN (0, I2))
or the bivariate Student t

· Compute the margins of the bivariate binomial, Poisson and geometric.

Remark
We could also look at the multivariate margins. If we have a random vector (X1, . . . , Xd),
suppose 1 ≤ p < d and define Xp = (X1, . . . , Xp) and Xd−p = (Xp+1, . . . , Xd). Then Xp

has CDF

FXp
(x1, . . . , xp) = lim

xi→∞
i>p

F (x1, . . . , xp, xp+1, . . . , xd)

Section 2.2. Independence

Coming back to our morale, we look at independence. Recall that two events A and B are
independent if P(A ∩B) = P(A)P(B).

Definition 2.2 (Independence)
Let (X,Y ) be a random vector with joint distribution function F and margins F1, F2. Then
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X and Y are independent (X ⊥⊥ Y ) if and only if ∀ x, y ∈ R,

F (x, y) = F1(x)F2(y)

Remark
Independence of X and Y means

P(X ≤ x, Y ≤ y) = P(X ≤ x)P(Y ≤ y)

where the left hand side is also P({X ≤ x} ∩ {Y ≤ y}). Suppose

P(X ∈ [a, b], Y ∈ [c, d]) = F (b, d)− F (b, c)− F (a, d) + F (a, c)

= F1(b)F2(d)− F1(b)F2(c)− F1(a)F2(d) + F1(a)F2(c)

= (F1(b)− F1(a))(F2(d)− F2(c))

if X ⊥⊥ Y . Hence X ⊥⊥ Y implies that

P(X ∈ (a, b], Y ∈ (c, d]) = P(X ∈ (a, b])× P(Y ∈ (c, d])

and because (a, b]× (c, d] generated B2, the Borel σ−field, we can deduce that

X ⊥⊥ Y → P(X ∈ A, Y ∈ B) = P(X ∈ A)P(Y ∈ B) ∀ A,B ∈ B2

Theorem 2.3
If (X,Y ) has density (or PMF) f , then X ⊥⊥ Y if and only if

f(x, y) = f1(x)f2(y)

for almost all x, y ∈ R.

Proof X ⊥⊥ Y implies that F (x, y) = F1(x)F2(y) and for almost all x, y ∈ R,

f(x, y) = ∂2

∂x∂y
F =

(
∂F1

∂x

)(
∂F2

∂y

)
which are almost surely equal to f1, f2. Conversely,

F (x, y) =
∫ x

−∞

∫ y

−∞
f1(t)f2(s)dsdt

=
∫ x

−∞
f1(t)

∫ y

−∞
f2(s)dsdt

= F1(x)F2(y)
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Example 2.4
Take the uniform density on a circle

f(x, y) = 1
π

1(x2+y2≤1)

Suppose that (X,Y ) has density f , then X and Y is not independent. If one takes a small
neighborhood of a point in the unit square, not in the circle,

f1(x) =
∫ √1−x2

−
√

1−x2

1
π
dy = 2

π

√
1− x2

with x ∈ [−1, 1]. 3

Figure 7: Unit circle and unit square
1

-1

1-1

Using symmetry, we have that f2(y) = 2π−1
√

1− y2 for y ∈ [−1, 1]. Observe that if the

Support(X,Y ) 6= Support(X)× Support(Y ),

then X and Y cannot be independent.
Example 2.5
Consider

f(x, y) = e−y1(0<x<y<∞)

with f1(x) = e−x for x > 0 and f2(y) = ye−y for y > 0.

Definition 2.4
X1, . . . , Xd are independent if and only if ∀ n ∈ {1, . . . , d}, ∀ i1, . . . , in ∈ {1, . . . , d}
distinct, then Xi1 , Xi2 , . . . , Xin are independent. This is the case if and only if the CDF of

3Recall the support is the range where the density is positive or a small neighborhood of a point will
have positive probability.
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(X1, . . . , Xd) satisfies for x1, . . . , xd ∈ R, then

F (x1, . . . , xd) =
d∏
i=1

Fi(xi)

Example 2.6
In the trivariate case, we have that (X,Y, Z) has independent component iff X ⊥⊥ Y, Y ⊥⊥
Z,Z ⊥⊥ X and X ⊥⊥ Y ⊥⊥ Z

Example 2.7 (Trivariate FGM distribution)
Consider a Farlie-Gumbel-Morgenstern distribution of the form

F (x, y, z) = xyz + θx(1− x)y(1− y)z(1− z)

where x, y, z ∈ [0, 1] and θ ∈ [−1, 1] Then F1(x) = x if x ∈ [0, 1], F2(y) = y if y ∈ [0, 1]
and F3(z) = z if z ∈ [0, 1]. and FX,Y (x, y) = xy for x, y ∈ [0, 1]. But (X,Y, Z) are not
independent.
Definition 2.5
X1, X2, . . . is an independent sequence if ∀ n ∈ N, for i1 6= · · · 6= in ∈ {1, 2, . . .},Xi1 , . . . , Xin

are independent.

Section 2.3. Conditional distributions

One question that arises is when X and Y are not independent, what then to do. One has
two options, namely

· conditional distributions

· copulas

As motivation, consider height and ages. These variables are clearly related (childs are
smallers, adults shrink). One could decide to look at height for any given age, which brings
us to conditional probabilities.
Definition 2.6 (Conditional probability)
If A,B are such that P(B) > 0, then the conditional probability of A given B is

P(A|B) = P(A ∩B)
P(B)

If we measure age in years and height in centimeters, we could look at X,Y (discrete) and
calculate

P(X = x, Y = y) = P(X = x, Y = y)
P(Y = y) = f(x, y)

f2(y) ,
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also denoted f(x|y) for all y such that P(Y = y) > 0.

Observation
For any fixed y ∈ R so that P(Y = y) > 0, then f(x|y) for x ∈ R is a PMF as

1. f(x|y) ≥ 0
2. ∑

x∈R

f(x|y)
f2(y) = 1

f2(y)
∑
x

f(x, y) = 1.

f(x|y), for f2(y) > 0 is the PMF of the conditional distribution of X given Y = y.

Also remark that X ⊥⊥ Y imply f(x|y) = f1(x), hence the orthogonality notation.

If X,Y are discrete, then

fX|Y=y(x) = P(X = x|Y = y) = f(x, y)
f(y) ∀ y, fY (y) > 0

and if X ⊥⊥ Y are independent, this fX|Y=y(x) = fX(x) ∀ x.

If X,Y are not discrete, then the conditional distribution of X given Y = y is not so easily
characterized except where (X,Y ) has joint density. The conditional CDF of X given
Y = y.

P(X ≤ x|Y = y) = lim
ε↓0

P(X ≤ x|Y ∈ (y − ε, y + ε])

and ∀ y ∈ R, P(Y = y) = 0

= lim
ε↓0

P(X ≤ x, Y ∈ (y − ε, y + ε])
P(Y ∈ (y − ε, y + ε])

= lim
ε↓0

∫ x
−∞

∫ y+ε
y−ε f(t, s)dsdt∫ y+ε
y−ε fY (t)dt

which is nothing but F (x,y+ε)−F (x,y−ε)
FY (y+ε)−FY (y−ε) .

This is equal to

lim
ε↓0

∫ x
−∞ 2εf(t, sε,t)dt

2εfY (tε)
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Now fY is continuous on [y−ε, y+ε] and f is also continuous and as such tε ∈ [y−ε, y+ε]→ y

as ε ↓ 0 and sε,t ∈ [y − ε, y + ε]→ y. We thus get from this heuristic calculation that∫ x
−∞ f(t, y)dt
fY (y) =

∫ x

−∞

f(t, y)
fY (y) dt.

The conditional distribution of X given Y = y has density

fX|Y=y(x) = f(x, y)
fY (y) , y ∈ Support(Y )

where as a reminder Support(Y ) = {y ∈ R such that ∀ ε > 0,P(Y ∈ (y − ε, y + ε)) > 0}.
Definition 2.7 (Conditional distribution)
Let (X,Y ) be a random vector with PMF (density) f and marginal PMF (density) fX and
fY . Then, the conditional distribution of X given Y = y has PMF (density) given by

fX|Y=y(x) = f(x, y)
fY (y) , y ∈ Support(Y )

and is undefined otherwise.
Example 2.8
Let f(x, y) = e−y1(0<x<y<∞). The margins are given by

fX(x) = e−x1(x>0)

fY (y) = ye−y1(y>0)

and

fX|Y=y(x) =
e−y1(0<x<y<∞)

ye−y
, y > 0

= 1
y

1(0<x<y)

hence we conclude that X|Y = y ∼ U(0, y). For the other margin,

fY |X=x(y) =
e−y1(0<x<y<∞)

e−x
, x > 0

= ex−y1(y>x)

Exercise 2.2
Bivariate Normal determine the conditional distribution if µ = (0 0)> and Σ =

(
1 ρ
ρ 1

)
.

Remark
We have that X ⊥⊥ Y ⇔ fX|Y=y(x) = fX(x) ∀ y : fY (y) > 0.
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Section 2.4. Copula

We present next another characterization of dependence which has become popular in recent
years. Here is a motivating question: given two variables, X,Y , does there exists a joint
distribution such that, for example, X ∼ P(λ) and Y ∼ G(α)? That is, how to construct a
distribution with given marginals. This is motivated by observations: in insurance, claim
size is Poisson distributed, while the number of claims could be modelled using a Gamma
distribution. If we are given marginal CDFs, F1, . . . , Fd, can we characterize all joint CDFs
that have precisely the margins F1, . . . , Fd. This was answered following a correspondence
between Kendall and Sklar and published in a subsequent paper by Sklar in 1959.

Take F (x, y) = F1(x)F2(y) = C(F1(x), F2(y)) and define a function C : [0, 1]2 → [0, 1] and
(u, v) 7→ (u, v). C happens to be a CDF on [0, 1]2 whose margins are uniform on [0, 1].

Definition 2.8 (Bivariate copula)
A bivariate copula is a bivariate CDF whose margins are standard uniform.

Example 2.9
· Independence copula: C(u, v) = uv

· Farlie-Gumbel-Morgenstern copula C(u, v) = uv + θ(uv)(1− u)(1− v)

· Clayton copula C(u, v) =
(
u−θ + v−θ − 1

)1 1/θ, θ ≥ 0.

Lemma 2.9
Let C be an arbitrary copula and FX and FY arbitrary univariate CDFs. Then F given
for all x, y ∈ R by

F (x, y) = C(FX(x), FY (y))

is a bivariate CDF with margins FX and FY

Proof

lim
x→−∞

F (x, y) = lim
x→−∞

C(FX(x), FY (y))

= C(0, FY (y)) = 0

and symmetrically, since copulas are always continuous functions and they are themselves
distribution functions (uniform) Now take

lim
x→∞
y→∞

C(FX(x), FY (y)) = C(1, 1) = 1
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and

lim
x→∞

C(FX(x), FY (y)) = C(1, FY (y)) = FY (y)

lim
y→∞

C(FX(x), FY (y)) = C(FX(x), 1) = FX(x).

Now for quasi-monotonicity: if we let x1 ≤ x2, y1,≤ y2, which corresponds to the the set
(x1, x2]× (y1, y2] and

F (x1, y1 − F (x1, y2)− F (x2, y1) + F (x2, y2)

= C(FX(x1), FY (y1))− C(FX(x1), FY (y2))− C(FX(x2), FY (y1)) + C(FX(x2), FY (y2))

= C(u1, v1)− C(u1, v2)− C(u2, v1) + C(u2, v2)

because FX , FY are non-decreasing, we have that FX(x1) = u1 ≤ FX(x2) = u2 and FY (y1) =
v1 ≤ FY (y2) = v2 and thus �

Theorem 2.10 (Sklar’s representation)
Let F be a bivariate CDF with margins FX , FY . Then, there exists at least one copula C
such that for all x, y ∈ R

F (x, y) = C(FX(x), FY (y)).

Moreover, C is unique on Range(FX)×Range(FY ). In other words, C is unique if FX and
FY are continuous.

Algorithm 2.1 (Generation of sample from copula)
1. To generate (X,Y ) from F (x, y) = C(FX , FY )

(a) (U, V ) with CDF C

(b) Set X = F−1
X (U) and Y = F−1

Y (V ).

2. To show Sklar’s representation

(a) (X,Y ) ∼ F

(b) C is a CDF of (FX(X), FY (Y ))

(X,Y ) 7→ (FX(x), FY (y)). We will show why FX(x) and FY (y) lives on the unit square
and is uniform using probability integral transform. Similarly, we can take uniform margins
and apply the quantile function to those margins to get the desired CDFs, namely (U, V ) 7→
(F−1
X (U), F−1

Y (V )).
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Chapter 3
Univariate Transformations

Let X be a random variable and g(X) be a function, applying to each realization this
mapping. We want to compute the distribution of g(X), which is a new random variable.

Consider the mapping f : S1 → S2, where S1, S2 are two spaces.

S1

A

S2

f

f(A)

We could look at the image set; for A ⊆ S1, we can define the image set of A, f(A) by

f(A) = {f(a), a ∈ A}

For example, taking S1, S2 = R and f : R→ R and x 7→ ex. Then f(0, 1) = (e0, e1) = (1, e).
For B ⊆ S2, we can define the so-called pre-image set f−1(B)

f−1(B) = {s1 ∈ S1 : f(s1) ∈ B}.

One must be careful, as f , which is arbitrary, does not need to have an inverse. In our
example, we have f−1((−4, 0)) = ∅. Calculating the distribution of g(X) boils down to
calculating the pre-image of g.

Now, one may ask if g(X) is a valid random variable (that is if g(X): Ω→ R is measurable).
This is true if and only if g : R→ R is measurable.

If we want to compute

P(g(X) ≤ y) = P(ω : g(X(ω)) ≤ y)

= P(ω : g(X(ω)) ∈ (−∞, y])

= P(ω : X(ω) ∈ g−1((−∞, y])

where (−∞, y] ≡ B. We can compute this only if g−1((−∞, y]) ∈ B if and only if g is
measurable. 4

4The mapping needs not be monotone or nice; the pre-image could be an interval, but it could also be
an ugly set and one might need to perform case-by-case analysis. If g is monotone or piecewise monotone,
we will have an easy time, while if g is arbitrary, this might be less the case.
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Figure 8: Illustration of a convolution

ω

f ≡ X

X(ω) g(X(ω))

g

g ◦ f

Example 3.1
Let X ∼ B(n, p) and consider the random variable Y = n − X, which corresponds to the
number of failures. We will show that Y ∼ B(n, 1 − p). The support of Y will be the set
{0, . . . , n}, hence Y is discrete. If we compute P(Y = k) = P(ω : X(ω) ∈ g−1{y})

P(Y = k) = P(n−X = k) = P(X = n− k)

=
(

n

n− k

)
pn−k(1− p)k

=
(
n

k

)
pn−k(1− p)k

so that g : k 7→ n− k and Y ∼ B(n, 1− p).
Example 3.2
Let X ∼ U(0, 1) and g(x) = − log(x) so Y = g(X) = − log(X). Now,

P(Y ≤ y) = P(− log(X) ≤ y)

= P(logX ≥ −y)

= P(X ≥ e−y)

= 1− P(X ≤ e−y)

with g−1((−∞, y]) = [e−y,∞). Thus, we have

P(Y ≤ y) =

1− e−y if y > 0

0 if y ≤ 0.

as P(X ≤ x) = x if x ∈ [0, 1) and 1 if x ≥ 1. We conclude that Y ∼ E(1)
Example 3.3
Take X ∼ E(1) and g : [0,∞)→ Z+ so that x 7→ bxc.

If we are interested in Y = g(X), we see that Support(Y ) = {0, 1, . . .} hence Y is discrete
and we can spare our life by computing the PMF, P(Y = k), for k ∈ Z+. This happens
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when P(X ∈ [k, k + 1)), where [k, k + 1) = g−1({k}). Notice that X is continuous, so we
can compute

P(k < X ≤ k + 1) = P(X ≤ k + 1)− P(X ≤ k)

= F (k + 1)− F (k)

= 1− e−(k+1) − 1− e−k

= e−k − e−k−1

= e−k(1− e−1)

and Y ∼ G(1 − e−1), that is Y has a geometric distribution. We can also generalize the
example by considering E(λ), which would yield Y ∼ G(1 − e−λ). Thus, the geometric
distribution can be viewed as a rounding of the exponential distribution. This is also why
we saw the exponential distribution shape on the histogram and why both distributions
share the memoryless property.

Section 3.1. Probability integral and quantile transformation

We look at X ∼ F and apply the transformation to get F (X) and take U ∼ U(0, 1) and
consider F−1(U). For a CDF F , the so-called quantile function F−1 is given by5

F−1(u) = inf{x : F (x) ≥ u}, u ∈ [0, 1].

Recall the definition of infimum, if we have A ⊆ R. Then inf(A) is a real number, including
±∞, such that

· ∀ a ∈ A : inf(A) ≤ a;

· if x > inf(A), ∃a ∈ A such that a < x. This is equivalent to having for all x ∈ R such
that x ≤ a ∀ a ∈ A⇒ x ≤ inf(A).

For example, if we take [0, 1], then inf(A) = min(A) = 0 while if A = (0, 1], then inf(A) = 0.
By convention, we have inf(R) = −∞ and inf(∅) =∞.

The function is non-decreasing, will be continuous and strictly increasing if the function is
continuous, a plateau of F will cause a jump in F−1 and a jump in F will cause a plateau
for F−1.

Lemma 3.1
Let F be an arbitrary univariate CDF and F−1, its quantile function. Then

5Remark that F−1(0) = −∞
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1. F−1 is non-decreasing and left-continuous. If F is continuous, then F−1 is strictly
increasing (not necessarily continuous though).

2. F−1 ◦ F (x) ≤ x, ∀ x ∈ R. If F is strictly increasing, then equality holds.

3. F ◦ F−1(u) ≥ u, ∀ u ∈ [0, 1]. If F is continuous, then we have equality.

Proof

1. Left as an exercise on Assignment 2

2. F−1 ◦ F (x) = inf{y ∈ R : F (y) ≥ F (x)} ≡ A. Surely, x ∈ A and inf(A) ≤ x, and
inf(A) = F−1◦F (x). Suppose now that F is strictly increasing and F−1◦F (x) < x for
some x ∈ R. Hence ∃a ∈ A so that a < x. But F is strictly increasing, so F (a) < F (x).
Contradiction to the fact a ∈ A, which entails F (a) ≥ F (x).

3. F is by definition continuous from the right. We have equality at 0, so assume without
loss of generality that y ∈ (0, 1] and F−1(1) <∞, or u ∈ (0, 1). Then F−1 ∈ (−∞,∞)
and

F (F−1(u)) = lim
xn→F−1(u)
xn>F

−1(u)

F (xn).

Now xn > F−1(u), so ∃x∗n ∈ A = {x : F (x) ≥ u} so that x∗n < xn. F is non-
decreasing, so u ≤ F (x∗n) ≤ F (xn) and hence xn ∈ A i.e. F (xn) ≥ u. Then F ◦
F−1(u) = limn→∞ F (xn) ≥ u. If F is continuous, then

F (F−1(u)) = lim
n→∞

yn→F−1(u)
yn<F

−1(u)

F (yn) ⇔ yn < inf(A)
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which imply ⇒ yn /∈ A⇒ F (yn) < u.

�

Theorem 3.2 (Probability integral transform and quantile transform)
Suppose that X has CDF F and U ∼ U(0, 1). Then

1. F−1(U) has CDF F (quantile transform)

2. If F is continuous, then F (X) ∼ U(0, 1). (probability integral transform).
Remark
The second result is a core result in non-parametric statistics, while the first statement is
used for random number generation.

Proof

1. Observe that ∀ u ∈ (0, 1), x ∈ R,

F−1(u) ≤ x ⇔ u ≤ F (x)

Indeed, F is non-decreasing and hence if F−1(u) ≤ x, we can argue that F (F−1(u)) ≤
F (x) and by our lemma, u ≤ F (F−1(u)), which proves necessity.

For sufficiency, if u ≤ F (x), then x ∈ {y : F (y) ≥ u} and so inf{y : F (y) ≥ u} ≤ x⇒
F−1(u) ≤ x. Now let U ∼ U(0, 1) and set X = F−1(U).

F (x) = P(X ≤ x) = P(F−1(U) ≤ x) = P(U ≤ F (x)) = F (x)

as F (x) takes its values in the interval [0, 1].

2. First, observe that F (X) has continuous CDF. Indeed, ∀ u ∈ [0, 1], P(F (X) =
u) ?= 0. This is P(X = F−1(u)) = 0 as there are no atoms, since X is absolutely
continuous random variable. If there is a plateau, we could have some point and
P(X ∈ [F−1(u), F+(u)]) = F (F−1+(u))− F (F−1(u)) = u− u = 0. The third case is

P(F (X) ≤ u) = 1− P(F (X) > u) = 1− P(F (X) ≥ u)

using continuity, this happens if and only if F−1(u) ≤ X and thus

= 1− P(X ≥ F−1(u))

= P(X < F−1(u))

= F (F−1(u)) = u.
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using the third part of the lemma.

�

Example 3.4
Let X ∼ E(1) , then F (x) = 1− e−x, if x ≥ 0. Then

1− e−x = u

⇔ 1− u = e−x

⇔ − ln(1− u) = x

and as a result

F−1(u) =


− ln(1− u), if u ∈ (0, 1)

−∞, if u = 0

∞, if u = 1

Example 3.5
Let U ∼ U(0, 1). Then

F−1(U) = − ln(1− U) d= − ln(u) ∼ E(1).

Example 3.6
Let X ∼ B(p) with P(X = 1) = p and P(X = 0) = 1− p.

F−1 can only take two values, either 0 or 1 and

P (F−1(U) = 0) = P(0 ≤ U ≤ 1− p) = 1− p

P (F−1(U) = 1) = P(1− p < U ≤ 1) = p
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x

F (x)

1− p

1

1
F (x)

F−1(x)

1

1− p

and so F−1(U) ∼ B(p), that is a Bernoulli random variable.

If we now look at the probability integral transform and consider F (X) ∈ {F (0), F (1)} =
{1− p, 1} and in particular, F (X) is a discrete random variable and in particular, it cannot
be uniform on (0,1).

Remark
If F is arbitrary, then to transform F onto a uniform, we can take F (X_+U(F (X)−F (X_))
is uniform on (0, 1). This is called randomization of the ties.

Section 3.2. Monotone transformations

Suppose X has CDF F and density f and consider a function g(X), assuming for now that
g : R→ R is strictly increasing and “smooth”. Then

P(g(X) ≤ x) = P(X ≤ g−1x) = F (g−1(x))

Then the density of g(X) is

fg(X)(x) = fX(g−1(x)) · ∂
∂x
g−1(x)

If g is decreasing, then

Fg(X)(x) = P(g(X) ≤ x)

= P(X ≥ g−1(x))

= 1− P(X < g−1(x))

= 1− P(X ≤ g−1(x))

= 1− F (g−1(x))

and the density is in this case

fg(X)(x) = −fX(g−1(x)) · ∂
∂x
g−1(x)
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Together, we have

fg(X)(x) = fX(g−1(x)) ·
∣∣∣∣ ∂∂xg−1(x)

∣∣∣∣ (3.4)

Theorem 3.3
Let X be a random variable with density fX . Suppose that R = A0 ∪A1 where A1 = (a, b)
is an open interval, P(X ∈ A0) = 0,6 fX is continuous on A1. Let g be a strictly monotone
function on A1 and its inverse g−1 is continuously differentiable on g(A1). Then Y = g(X)
has density

fY (y) = fX(g−1(y))
∣∣∣∣ ∂∂y g−1(y)

∣∣∣∣1(y∈g(A1)). (3.5)

Example 3.7
Take again X ∼ E(1) and look at F−1(u) = − ln(1−u). Then R = A0 ∪A1 and A1 = (0, 1).
Then g(0, 1)→ (0,∞) and u 7→ − ln(1− u). Then g−1(x) is

− ln(1− u) = x ⇔ e−x = 1− u ⇔ u = 1− e−x

so g−1 : (0,∞)→ (0, 1) and x 7→ 1− e−x. Also ∂
∂xg
−1(x) = e−x.

Then F−1(U) as density

fF−1(U)(x) = fU (1− e−xe−x1(x∈(0,∞))

= e−x1(x∈(0,∞))

and we conclude again that F−1(U) ∼ E(1). Now take X ∼ E(1) so that F (X) = 1−e−X ∼
U(0, 1). Then A1 : (0,∞) and g(0,∞)→ (0, 1), x 7→ 1− e−x. Thus g−1(0, 1)→ (0,∞) and
u 7→ − ln(1− u) and the derivative is ∂

∂ug
−1(u) = −(1− u)−1 · (−1) = (1− u)−1. Thus

fF (X)(u) = e− ln(1−u)
∣∣∣∣ 1
1− u

∣∣∣∣1(u∈(0,1))

and F (X) ∼ U(0, 1).

Theorem 3.4 (Monotone transformation theorem)
Let X be a random variable with density fX . Suppose that R = A0 ∪ A1 ∪ · · · ∪ Ak such
that

1. P(X ∈ A0) = 0
6A0 is a trash can for all discontinuity, points where the derivative does not exist, etc.
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2. A1, . . . , Ak are open intervals, where Ai = (ai, bi)

3. fX is continuous on Ai for i ∈ {1, . . . , k}.

Suppose that g : A1 ∪ · · · ∪Ak → R is a mapping such that for any i ∈ {1, . . . , k}.

Also assume that gi : Ai → R, x 7→ g(x) is strictly monotone and its inverse g−1
i : g(Ai)→ R

is continuously differentiable.

Then Y = g(X) has density

fY (y) =
k∑
i=1

fX(g−1
i (y))

∣∣∣∣ ∂∂y g−1
i (y)

∣∣∣∣1(y∈g(Ai))

Example 3.8
Let X ∼ N (0, 1) where fX(x) = (2π)− 1

2 exp(−x2/2)1(x∈(−∞,∞)) and consider the transfor-
mation g(x) = x2 and Y = X2. Then A1 = (−∞, 0), A2 = (0,∞) and A0 = {0}. Then we
have

g1 : (−∞, 0)→ (0,∞) g2 : (0,∞)→ (0,∞)

x 7→ x2 x 7→ x2

g−1 : (0,∞)→ (−∞, 0) g−1
2 : (0,∞)→ (0,∞)

y 7→ −√y y 7→ √y
∂

∂y
g−1

1 = − 1
2√y

∂

∂y
g−1

2 = − 1
2√y

y

−√y √
y
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and we have

fY (y) = fX(g−1(y))|g−1(y)′|1(y∈(0,∞))

= 2 1√
2π
e−

y
2

1
2√y1(y∈(0,∞))

= 1√
2π
e−

y
2

1
√
y

1(y∈(0,∞))

and Y ∼ χ2(1). As an exercise, try |X|.

We proceed with the proof of the monotone transformation theorem.

Proof We have to show that ∀ y ∈ R

P(Y ≤ y) =
∫ y

−∞
fY (t)dt.

We have

P(Y ≤ y) = P(g(X) ≤ y)

=
k∑
i=1

P(g(X) ≤ y,X ∈ Ai) + P(g(X) ≤ y,X ∈ A0)

=
k∑
i=1

P(g(X) ≤ y,X ∈ Ai)

as P(X ∈ A0) = 0.

1. If gi is increasing on Ai = (ai, bi), then g(Ai) = (g(ai), g(bi)) Now if y ∈ (g(ai), g(bi)),
then

P(gi(X)) ≤ y,X ∈ Ai) = P(ai < X ≤ g−1
i (y))

=
∫ g−1(y)

ai

fX(s)ds

=
∫ s

g(ai)
g−1
i (t)g−1

i (t)′dt

=
∫ y

−∞
fX(g−1

i (t))(g−1
i (t))′1(t∈(gi(ai),gi(bi))=g(Ai))

using the transformation s = g−1
i (t).
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2. If y ≤ g(ai) then the probability of being on the interval is zero, as

0 =
∫ y

−∞
fX(g−1

i (t))(g−1
i (t))′1(y∈(−∞,g(ai))dt

3. If y ≥ g(bi), then the probability is the same as P(X ∈ Ai).

�

Example 3.9
LetX be a random variable with fX(x) = 2

9 (x+1), where x ∈ (−1, 2) and take g : R→ R and
x 7→ x2. This is not strictly monotone, but we can partition the space to make it monotone
on the intervals and take A1 = (−1, 0), A2 = (0, 2) and A0 = (−∞, 1]∪{0}∪[2,∞). Checking
the conditions for the monotone transformation theorem, P(X ∈ A0) = 0 is fulfilled, fX
is continuous on A1 ∪ A2, and g1 : A1 → (0, 1) so x 7→ x2 with g−1

1 : (0, 1) → (−1, 0)
and x 7→ −

√
x with (g−1

1 )′(x)=− 1
2
√
x
. Similarly, we have g2 : (0, 2) → (0, 4), x 7→ x2,

g−1
2 : (0, 4)→ (0, 2), x 7→

√
x with (g−1

2 )′(x) = 1
2
√
x

Now Y = g(X) = X2; we have

fY (y) = fX(−√y) 1
2√y1(y∈(0,1)) + fX(√y) 1

2√y1(y∈(0,4))

= 2
9(−√y + 1) 1

2√y1(y∈(0,1)) + 2
9(√y + 1) 1

2√y1(y∈(0,4))

= 2
9

1
√
y

1(y∈(0,1)) + 2
9(√y + 1) 1

2√y1(y∈(1,4))

Section 3.3. Multivariate transformations

LetX = (X1, . . . , Xd) be a random vector with g(X); g : Rd → Rm where d,m are arbitrary.
If g(X) = Y = (Y1, . . . , Ym), then Yj = gj(X1, . . . , Xd) with g = (g1, . . . , gm) and gj : Rd →
R.

Our goal is to determine the distribution of Y = (Y1, . . . , Ym). In principle, we can compute
the CDF;

P(Y1 ≤ y1, . . . , Ym ≤ ym) = P(Y ∈ (−∞, y1]× · · · × (−∞, ym])

= P(g(X) ∈ (−∞, y1]× · · · × (−∞, ym]))

= P(X ∈ g−1((−∞, y1]× · · · × (−∞, ym])

where g−1(·) is the preimage set.
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First, we do some by hand transformations.

Example 3.10
Let X,Y be independent random variables, with X ∼ P(λ), Y ∼ P(µ) with λ, µ > 0.
We are interested in Z = g(X,Y ) = X + Y . What is the distribution of Z? We have
g : R2 → R, (x, y) 7→ (x + y). Remark first that Z is discrete, so we need to think of the
support of Z, which will be N0, the positive integers. Now, the preimage set is

g−1({k}) = {(i, j) : i+ j = k} = {i ∈ {0, . . . , k}, j = k − i}

so that the PMF is

fZ(k) = P(X + Y = k) = P(g(X,Y ) ∈ {k})

=
k∑
i=0

P(X = i, Y = k − i)

=
k∑
i=0

P(X = i)P(Y = k − i)

=
k∑
i=0

e−λ
λi

i! e
−µ µk−i

(k − i)!

= e−λ−µ
k∑
i=0

(
k

i

)
λiµk−i

= e−λ−µ
1
k! (λ+ µ)k

and we conclude that Z ∼ P(λ+ µ).

Exercise 3.1
If Z ∼ P(λ11), X ∼ P(λ01) and Y ∼ P(λ01) independent random variables. If one considers
(X + Z, Y + Z), then get a Bivariate Poisson.

Example 3.11
Let X be Beta B(α, β) and Y ∼ B(α + β, γ) where X ⊥⊥ Y . We are looking at the
transformation Z = XY . The transformation of interest is g : R2 → R, (x, y) 7→ xy. Recall
the density of the bivariate Beta with independent parameters is

fX(x)fY (y) = Γ(α+ β)
Γ(α)Γ(β)x

α−1(1− x)β−1 Γ(α+ β + γ)
Γ(α+ β)Γ(γ)y

α+β−1(1− y)γ−11(x,y∈(0,1))
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Z is continuous and takes values in (0, 1), thus we have

P(Z ≤ z) = P(XY ≤ z) = P((X,Y ) ∈ g−1((−∞, z])

=
∫
g−1((−∞,z])

fX(x)fY (y)dxdy

where

g−1((−∞, z]) = {(x, y) : xy ≤ z}

=
{
y ∈ (0, 1), x ∈

(
0, z
y

)}
The integral becomes

P(Z ≤ z) =
∫ 1

0

∫ z
y

0
fX(x)fY (y)dxdy

=
∫ 1

0

∫ z

0
fX

(
t

y

)
fY (y)1

y
dtdy

=
∫ z

0

∫ 1

0
fX

(
t

y

)
fY (y)1

y
dydt

=
∫ z

0
fZ(t)dt

using the transformation x = t/y, dx = dt/y where t ∈ (0, z) in the first step and applying
Fubini’s theorem in the second step. The expression fZ(t) will be the density of Z as

fZ(t) = 1(t∈(0,1))

∫ 1

0
fX

(
t

y

)
fY (y)1

y
dy

= C

∫ 1

t

t

y

(
1− t

y

)β−1
yα+β−1(1− y)γ−1 1

y
dy

= C

∫ 1

t

(
t

y

)α−1(
1− t

y

)β−1
yα+β−2(1− y)γ−1dy

= Ctα−1
∫ 1

t

(
y − t
1− t

)β−1(1− (y − t)− t
1− t

)γ−1
dy

Regrouping the y terms. Make now the change of variable x = (y − t)/(1− t) ∈ (0, 1) with

41



dx = (1− t)−1dy. The function then becomes

= C(1− t)β+γ−2tα−1
∫ 1

0
xβ−1(1− x)γ=1dx

= Γ(α+ β + γ)
Γ(α)Γ(β)Γ(γ)

Γ(β)Γ(γ)
Γ(β + γ) (1− t)β+γ−1tα−1

= Γ(α+ β + γ)
Γ(α)Γ(β + γ) (1− t)β+γ−1tα−1

since the integral is the Beta function B(β, γ) We conclude that Z = XY ∼ B(α, β + γ).

Example 3.12
Take

f(X,Y )(x, y) = e−y1(0<x<y<∞)

and consider Z = X + Y . Then

P(Z ≤ z) =
∫ z

0

∫ min(z−y,y)

0
e−ydxdy

where
∫min(z−y,y)

0 e−ydx is the density of Z. Computing the integral, we get

fZ(z) =
(
e−

z
2 − e−z

)
1(z>0)

Note that the two previous examples could have been solved using the multivariate trans-
formation theorem, which we introduce next.
Theorem 3.5
Suppose thatX = (X1, . . . , Xd) has a density fX , denote the interior of the support ofX by
A ∈ Rd. Suppose g : A → g(A) ⊆ Rd (the same dimension) is one-to-one and assume that
its inverse h : g(A) → A, h = (h1, . . . hd) is such that ∀ i ∈ {1, . . . , d}, hi is continuously
differentiable in each argument and the Jacobi matrix

J =


∂h1
∂y1

· · · ∂h1
∂yd

...
. . . · · ·

∂hd
∂y1

· · · ∂hd
∂y1


is not identically 0 on A. Then g(X) has density

fg(X)(y) = fX(h1(y), . . . hd(y))|det J|1(y∈g(A)) (3.6)

for y = (y1, . . . , yd).
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Example 3.13
Again take X ∼ B(α, β) and Y ∼ B(α + β, γ) with X ⊥⊥ Y. Again, we are interested
in Z1 = XY . We cannot apply the theorem, however we can consider a dummy random
variable Z2 = Y and marginalize over Y . The function g : (0, 1)2 → ((u, v) : 0 < u < v < 1)
and (x, y) 7→ (xy, y). If we want to compute the inverse, we must have g : {(u, v) : 0 < u <

v < 1} → (0, 1)2 and (u, v) 7→
(
u
v , v
)
, with h1(u, v) = u

v and h2(u, v) = u. The Jacobian is
found using the Jacobi matrix

J =
(

1
v − u

v2

0 1

)

which has determinant 1/v. The joint density of Z1, Z2 is

f(Z1,Z2)(u, v) = fX(h(u, v))fY (h2(u, v))1
v

1(0<u<v<1)

= Γ(α+ β + γ)
Γ(α)Γ(β)Γ(γ)

(u
v

)α−1 (
1− u

v

)β−1
vα+β−2(1− v)γ−11(0<u<v<1)

where C, which is the front term, is constant. We have Z1 has density

fZ1(u) =
∫ 1

u

C
(u
v

)α−1 (
1− u

v

)β−1
vα+β−2(1− v)γ−1dv

which is exactly the same integral calculated previously, but with a different parametrization.

Section 3.4. Linear transformations

ConsiderX = (X1, . . . , Xd)>, a d×1 (column) vector and a matrix C ∈ Rd×d, C invertible.
Consider Y = C ·X, so that X = C−1Y , h = C−1y. Take J = C−1 such that

|detJ | = 1
|detC| = |detC−1|.

Then, the density of Y is given by

fY ((y1, . . . yd) = 1
|detC| · fX

((
C−1Y

)>)
Example 3.14
Let (X,Y ) ∼ N2 (0, I). Then

Z =
(
X + Y

X − Y

)
=
(

1 1
1 −1

)(
X

Y

)
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where detC = −1− 1 = −2, so |detC|−1 = 1/2. Then

fbsZ(u, v) = 1
2f(X,Y )

((
C−1 ( uv )

)>)
= 1

2f(X,Y )

(
u+ v

2 ,
u− v

2

)
= 1

2
1√
2π

exp
(
− (u+ v)2

2 · 4

)
1√
2π

exp
(
− (u− v)2

2 · 4

)
= 1

2
1

2π exp
(
−−2u2 + 2v2

8

)
= 1

2
1√
2π

exp
(
−u

2

4

)
· 1√

2π
exp

(
−v

2

4

)
so (

X + Y

X − Y

)
∼ N2(0, 2I2)

where 0 = (0 0)> and 2I2 =
(

2 0
0 2
)
. Remark that (X + Y ) ⊥⊥ (X − Y ) is a coincidence, but

the fact that ((X + Y ), (X − Y )) is Bivariate Normal is not a coincidence. If we further
generalize this example.

Example 3.15
Let (X1, . . . , Xd)> ∼ Nd(0, Id) with

fX(x) = 1
(2π) d2

exp
(
−x

2
1 + · · ·+ x2

d

2

)
= 1

(2π) d2
exp

(
−x
>x

2

)

Now if Y = AX, for A invertible, with Σ = AA>,
√

detΣ = |detA|. Thus

fY (y) = 1√
detΣ

fX(A−1y)

= 1√
detΣ(2π) d2

exp
(
− (A−1y)>A−1y

2

)
= 1√

detΣ(2π) d2
exp

(
−y
>(A−1)>A−1y

2

)
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But notice that (A−1)>A−1 = Σ−1, as A−1 is a Choleski decomposition. Thus

fY (y) = 1√
detΣ(2π) d2

exp
(
−y
>Σ−1y

2

)
and Y ∼ Nd(0,Σ)

In particular, if A is orthonormal, then AA> = Id and Y = AX ∼ Nd(0, Id). So the
distribution of X is not affected by rotations. This is so as the function depends only on
the arguments through the the Euclidean distance.

Example 3.16
Suppose X has a density of the form

fX(x) = h(x2
1 + · · ·+ x2

d)

of which examples are Normal or Student−t distributions. Then if Y = AX and AA−1 =
Id, then

fY (y) = h((A−1y)>(A−1y)) = h(y>y)

These are examples of spherical distributions.

Definition 3.6 (Spherical distributions)
If X has a density of the form h(X>X), then X is said to have a spherical distribution.

Example 3.17
Let X ∼ Nd(0, Id) and Y = AX + µ where µ = (µ1 . . . µd)> ∈ Rd×1 and A is invertible,
AA> = Σ. Consider Z = AX ∼ Nd(0,Σ). Then Y = Z + µ. Thus g(z) = (z1 +
µ1, . . . , zd + µd). Now J = I, the identity matrix and as such det(J) = 1. Therefore

fY (y) = fZ(y − µ)

= 1
det(Σ)1/2(2π) d2

exp
(
− (y − µ)>Σ−1(y − µ)

2

)
and hence Y ∼ N (µ,Σ).

Example 3.18
Let X be a spherical distributions, with fX(x) = h(x>x). Then, for Y = AX + µ, for A
invertible d× d matrix with µ ∈ Rd×1. In such case,

fY (y) = 1
det(Σ)1/2h

(
(y − µ)>Σ−1(y − µ)

)
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where ‖y − µ‖M := (y − µ)>Σ−1(y − µ) is the Mahalanobis distance.

This can be used for financial return models as they retain essential properties of the Mul-
tivariate Normal, as tractability. This can also serve in multivariate regression for the
specification of the error terms.

Section 3.5. Convolutions

Let X ∼ FX and Y ∼ FY , with X ⊥⊥ Y . We are interested in the distribution of X+Y . For
example, insurance companies are interested in the sum of claims, rather than the individual
claims.

We will look first at the discrete case: let X,Y be discrete, the sum will be again a discrete
random variable. How can we describe the PMF?

fX+Y (z) = P(X + Y = z) =
∑

y∈Supp(Y )

P(X + Y = z|Y = y)P(Y = y)

=
∑

y∈Supp(Y )

P(X = z − y)P(Y = y)

=
∑

y∈Supp(Y )

fX(z − y)fY (y)

= fX ∗ fY (z)

In some cases, such as sum of Poisson random variables, the sum is again Poisson as seen
earlier in the examples.

In the continuous case, fX , fY , the densities of X,Y exist. We could invent a transformation
g : (x, y) 7→ (x+ y, y) is one-to-one and h : (u, v) 7→ (u− v, v). The Jacobian is

J =
(

1 −1
0 1

)
⇒ |detJ | = 1.

The density of the transformed variables (X + Y, Y ) is then

fX+Y,Y (u, v) = fX(u− v)fY (v).

The quantity of interest is then

fX+Y (u, v) =
∫ ∞
−∞

fX(u− v)fY (v)dv = fX ∗ fY (u)

and the formulas (for the discrete and the continuous case) share the same form. Convoluting
two Normal variables yields a Normal. Here is another example
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Example 3.19
Let X ∼ E(1) ≡ G(1) and Y ∼ G(1), as the Exponential distribution is a special case of the
Gamma distribution. If fX(x) = e−x1(x>0), then X + Y has density

f(X+Y (u) =
∫ ∞
−∞

e−u+v1(u−v>0)e
−v1(v>0)dv

=
∫ u

0
e−udv

= e−uu1(u>0)

hence X +Y ∼ G(2). This is valid for any Gamma distribution, if X ∼ G(α) and Y ∼ G(β),
then X + Y ∼ G(α+ β).
Exercise 3.2
Try the case X1 + · · ·+Xn, where Xi ∼ E(1) ∀ i and Xi ⊥⊥ Xj ∀ i 6= j.

X + Y has CDF given (in the discrete case) by∑
t≤z

fX+Y (t) =
∑
t≤z

∑
y∈Supp(Y )

fX(t− y)fY (y)

=
∑

y∈Supp(Y )

∑
t≤z

fX(t− y)fY (y)

=
∑

y∈Supp(Y )

FX(z − y)fY (y),

while in the continuous case, we have

P(X + Y ≤ z) =
∫ z

−∞

∫ ∞
−∞

fX(t− y)fY (y)dydt

=
∫ ∞
−∞

∫ z−y

−∞
fX(s)dsfY (y)dy

=
∫ ∞
−∞

FX(z − y)fY (y)dy,

interchanging the integrals as the terms are positive and bounded between 0 and 1, making
the change of variable t− y = s, dt = ds.
Remark
If X ⊥⊥ Y and FX , FY are arbitrary, then X + Y has CDF

FX+Y (z) =
∫ ∞
−∞

FX(z − y)dFX(y)

= E (FX(z − Y ))
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the so-called Lebesgue-Stieltjes integral.
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Chapter 4
Expectations and moments

Suppose X is a random variable. Consider the case of a univariate uniform discrete random
variables, P(X = xi) = 1

n . Then E (X) = 1
n

∑n
i=1 xi, which is nothing but the average. We

formalize and generalize this notion.

Definition 4.1 (Expectation)
The expected (mean) value of a random variable g(X) where X is a random variable with
CDF F is given by

E (g(X)) =
∑

x∈Supp(X)

g(x)fX(x)

if X is discrete and ∫ ∞
−∞

f(x)f)X(x)dx

if X has a density fX . or in a unified more general form in terms of the Lebesgue-Stieltjes
integral, defined for F arbitrary as ∫ ∞

−∞
g(x)dF (x).

Careful. If E|g(X)| =
∫∞
−∞ |g(X)|dF (x) is infinite, then E (g(X)) does not exist.

Example 4.1
Let X ∼ B(n, p), and

E (X) =
n∑
k=0

k

(
n

k

)
pk(1− p)n−k

= np

n∑
k=1

(n− 1)!
(n− k)!(k − 1)!p

k−1(1− p)(n−1)−(k−1)

= np

n−1∑
l=0

(
n− 1
l

)
pl(1− p)n−1−l

= np(p+ (1− p)n−1)

= np

and in the last step, one could have used instead of the binomial formula the fact that we
have the PMF of a binomial with parameters (n− 1, l), which sums to 1.
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Example 4.2 (Expectation of a Normal random variable)
Let X ∼ N (µ, σ2), then

E (X) =
∫ ∞
−∞

x√
2π

1
σ

exp
(
− (x− µ)2

2σ2

)
.

First, we verify that E|X| is finite, that is

E (X) =
∫ ∞
−∞

|x|√
2π

1
σ

exp
(
− (x− µ)2

2σ2

)
=
∫ ∞
−∞
|x− µ+ µ| 1√

2π
1
σ

exp
(
− (x− µ)2

2σ2

)
≤ |x− µ|√

2π
1
σ

exp
(
− (x− µ)2

2σ2

)
+ |µ|

which we can write using the fact that the function is even and the density integrates to
one. Thus

|µ|+
∫ ∞
−∞
|t| exp

(
− t2

2σ2

)
1√
2πσ

dt

= |µ|+ 2
∫ ∞

0
t exp

(
− t2

2σ2

)
1√
2πσ

dt

= |µ|+
∫ ∞

0
e−y

1√
2π
dy <∞.

using a change of variable
(
t
σ

)2 1
2 = y, tσdt.

Thus, since the expectation exists, we can use

E (X) =
∫ ∞
−∞

(x− µ+ µ) 1√
2πσ

exp
(
− (x− µ)2

2σ2

)
= µ+

∫ ∞
−∞

t
1√
2πσ

exp
(
− t2

2σ2

)
= µ+

∫ ∞
0

t
1√
2πσ

exp
(
− t2

2σ2

)
−
∫ ∞

0
t

1√
2πσ

exp
(
− t2

2σ2

)
= µ

Example 4.3 (Expectation of a Cauchy random variable)
Let X ∼ t(1), a Cauchy random variable. Then

f(x) = 1
1 + x2

1
π
, x ∈ R
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Then

E (X) =
∫ ∞
−∞

x

1 + x2
1
π
dx

but before proceeding, we verify that E (X) exists.

E|X| =
∫ ∞
−∞

|x|
π(1 + x2)dx

= 2
∫ ∞

0

x

π(1 + x2)dx

≥ 2
π

∫ ∞
1

x

π(1 + x2)dx

= 2
π

∫ ∞
1

1
π(1 + 1/x2)dx

≥ 1
π

∫ ∞
1

1
x
dx

using the fact that 1
π(1+1/x2) is increasing on

( 1
2 , 1
)
. Hence E|X| =∞ and hence E (X) does

not exist.

The Student-t and the Pareto distribution have expectation that do not exist for some values
of ν, α

Example 4.4
Let Y ∼ E(1). We are interested in E (min(Y, 1))

E (min(Y, 1)) =
∫ ∞

0
min(y, 1)e−ydy

=
∫ 1

0
ye−ydy +

∫ ∞
1

e−ydy − 1− e−1

= 1− 2(e−1 + e−1)

If you are not clever and try X = min(Y, 1) for some X ∼ F , and try to compute X, then
by the Lebesgue decomposition theorem, you can write F (x) = p1F1(x)+p2F2(x)+p3F3(x)
with pi ∈ [0, 1] and p1 + p2 + p3 = 1, where F1(x) is discrete, F2(x) is a density and F3(x)
doesn’t have a density, yet is continuous. We can write

F (x) = e−11(x≥1) + (1− e−1))
[

1− e−x

1− e−1 1(x∈(0,1)) + 1(x≥1)

]
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and could use

E (X) =
∫ ∞
−∞

xdF (x) = p1

∫ ∞
−∞

xdF1(x) + p2

∫ ∞
−∞

xdF2(x)

This can happen in insurance, where companies pay max of claim amount and a maximal
claim size (the remaining part is paid by a reinsurance company) or when dealing with
truncations/censoring phenomenon in biostatistics.

Theorem 4.2
Let X be a random variable, a, b, c ∈ R and let g1, g2 be measurable functions for which
E (gi(X)) exists, i = {1, 2}. Then

a) E (ag1(X) + bg2(X)) = aE (g1(X)) + bE (g2(X)).

b) If g1(x) ≥ 0 ∀ x ∈ R, then E (g1(X)) ≥ 0.

c) If g1(x) ≥ g2(x) ∀ x ∈ R, then E (g1(X)) ≥ E (g2(X)).

d) If a ≤ g1(x) ≤ b ∀ x ∈ R, then a ≤ E (g1(X)) ≤ b.

Proof

a)

E (|ag1(X) + bg2(X)|) =
∫ ∞
−∞
|ag1(x) + bg2(x)|dF (x)

=≤
∫ ∞
−∞
|a||g1(x)|+ |b||g2(x)|

≤ |a|
∫ ∞
−∞
|g1(x)|dF (x) + |b|

∫ ∞
−∞
|g2(x)|dF (x)

<∞

�

E will be a monotone operator.

The above conditions are unnecessarily stringent, as we are only concerned about the above
conditions holding almost surely. Otherwise, the density or PMF is zero. We will make this
more precise in the following remarks
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Remark
· P(X ∈ A) = E

(
1(X∈A)

)
, thus∫

A

f(x)dx =
∫ ∞
−∞

1(x∈A)f(x)dx = E
(
1(X∈A)

)
· Suppose that P(X ∈ A) = 0, then E

(
1(X∈A)g(X)

)
= 0. This is immediate as the

intersection in the support with x ∈ A is empty, so we are summing over no term.
This may not be that obvious in the continuous case.

Lemma 4.3
If A is such that P(X ∈ A) = 0, then for arbitrary (measurable) g, E

(
g(X)1(X∈A)

)
= 0

Proof We will show that E
(
|g(X)|1(X∈A)

)
= 0, using the fact that |g(X)| is a non-negative

function. Suppose first that g is of the form

g(x) =
m∑
k=1

ak1(x∈Ak)

such that g is simple. If we are interested in

E
(
g(X)1(X∈A)

)
= E

(
m∑
k=1

ak1(X∈Ak)1(X∈A)

)

= E
(

m∑
k=1

ak1(X∈Ak∩A)

)

=
m∑
k=1

akE
(
1(X∈Ak∩A)

)
=

m∑
k=1

akP(X ∈ Ak ∩A)

≤ P(X ∈ A) = 0

�

Proposition 4.4
For any non-negative measurable g, there exists a sequence {gn} of simple functions such
that gn(x)→ g(x) as n→∞. The simple functions can be taken increasing and E (gn(X))→
E (g(X)) . Since each of these are zero, then E (g(X)) = 0. This uses monotone convergence
theorem (Lévy’s theorem).
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Theorem 4.5
The previous theorem can be generalized as follows:

b*) If P(g1(X) ≥ 0) = 1, then E (g1(X)) ≥ 0 (almost surely)

c*) If P(g1(X) ≥ g2(X) = 1, then E (g1(X)) ≥ E (g2(X)).

d*) P(a ≤ g1(X) ≤ b) = 1, then a ≤ E (g1(X)) ≤ b.

Proof

b*) We have

E (g1(X)) = E
(
g1(X)

{
1(x∈A) + 1(X∈A{)

})
= E (g1(X)) 1(X∈A) + E (g1(X)) 1(X/∈A)

= E (g1(X)) 1(g1(X)≥0) ≥ 0

where A = {x : g1(x) ≥ 0} using the statement b) of the previous theorem.

�

Lemma 4.6
Suppose that g(x) ≥ 0 ∀ x ∈ R and E (g(X)) = 0. Then P(g(X) > 0) = 0

Proof Let A = {g(X) > 0}. Then

A =
∞⋃
n=1

An, An =
{
g(X) > 1

n

}

which for a sequence of nested intervals A1 ⊂ A2 ⊂ . . . ⊂ A. We can compute P(A) =
limn→∞ P(An). Then,we need P(An) = P

(
g(X) > 1

n

)
. We could write

E (g(X)) = E
(
g(X)1(g(X)> 1

n )

)
+ E

(
g(X)1(g(X)≤ 1

n )

)
≥ E

(
g(X)1(g(X)> 1

n )

)
≥ 1
n

E
(
1(g(X)> 1

n )

)
Thus, we conclude P(An) ≥ 0 for all n and P(an) = 0 ∀ n. �

This can be used to show that if Var(X) = 0, then the random variable is almost surely a
constant.
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Suppose that E
(
(X − b)2) <∞. We look at

min
b

E
(
(X − b)2) = min

b

{
E (X ± E (X)− b)2

}
= min

b

{
E (X − E (X))2 − 2E (X − E (X)) (b− E (X)) + 2(b− E (X))2

}
= min

b

{
E (X − E (X))2 + (b− E (X))2

}
= E (X − E (X))2

when b = E (X) .

Definition 4.7 (Moments and central moments)
Let X be a random variable, r > 0. Then

· the rth moment of X is given by E (Xr), provided E (Xr) <∞.

· the rth central moment of X is given by E (X − E (X))r.

· When r = 2, then E (X − E (X))2 ≡ Var (X), the variance, which is a measure of
dispersion.

Remark
If E|X|r <∞, then E|X|s <∞ ∀ s ∈ [0, r].

Lemma 4.8 (Properties of the variance)
Let X be a random variable such that E (X) <∞.

(a) Var (X) exists if and only if E
(
X2) <∞.

(b) Var (X) = E
(
X2)− (E (X))2.

(c) Var (aX + b) = a2Var (X), for a, b ∈ R.

(d) Var (X) = 0 if and only if X = b almost surely for some b ∈ R.

(e) E (X − b)2 ≥ E (X − E (X))2 for all b ∈ R, provided E (X)2
<∞.

Proof

(a) Looking at

(X − E (X))2 + (X + E (X))2 = 2X2 + 2(E (X))2
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and taking expectations, we have

E (X − E (X))2 + E (X + E (X))2 = 2E
(
X2)+ 2(E (X))2

and since the second term on the left hand side is positive, then Var (X) ≤ 2(E
(
X2)+

(E (X))2) and as such

E
(
X2) ≤ 2E (X − E (X))2 + 2(E (X))2 ⇔ E

(
X2) ≤ 2Var (X) + 2(E (X))2

(d) Var (X) = 0⇔ E (X − E (X))2 = 0⇒ X = E (X) almost surely.

�

LetX = (X1, . . . , Xd)>, for example takeX ∼ Nd(µ,Σ). Now Xi ∼ N (µi, σii) and remark
that µ = (E (X1) , . . . ,E (Xd))>.

Definition 4.9 (Moments of random vectors)
Let X be a random vector such that E (Xi) < ∞ for i ∈ {1, . . . , d}. Then E (X) =
(E (X1) , . . . ,E (Xd))>.

Remark
Taking g(X) = (g1(X1, . . . , Xd), . . . , gn(X1, . . . , Xd))>. Then

E (g(X)) =

E (g1(X1, . . . , Xd))
· · ·

E (gn(X1, . . . , Xd))


and we can write each term as

E (gi(X1, . . . , Xd)) =
∫ ∞
−∞

ydGi(y)

, where Gi is the CDF of gi(X1, . . . , Xd). If you are a little more astute, you can write this
as

=
∫ ∞
−∞
· · ·
∫ ∞
−∞

g(x1, . . . , xd)dF (x1, . . . , xd)

and where F is the CDF of X = (X1, . . . , Xd), which is either the sum over the support of
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each Xi if X is discrete, and the integral if it has a density f , namely

=
∑

gi(x1, . . . , xd)f(x1, . . . , xd)

=
∫ ∞
−∞
· · ·
∫ ∞
−∞

g(x1, . . . , xd)f(x1, . . . , xd)dx1 . . . dxd

Definition 4.10 (Covariance and correlation)
Let (X,Y ) be a random vector such that Var (X) and Var (Y ) both exist. Then

(a) The covariance is defined as Cov(X,Y ) = E ((X − E (X))(Y − E (Y )))

(b) cor(X,Y ) is given by

cor(X,Y ) ≡ Cov(X,Y )√
Var (X) Var (Y )

,

also known as linear correlation or Pearson’s correlation.

Lemma 4.11 (Properties of covariance and correlation)
Suppose that the following moments are well-defined. Then

(a) Cov (X,Y ) = E (XY )− (E (X))(E (Y ))

(b) Cov (X,Y ) = Cov (Y,X)

(b*) cor(X,Y ) = cor(Y,X)

(c) Cov (aX + b, cY + d) = acCov (X,Y ) for a, b, c, d ∈ R

(c*) cor(aX + b, cY + d) = ac
|a||c|cor(X,Y ) provided that a, c 6= 0.

(d) Cov (X,X) = Var (X)

(d*) cor(X,X) = 1

Example 4.5
Take f(x, y) = 1(0<x<1,x<y<x+1), a triangular density

Then (X,Y ) with density f illustrated, what is Cov (X,Y )? Note that X has density f1(x) =∫ x+1
x

1dy = 1(x∈(0,1)) so X ∼ U(0, 1) and E (X) = 1
2 while Var (X) = 1

12 . Now Y has density

f2(y) =


∫ y

0 1dx = y∫ 1
y−1 1dx = 2− y
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y

x
1

1

2

Thus

E (Y ) =
∫ 2

0
yf2(y)dy

=
∫ 1

0
y2dy +

∫ 2

1
y(2− y)dy

= 1
3 + (4− 1)−

(
8
3 −

1
3

)
= 3− 2 = 1

so Var (Y ) = E
(
Y 2)− 1 and

E
(
Y 2) =

∫ 1

0
y3dy +

∫ 2

1
y2(2− y)dy

= 1
4 + 2

3(8− 1) =
(

16
4 −

1
4

)
= −14

4 + 14
3 = 14

12
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thus Var (Y ) = 14
12 − 1 = 1

6 . Now

E (XY ) =
∫ ∞
−∞

∫ ∞
−∞

xyf(x, y)dxdy

=
∫ 1

0

∫ x+1

x

x

2dydx

=
∫ 1

0

x

2
(
(x+ 1)2 − x2) dx

=
∫ 1

0

(
x2 + x

2

)
dx

= 1
3 + 1

4
= 7

12

so Cov (X,Y ) = 7
12 −

1
2 = 1

12 therefore

cor(X,Y ) =
1
12√
1
12 ·

2
12

= 1√
2
.

Theorem 4.12 (Independence and correlation)
Let X,Y be random variable such that Var (X) 6= 0 and Var (Y ) 6= 0 both exist. Then

(a) X ⊥⊥ Y imply that Cov (X,Y ) = cor(X,Y ) = 0

(b) If cor(X,Y ) = 0 (or Cov(X,Y ) = 0). then X and Y are not necessarily independent.

Proof

(a)

E (XY ) =
∫ ∞
−∞

∫ ∞
−∞

xyf1(x)f2(y)dydx = E (X) E (Y )

and hence Cov (X,Y ) = 0

(b) Take Z ∼ N (0, 1) with X = Z, Y = Z2, then E (XY ) = E
(
Z3) = 0 and E (X) = 0

imply that Cov (X,Y ) = 0.

�
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Remark
Note that E (X + Y ) = E (X) + E (Y ); this is always the case using linearity and E (XY ) =
E (X) E (Y ) when X ⊥⊥ Y (this can also happen otherwise, but is then a coincidence.)

Theorem 4.13 (Properties of the variance)
Consider X,Y random variables with finite variances.

(a) Var (X + Y ) = Var (X) + Var (Y ) + 2Cov (X,Y )

(b) When X ⊥⊥ Y, then Var (X + Y ) = Var (X) + Var (Y ). (or more generally, when
Cov (X,Y ) = 0, that is when X and Y are uncorrelated).

Example 4.6
Taking U ∼ U(0, 2) and V ∼ U(0, 1) and U ⊥⊥ V , then X = U and Y = U +V has precisely
the triangular density we worked with earlier with the transformation

f(x, y) = 1(0<x<1)1(y−x∈(0,1)) = 1(0<x<1)1(x<y<x+1)

Then E (Y ) = E (Y )+E (V ) = 1
2 + 1

2 = 1 and Var (Y ) = Var (U + V ) = Var (U)+Var (V ) = 2
12

and Cov (X,Y ) = Cov (U,U − V ) = Var (Y ) + Cov (U, V ) = 1
12 .

Remark
Think about it first before calculation, there may be a easier way to do it

We may wonder whether cor(X,Y ) is a good measure of the dependence between X and Y .
Pros:

· It is easy to compute, as the empirical estimate is

ĉor = 1
n

n∑
i=1

(Xi − X̄)(Yi − Ȳ )

· It is bounded and standardized quantity, as |cor(X,Y )| ≤ 1

· If X ⊥⊥ Y imply cor(X,Y ) = 0

· cor(X,Y ) = 1 if and only if Y = aX + b almost surely where a > 0. This is used in
regression, in the R2 statistic.

· Also, cor(X,Y ) = −1 if and only if Y = aX + b almost surely where a < 0.

if (X,Y ) ∼ N2
(
(µ1, µ2)>, ( σ11 σ12

σ12 σ22 )
)
, then E (X) = µ1,E (Y ) = µ2 and Var (X) = σ11,

similarly Var (Y ) = σ22. Then Cov (X,Y ) = σ12, cor(X,Y ) = 0 imply X ⊥⊥ Y and all values
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in the interval [−1, 1] are attained. If we are not however in this specific framework, this
statement is grossly false, which we will show shortly.

Also, in the case where (X,Y ) are bivariate Normal

1. ρ is always well-defined.

2. ρ(X,Y ) = 0⇔ X ⊥ Y

3. |ρ| ≤ 1: we have ρ = 1, if and only if Y=aX + b, b ∈ R, a > 0 almost surely. Similarly,
ρ = −1 if and only if Y=aX + b, for a < 0, b ∈ R almost surely.

4. ρ appears directly in the model, as ρ = σ12√
σ11σ22

. Values of ρ are interpretable, ρ close
to zero implies that X and Y are close to be independent, and ρ close to ±1 implies
that X,Y are close to perfect dependence.

While if X,Y are arbitrary

1. ρ is not necessarily well-defined (we need Var (X) <∞,Var (Y ) <∞)

2. If X ⊥⊥ Y , then ρ(X,Y ) = 0, but not conversely.

3. If |ρ| ≤ 1.

Consider the function h(t) = E
{

((X − E (X))t+ (Y − E (Y )))2} for h : R→ R, h(t) ≥
0 and h(t) = t2Var (X)+Var (Y )+2tCov (X,Y ), which is a quadratic function in t. If we
look at the roots of the function, namely h(t) has at most one root. The discriminant
is

4(Cov (X,Y ))2 − 4VarXVarY ≤ 0 ⇔ |Cov (X,Y ) | ≤
√

Var (X) Var (Y )

If follows that ρ = 1 if and only if Y=aX + b for a > 0, b ∈ R almost surely and
that ρ = −1 if and only if Y=aX + b, for a < 0, b ∈ R almost surely. This is since if
|ρ| = 1, then h(t0) = 0 for some t0 implies E

(
((X − E (X))t0 + (Y − E (Y )))2) = 0,

then ((X − E (X))t+ (Y − E (Y ))) = 0 almost surely, and we conclude Y = E (Y ) +
t0E (X) − t0X almost surely. Careful: for given marginal distributions of X and Y ,
the bounds ±1 are not necessarily attained.

4. ρ is not necessarily interpretable. If ρ ≈ 0, this does not imply that X and Y are close
to being independent. Also, if |ρ| ≈ 1, this also does not entail that X and Y are close
to be perfectly dependent. For example, Y = g(x) where g is monotone. This may
impose stringent restrictions on the values obtainable on the correlation.

For example, the third point, in insurance, we know that claims are non-negative. A
common distribution is lognormal: suppose that X,Y are both lognormal distributed.
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Figure 9: Bounds for ρ as a function of σ, Lognormal distribution.

σ

%

%min

%max

1 2 3 4 5

-1

-0.5

0

0.5

1

Another measure of dependence, proposed in 1903 by Spearman, is the Spearman’s corre-
lation coefficient ρs. Suppose that X ∼ F, Y ∼ G both continuous distributions. Then

ρs = cor(F (x), G(y))

This will be no problem with (1), since the variance of a uniform random variable is finite,
similarly for (3). The only problematic remains (2).

In the multivariate case, X = (X1, . . . , Xd)>, then E (X) = (E (X1) , . . . ,E (Xd))> and for
the variance, we look at the covariance matrix Σ ∈ Rd×d and Σij = Cov (Xi, Xj). You only
get the dependence of the pairs.

Provided that Σ exists, (that is E
(
X2
i

)
<∞) ∀ i ∈ {1, . . . , d}. Then

· Σ is symmetric, since Cov (Xi, Xj) = E(Xi − EXi)(Xj − EXj) = Cov (Xj , Xi)

· Σ is positive semi-definite, if h ∈ Rd, then

h>Σh =
d∑

i,j=1
hiCov (Xi, Xj)hj

=
d∑

i,j=1
E (hi(Xi − EXi)(hj(Xj − EXj))

= E

 d∑
i,j=1

hi(Xi − EXi)(hj(Xj − EXj)


= E

{ d∑
i=1

hi(Xi − EXi)
}2

· If A ∈ Rm×d, then Cov (AX) = AΣA>
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Chapter 5
Moment generating function

Let X be a random variable. As we have seen in some of the examples, it can be tricky and
tedious to calculate say the rth moment of a distribution.

Definition 5.1 (Moment generating function)
Let X be a random variable with CDF F . The moment generating function MX of X is
given by

MX(t) = E
(
etX
)

provided MX exists for all t ∈ (−ε, ε) for ε > 0. Then,

MX(t) =


∫∞
−∞ etxf(x)dx if X has density f∑
x e

txf(x) if X is discrete .

Example 5.1
Let X ∼ B(n, p), then

EetX =
n∑
k=0

etk
(
n

k

)
pk(1− p)n−k

=
n∑
k=0

(
n

k

)
(pet)k(1− p)n−k

= (pet + 1− p)n ∀ t ∈ R

Example 5.2
Let X ∼ G(α, β) with α > 0, β > 0 with density given by

f(x) = 1
Γ(α)βαx

α−1e−
x
β , x > 0

Then

MX(t) =
∫ ∞

0
etx

1
Γ(α)βαx

α−1e−
x
β dx

=
∫ ∞

0

1
Γ(α)βαx

α−1e−x(
1
β−t)dx

If 1
β − t > 0 if and only if t < 1

β , integral will be finite. By a change of variable with
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y = x
(

1
β − t

)
, dy = dx =

(
1
β − t

)
, we can take the constants outside the integral to get

= 1
Γ(α)βα

1(
1
β − t

)α ∫ ∞
0

(x
(

1
β
− t
)α−1

e−x(
1
β−t)

= 1
Γ(α)βα

1(
1
β − t

)α ∫ ∞
0

yα−1e−ydy

using the fact that the integral is that of the Gamma function, equal to Γ(α). and so we
conclude the moment generating function is (1− βt)−α.

Example 5.3
Let X be Pareto distributed Pa(α) with distribution given by f(x) = αx−α−1, x ≥ 1. Then
the MGF is given by

MX(t) =
∫ ∞

1
etxαx−α−1dx

which diverges as x→∞ when t > 0. Thus MX does not exist.

If we look at a dirty calculation, we can express the exponential as a Taylor series

E
(
etX
)

= E
( ∞∑
k=0

(
(tX)k

k!

))
?=
∞∑
k=0

(tkE
(
X)k

)
k!

Then looking at the derivative,

M
(l)
X (t) ?=

∞∑
k=l

E
(
Xk
)

k! k(k − 1) · · · (k − l + 1)tk−l

and setting t = 0, we have

M
(l)
X (t)

∣∣∣
t=0

= E
(
X l
) l!
l! = E

(
X l
)

Let X be a random variable. Then MX(t) = E (e)tX , for t ∈ (−ε, ε).

Exercise 5.1
· If X ∼ P(λ), then MX(t) = eλ(et−1), t ∈ R.
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· If X ∼ NB(r, p) then

MX(t) =
(

p

1− (1− p)et

)r
, for p ∈ (0, 1), t < − log(1− p)

· If X ∼ N (µ, σ2), then

MX(t) = exp
(
µt+ σ2t2

2

)
, t ∈ R

Theorem 5.2
Suppose that the moment generating function (MGF) exists for all t ∈ (−ε, ε) for ε > 0.
Then, E

(
Xk
)
exists for every k ∈ {1, 2, . . .} and

E
(
Xk
)

= M
(k)
X (0)

Remark
If E

(
Xk
)
does not exist for some k ∈ {1, 2, . . .}, then MX does not exist. (Student-t,

Cauchy, Pareto are among classical examples of distributions who do not have a MGF).

Proof We can write for fixed t ∈ (−ε, ε)

E
(
etX
)

= E
( ∞∑
l=0

tlX l

l!

)

= E
(

lim
n→∞

n∑
l=0

tlX l

l!

)

and define fn by fn(x) =
∑n
l=0

tlxl

l! .

Then

E
(
etX
)

= E
(

lim
n→∞

fn(X)
)

The question now is whether we could interchange expectations and limit. If it is the case
that we have a sequence of non-negative increasing functions, we could do so. However, t
is arbitrary. There is nevertheless another way to do this, using the Dominated Conver-
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gence theorem, namely if ∀ n, |fn(x)| ≤ g(x) and E (g(X)) <∞. In our case

|fn(x)| ≤
n∑
l=0

|t|l|x|p

l!

≤
∞∑
l=0

|t|l|x|p

l!

= e|t||x|

= etX + e−tX = g(x)

and it suffices to verify that

E (g(X)) = E
(
etX + e−tX

)
= E

(
etX
)

+ E
(
e−tX

)
= MX(t) +MX(−t) <∞

Hence

MX(t) lim
n→∞

E
(

n∑
l=0

tlX l

l!

)

= lim
n→∞

n∑
l=0

tlE
(
X l
)

l!

=
∞∑
l=0

tlE
(
X l
)

l!

HenceMX(t) is a power series, it converges for t ∈ (−ε, ε) and hence it can be differentiated
term by term of any order at 0. �

Example 5.4
If X ∼ G(α, β), then the MGF exists and is equal to

MX(t) = (1− tβ)−α, t <
1
β

Then

E (X) = M ′X(t)|t=0

= (−α)(1− tβ)−α−1(−β)

= αβ
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Example 5.5
If X ∼ P(λ), then MX(t) = eλ(et−1). We can compute the first moment using the MGF as
M ′X(t) = eλ(et−1)etλ and so E (X) = M ′X(0) = λ.

We have seen that if some higher moments do not exist for a distribution, then we do not
have a MGF. Is it the case that a MGF necessarily exists for a distribution having all finite
moments. Unfortunately not; here is a canonical example.

Example 5.6 (Non-existence of MGF for Lognormal distribution)
Consider X ∼ LN (0, 1), X d= eY for Y ∼ N (0, 1). Then

fX(x) = 1√
2πx

exp
(
− log(x)2

2

)
, 0 ≤ x <∞

and then

E
(
Xk
)

=
∫ ∞

0

xk−1
√

2π
exp

(
− log(x)2

2

)
dx <∞

But

MX(t) =
∫ ∞

0

etx√
2πx

exp
(
− log(x)2

2

)
dx

=
∫ ∞

0

1√
2π

exp
(
tx− log(x)− log(x)2

2

)
dx

goes to ∞ if t > 0.

Remark
If E

(
Xk
)
<∞ for all k ∈ {1, 2, . . .}, then MX(t) does not necessarily exist.

Theorem 5.3
Let X be a random variable so that E

(
Xk
)
exists for k ∈ {1, 2, . . .}. Then

(a) If
∑∞
l=0

tlE(|X|l)
l! <∞ for t ∈ (−ε, ε) for some ε > 0, then MX exists on (−ε, ε)

(b) If X has a bounded support, then MX exists

Proof Taking

E
(
|X|l

)
=
∫ ∞
−∞
|x|lf(x)dx ≤ cl

for c some constant. �
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The moment problem: suppose that E
(
Xk
)
,E
(
Y l
)
exist for all k ∈ {1, 2, . . .} and E

(
Xk
)

=
E
(
Y k
)
∀ k ∈ {1, 2, . . .}. Can we conclude that X d= Y ? Again, not.

Example 5.7
Let X ∼ LN (0, 1) and Y has density

fY (y) = fX(y) + fX(y) sin(2π log(y))

= 1√
2πy

e−
ln(y)2

2 (1 + sin(2π log(y))1(y>0)

and E
(
Xk
)

= E
(
Y k
)
for all k ∈ {1, 2, . . .}. One could use a transformation with t =

log(y)− k.

Theorem 5.4
Let X and Y be random variables

(a) If MX and MY exist and are equal, i.e. MX(t) = MY (t) ∀ t ∈ (−ε, ε), then X d= Y.

(b) If X and Y have bounded supports and E
(
Xk
)

= E
(
Y k
)
for all k ∈ {1, 2, . . .}, then

X
d= Y

An interesting property of the MGF MX is that it characterizes the distribution of X
uniquely.

Theorem 5.5
Let X and Y be random variables with MGFs MX ,MY . Then

(a) For all a, b ∈ R and t such that MX(at) exists,

MaX+b(t) = ebtMX(at)

(b) If X ⊥⊥ Y , then for all t for which MX(t) and MY (t) exist,

MX+Y (t) = MX(t)MY (t)

Proof

(a) MaX+b(t) = E
(
e(aX+b)t) = E

(
eaXtebt

)
= ebtE

(
eatX

)
= ebtMX(at)

(b) If one look at the moment generating function of X + Y at t

MX+Y (t) = E
(
etX+tY ) = E

(
etXetY

)
= E

(
etX
)

E
(
etY
)

= MX(t)MY (t)
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using independence in the last step, and taking t in the smallest of the two neighbor-
hoods.

�

Note that if ebt, t ∈ R is a MGF of a degenerate random variable almost surely equal to b,
a constant.
Example 5.8 (Convolution of Poisson using MGF)
Let X ∼ P(λ), Y ∼ P(µ) independent, then X + Y we have shown will be Poisson with
parameter λ+ µ. Then

MXY (t) = eλ(et−1)eµ(et−1) = e(λ+µ)(et−1)

and since the MGF determines the distribution function uniquely, then we conclude X +
Y ∼ P(λ+ µ). This result works well for distributions exhibiting infinite divisibility.

Example 5.9
Let X ∼ G(α, β) and Y ∼ G(α∗, β), which share the same scale parameter, but can have
different shape and such that X ⊥⊥ Y . Then

MX+Y (t) = (1− tβ)−α(1− tβ)−α
∗

= (1− tβ)−(α+α∗)

for t < 1
β so that X + Y ∼ G(α+ α∗, β).

Suppose now that Y ∼ G(α∗, β∗). Then

MX+Y (t) = (1− tβ)−α(1− tβ∗)−α
∗

for t < min(β−1, β∗−1) which is not so helpful.

More generally, X1 ⊥⊥ . . . ⊥⊥ Xn, then M∑Xi
=
∏n
i=1MXi(t)

Exercise 5.2
If X1, . . . , Xn

iid∼ G(p), then one can check that
∑
−i = 1nXi ∼ NB(n, p).

We can also define the MGF for random vectors, which will now be a d-placed function, for
X = (X1, . . . , Xd) and

MX(t1, . . . , tα) = E
(
et1X1+···+tdXd

)
= E

(
et
>X
)
.

The MGF of X exists if E
(
et
>X
)

is finite for ti ∈ (−ε, ε) for all i ∈ {1, . . . , d} and
ε = min{εi}. As in the univariate case, we have
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· MGF does not need to exist (for example, the multivariate Student t

· If MGF exists, then it characterizes the distribution of X

· Moments can be recovered easily. In the simple case where d = 2

∂k+lMX(t1, t2)
∂kt1∂lt2

∣∣∣∣
t1=0,t2=0

= E
(
Xk

1X
l
2
)

for l, k ∈ {0, 1, . . .}.

· The MGF of Xi is

MXi(ti) = E
(
etiXi

)
= MX(0, . . . ti, 0, . . . , 0)

· X1, . . . , Xd are independent if and only if MX(t1, . . . , td) =
∏d
i=1MXi(ti). Indeed, we

can factor the margins if we have interrelatedness, and since the MGF characterizes
the distribution uniquely, then the other side follows.

While the MGF is handy, it is not always defined and doesn’t exist for certain distributions.
There is something that should remind you of Fourier transforms.

Section 5.1. Characteristic function

Definition 5.6 (Univariate characteristic function)
Let X be a random variable. The the CF of X is given by

XX(t) = E
(
eitX

)
, t ∈ R

is always defined for any t as eitx = cos(tx) + i sin(tx) and E
(
eitX

)
= E (cos(tX)) +

iE (sin(tX)) and since both sin, cos are bounded in absolute value by 1, and the norm of
eitx is less than one. Indeed, |E (cos(tX)) | ≤ 1 because | cos(tX)| ≤ 1 and E (sin(tX)) ≤ 1.
Hence CX(t) exist ∀ t ∈ R, whatever X

Example 5.10
Let X be double exponential (Laplace distribution) with density

fX(x) = 1
2e
−|x|1(x∈R)

Then

E (sin(tX)) =
∫ ∞
−∞

sin(tx)e|x| 12dx = 0
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since sin(·) is an odd function, there is no contribution from the imaginary part. Now

E (cos(tX)) = 2
∫ ∞

0
cos(tx)e−x 1

2dx

= 1
1 + t2

using partial integration twice, therefore CX(t) = (1 + t2)−1.

Example 5.11
Taking X ∼ N (0, 1), we have

CX(t) =
∫ ∞
−∞

eitx
1√
2π
e−

x2
2 dx∫ ∞

−∞
e−

t2
2

1√
2π
e−

(x−it)2
2 dx

= e−
t2
2

completing the square and using integrating the density of a Normal random variable with
mean parameter it.

Example 5.12
Let X ∼ C(0, 1), the Cauchy distribution, with CX(t) = e−|t|

Proposition 5.7 (Properties of the characteristic functions)
1. The characteristic function (CF) characterizes the distribution of X uniquely.

2. |CX(t)| ≤ 1

3. If X has density f , then

CX(t) =
∫ ∞
−∞

eitxf(x)dx

The Fourier transform of f is ∫ ∞
−∞

e−2πitxf(x)dx

f can be reconstructed from CX by means of the inverse Fourier transform. The character-
istic function may not be differentiated at 0.

If X has moments up to the order k ∈ {1, 2, . . .} (provided E
(
Xk
)
exist), if and only if, CX
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is k−times differentiable at 0 and

E
(
Xk
)

= ikC
(k)
X (0)

If X ⊥⊥ Y , then CX+Y (t) = CX(t)CY (t) and this can be generalized for n independent
variables, that is if X1 ⊥⊥ X2 ⊥⊥ . . . ⊥⊥ Xn, then

CX1+X2+···+Xn(t) =
n∏
i=1

CXi(t)

Considering a sum of Cauchy random variables, then CX1+X2 will be Cauchy with a different
scale parameters.

Melian, Stieltjes and Laplace transforms are other example of transformations that are used
frequently in probability theory.
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Chapter 6
Exponential families

Definition 6.1
Let PX = {PXθ ,θ ∈ Θ} be a family of probability distributions on (R,B). Then PX is called
a k-parameter exponential family if the PDFs/PMFs can be expressed in the form

f(x|θ) = h(x) · c(θ) exp


k∑
j=1

ωj(θ) · tj(x)

 , ∀ x ∈ R

where7

1. θ ∈ Θ is a d-dimensional parameter

2. h(x) is a real-valued (measurable) function; h ≥ 0 and does not depend on θ.

3. c is strictly positive, c > 0 is a real-valued function that does not depend on x.

4. t(x) = (t1(x), . . . , tk(x)) is a vector of real-valued measurable functions that do not
depend on θ.

5. ω = (ω1, . . . , ωk) is a vector of real-valued functions that do not depend on x.

Example 6.1
Consider PX = {N (µ, σ2), µ ∈ R, σ ∈ (0,∞)} Then

f(x|µ, σ) = 1√
2πσ

exp
(
− (x− µ)2

2σ2

)
1(x∈R)

= 1√
2π

1
σ

exp
(
− x2

2σ2 + 2xµ
2σ2 −

µ2

2σ2

)
1(x∈R)

7The condition ∀ x ∈ R is crucial in this definition
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Then taking

h(x) = 1√
2π

1(x∈R)

c(µ, σ2) = 1
σ

exp
(
− µ2

2σ2

)
t1(x) = −x2

t2(x) = x

ω1(µ, σ) = 1
2σ2

ω2(µ, σ2) = µ

σ2

therefore the Normal random variables belong to an Exponential family.
Example 6.2
Consider PX = {B(n, p), p ∈ (0, 1), n ∈ {1, 2, . . .}}, but also PXn = {B(n, p), p ∈ (0, 1)} Then

f(x|n, p) =
(
n

x

)
px(1− p)n−x1(x∈{0,1,...,n})

= n!
x!(n− x)!e

x log(p)(1− p)ne−x log(n−p)

We clearly see that PX is not an Exponential family if n is a parameter, as we have
1(x∈(0,...,n)) depends on x and n. For n fixed, we however have

h(x) =
(
n

x

)
1(x∈{0,1,...,n})

c(p) = (1− p)n

t(x) = x

ω(p) = log(p)− log(1− p) = log
(

p

1− p

)
and so PXn is Exponential family.
Example 6.3
Taking PX = {f(x|θ), θ ∈ (0,∞)} Then

f(x|θ) = 1
θ

exp
(

1− x

θ

)
1(x>θ)

= 1
θ
e1e−

x
θ 1(x>θ)

Whenever the domain depend on θ, there is no chance that the family be exponential.
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Recall we had

f(x|θ) = h(x)c(θ) exp

 k∑
j=1

ωj(θ)tj(x)


where c(θ) > 0 is strictly positive.

Example 6.4
Consider the case of N (µ, σ2), then we can take

h(x) = 1√
2π

c(µ, σ2) = 1
σ

exp
(
− µ2

2σ2

)
ω1(µ, σ2) = 1

σ2

ω2(µ, σ2) = µ

σ2

t1(x) = −x
2

2
t2(x) = x

Note
· h, , c, w, t are not unique. We could for example have taken h(x) = 1, c(µ, σ2) =

1√
2π

1
σ exp(−µ2/(2σ2)), t1(x) = x2) and ω1(µ, σ2) = −(2σ2)−1.

· Note that k is not unique. Indeed, consider

ω1(µ, σ2)t1(x) + ω2(µ, σ2)t2(x) = − x2

2σ2 + µx

σ2

= − x2

2σ2 + µx

lσ2 + · · ·+ µx

lσ2

for some l ∈ N, the second component appears l times.

· If x1, . . . , xn is an IID sample from f(x|θ), then the likelihood function is

L(θ) =
n∏
i=1

f(xi|θ)

=
n∏
i=1

h(xi) (c(θ))n exp


n∑
i=1

k∑
j=1

ωi(θ)tj(xi)
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and recall from statistics that we can gather all informations regarding the unknown
parameters from the sufficient statistic, which in this case, we have(

n∑
i=1

ti(xi), . . . ,
n∑
i=1

tk(xi)l
)

is sufficient for θ

Remark
Rather than using the Lebesgue or the counting measure, we could have Exponential family
can be defined on (X ,B) and f(x|θ) is a density on BXθ with respect to some measure µ on
(X ,B).

Remark
We have

∫ ∞
−∞

f(x|θ)dx = 1 ⇔
∫ ∞
−∞

h(x)c(θ) exp


n∑
i=1

k∑
j=1

ωi(θ)tj(xi)

 dx = 1

⇔ c(θ) = 1∫∞
−∞ h(x) exp

{∑n
i=1
∑k
j=1 ωi(θ)tj(xi)

}
dx

Hence c(θ) depends on θ only through ω1(θ), . . . , ωk(θ). We could consider a new parametriza-
tion with new parameters (η1, . . . , ηk) where ηj = ωj(θ). These parameters are called
canonical or natural parameters. In our previous example, η1 = 1

σ2 and η2 = µ
σ2 (where

we chose t1(x) = −x
2

2 , t2(x) = x.

In the canonical parametrization, we have

F (x|η) = h(x)c∗(η) exp

 k∑
j=1

ηjtj(x)


We see that for (η1, . . . , ηk) ∈ {(ω1(θ), . . . , ωk(θ)|θ ∈ Θ}. Then f(x|η) is a valid PDF (or
PMF). But there can be more η’s; we need

H =

(η1, . . . , ηk) :
∫ ∞
−∞

h(x) exp

 k∑
j=1

ηjtj(x)

 dx <∞
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Example 6.5
Again, consider the Normal family N (µ, σ2). Our H corresponds to

H =
{

(η1, η2) :
∫ ∞
−∞

1√
2π

exp
(
η1

(
−x

2

2

)
+ η2x

)
dx

}
= (0,∞)× R

=
{(

1
σ2 ,

µ

σ2

)
, σ2 > 0, µ ∈ R

}
= ω(Θ)

Example 6.6
Consider the family N (µ, µ2) with

f(x|µ) = 1√
2π|µ|

exp
(
− x2

2µ2 + xµ

µ2 −
1
2

)
= 1√

2π
1
|µ|
e−

1
2 e
− x2

2µ2 + x
2

Cleverly choose

c(µ) = 1√
2π

1
|µ|
e−

1
2

ω1(µ) = 1
µ2

θ1(x) = −x
2

2
ω2 = 1

µ

t2(x) = x

and h(x) = 1. The natural parameters are η1 = 1
µ2 , η2 = 1

µ and hence

H =
{

(η1, η2) :
∫ ∞
−∞

e−
x2
2 η1+xη2dx <∞

}
= (0,∞)× R 6=

{(
1
µ2 ,

1
µ

)
, µ ∈ R

}
and hence conclude that ω(Θ) ⊆ H.

Example 6.7
Consider the family of Binomial distributions B(n, p), with n fixed and p ∈ (0, 1). Then

f(x|p) = 1(x∈{0,...,n})

(
n

x

)
(1− p)nex ln p

1−p
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with h(x) =
(
n
x

)
, c(p) = (1− p)n, t1(x) = x, ω1(p) = ln

(
p

1−p

)
. The canonical parameter is

η = ln
(

p
1−p

)
and

H =
{
η :

n∑
x=0

(
n

x

)
exη <∞

}
= {(1 + eη)n <∞ ∀ η ∈ R} = R

Here

H =
{

ln
(

p

1− p

)
, p ∈ (0, 1)

}
Theorem 6.2
Let PX be a k parametric Exponential family (EF). Then the following are equivalent

1. k is minimal {PX is called a strictly k-parametric EF}

2.
∑k
j=1 ωj(θ)aj + a0 = 0 ∀ θ ∈ Θ if and only if a0 = a1 = · · · = ak = 0 (namely

ω1, . . . , ωk are affine independent).

3.
∑k
j=1 tj(x)aj = a0 = 0 for almost all x if and only if a0 = a1 = . . . , ak = 0 (t1, . . . , tk

are affine independent.)

Proof [Sketch] (1) ⇒ (2): Suppose that
∑k
j=1 ωj(θ)aj + a0 = 0 ∀ θ ∈ Θ, but that

∃aj , j ∈ {1, . . . , k} so that aj = 0. WLOG, say ak 6= 0. Then

ωk(θ) = −a0

ak
−
∑
j=1

aj
ak
ωj(θ)

and remark that we could work with k − 1 parameters. Indeed,

f(x|θ) = h(x)c(θ) exp

k−1∑
j=1

ωj(θ)tj(x)− a0

ak
tk(x)−

k−1∑
j=1

aj
ak
ωj(θ)tk(x)


= h(x) exp

(
−a0

ak
tk(x)(θ)

)
exp

k−1∑
j=1

ωj(θ)tj(x)− aj
ak
tk(x)


= h∗(x)c(θ) exp

k−1∑
j=1

ωj(θ)tj(x)− aj
ak
tk(x)

 .

This is a k − 1 parametric Exponential family and so this is a contradiction to (1). �
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Lemma 6.3
The natural (canonical) parameter space H of a strictly k-parametric EF is convex and
has a non-empty interior.

Proof We sketch the result for the case k = 2. The proof uses convexity and hence Hölder’s
inequality to show non-empty interior. Then a1η1 + a2η2 = a0 = 0 ∀ (η1, η2) ∈ H implying
that a1 = a2 = a0 = 0, so H must contain at least three points that do not line on a line.
Because the canonical parameter space is convex, the triangle formed by the three points
yields a non-empty interior. k−1 hyperplane, we have k points which are vertex of a simplex
points, so the interior is non-empty. �

Note
· An Exponential family is called full if

(1) k is minimal (i.e. ω’s and the t’s are affine independent)

(2) H is an open set in Rk8

· An Exponential family is called regular, if the above two conditions and furthermore

(3) H = {(ω1(θ), . . . , ωk(θ)θ ∈ Θ}

while we say that an Exponential family is curved if

{(ω1(θ), . . . , ωk(θ), θ ∈ Θ} ⊂ H

and example of which is our previous example with N (µ, µ2).

Section 6.1. Properties of the Exponential family

Definition 6.4
Let f(x|θ) be a PDF/PMF with some d-dimensional parameter θ ∈ Θ ⊂ Rd. If Θ is open
and ∂f

∂θl
exists on Θ for all l ∈ {1, . . . , d}. Then

S(x|θ) =


S1(x|θ)

...
Sd(x|θ)


and Sl(x|θ) = ∂

∂θl
log f(x|θ) is called a score function.

Note
S(X|θ) is a random vector in Rd.

8We thus avoid estimation problems on the boundary of the set.
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Lemma 6.5
Under suitable regularity conditions,

Eθ(Sl(X|θ)) = 0 ∀ l ∈ {1, . . . , d}

Proof

Eθ(Sl(X|θ)) =
∫ ∞
−∞

(
∂

∂θl
log f(x|θ)

)
f(x|θ)dx

=
∫ ∞
−∞

∂
∂θl
f(x|θ)

f(x|θ) f(x|θ)dx

= ∂

∂θl

∫ ∞
−∞

f(x|θ)dx

= ∂

∂θl
1 = 0

under the regularity condition, interchanging the integration and differentiation, conditions
which can be found in the Casella and Berger book in a section devoted to this matter. �

If f(x|θ),θ ∈ Θ is an Exponential family, then

log f(x|θ) = log(h(x)) + log(c(θ)) +
k∑
j=1

ωj(θ)tj(x)

Then by the lemma,

∂ log(f(x|θ))
∂θl

= ∂

∂θl
log(c(θ)) +

k∑
j=1

∂ωj(θ)
∂θl

tj(x)

Hence

k∑
j=1

∂ωj(θ)
∂θl

E (tj(X)) = − ∂

∂θk
log(c(θ))

for l ∈ {1, . . . , d}

E (Sl(X|θ)) = 0 ∀ l ∈ {1, . . . , d}
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For the Exponential family, we have however stronger results, namely

log(f(x|θ)) = log h(x) + log(c(θ)) +
k∑
j=1

ωj(θ)tj(x)

and thus

∂ log(f(x|θ))
∂θl

= ∂ log(c(θ)
∂θl

+
k∑
j=1

∂ωj(θ)
∂θl

tj(x)

and taking expectations, we have

E (Sl(X|θ)) = 0⇔
k∑
j=1

E
(
∂ωj(θ)
∂θl

tj(X)
)

= −∂ log c(θ)
∂θl

Example 6.8
Let X ∼ B(n, p), p ∈ (0, 1). Then

c(p) = (1− p)n

ω(p) = log p

1− p
t(x) = x

and thus the expectation of the score function

E
(

1− p
p

1− p+ p

(1− p)2 X

)
= − ∂

∂p
(log(1− p)n)

and upon simplification, we have

E
(

1
p(1− p)X

)
= −n 1

1− p (−1)

⇔ 1
p(1− p)E (X) = n

1− p
⇔ E (X) = np
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Example 6.9
Working again with N (µ, σ2), we can parametrize the exponential family as

c(µ, σ2) = 1
σ
e−

µ2

2σ2

ω1(µ, σ) = 1
σ2

ω2(µ, σ) = µ

σ2

t1(x) = −x
2

2
t2(x) = x

and we would get two equations, differentiating with respect to respectively µ and σ

E
(

1
σ2X

)
= ∂

∂µ

(
log(σ) + µ2

2σ2

)
= µ

σ2

and therefore we conclude that E (X) = µ. Differentiating with respect this time to σ, one
obtains

E
(
−2
σ3

(
−X2

2

)
− 2
σ3µX

)
= 1
σ

+ µ2

2

(
− 2
σ3

)
⇔ 1

σ3 E
(
X2)− 2 µ

σ3 E (X) = 1
σ
− µ2

σ2

and replacing E (X) by µ, we get

1
σ3 E

(
X2) = 1

σ
+ µ2

σ3

and hence multiplying by σ3, the final result for the second moment is

E
(
X2) = σ2 + µ2.

Inn the canonical form, we have

log(f(x|η)) = log h(x) + log(c∗(η)) +
k∑
j=1

ηjtij(x)

and again

∂ log(f(x|η))
∂ηl

= ∂ log c∗(η)
∂ηl

+ tl(x)
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and

E (tl(X)) = − ∂

∂ηl
log c∗(η)

Example 6.10
Coming back to our example with the B(n, p), we have

η = log p

1− p ⇔ p = eη

1 + eη

c∗(η) =
(

1
1 + eη

)η
and

E (X) = ∂

∂η
(n log(1 + eη)) = n

eη

1 + eη
= np

Example 6.11
In the Normal case, we have η1 = 1

σ2 , η2 = µ
σ2 and

c∗(η1, η2) = η
− 1

2
1 exp

(
− η2

2
2η1

)
and taking natural logarithm on both sides, we obtain

− log(c∗(η1, η2)) = −1
2 log(η1) + η2

2η1

and the first moment of X is then

E (X) = ∂

∂η2

(
−1

2 log(η1) η
2

2η1

)
= η2

η1

and

E
(
−X

2

2

)
= ∂

∂η1
(· · · ) = − 1

2η1
− η2

2
2η2

1

and

E
(
X2) = 1

η1
+ η2

η2
1

= σ2 + µ2

σ4σ
4

Definition 6.6
Let f(x|θ) be a PDF/PMF with a d dimentional parameter θ. the Fisher-Information
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matrix is a d× d matrix given by

I (θ) = eθ
(
S(X|θ)>S(X|θ)

)
Iil(θ) = Eθ

(
Si(X|θ)>Sl(X|θ)

)
Lemma 6.7
Under regularity conditions,

Ii,l(θ) = −Eθ
([

∂2

∂θi∂θl
log f(X|θ)

])

Proof We know

E (Si(X|θ)) =
∫ ∞
−∞

∂

∂θi
log(f(x|θ))× f(x|θ)dx

Hence

∂

∂θl

∫ ∞
−∞

{
∂

∂θi
log f(x|θ)

}
f(x|θ)dx = 0

which implies in turn, modulo the regularity conditions (interchanging differentiation and
integration)∫ ∞

−∞

{
∂2

∂θi∂θl
log f(X|θ)

}
f(x|θ)dx−

{
∂

∂θi
log(f(x|θ)

}
∂

∂θl
f(x|θ)dx = 0

and we can rewrite this as

−E
(

∂2

∂θi∂θl
log f(X|θ)

)
=
∫ ∞
−∞

{
∂

∂θi
log(f(x|θ)

} ∂
∂θl
f(x|θ)

f(x|θ) f(x|θ)dx

multiplying/dividing by f(x|θ) on the right hand side. The right hand side term

∂
∂θl
f(x|θ)

f(x|θ) = ∂

∂θl
log(f(x|θ) = Eθ

(
Si(X|θ)>Sl(X|θ)

)
as requested. �

If f(x|θ) is an Exponential family,

log f(x|θ) = log h(x) + log c(θ) +
k∑
j=1

ωj(θ)tj(x)
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and so the mixed partials with respect to θl, θi yield

∂2 log f(x|θ)
∂θi∂θl

= ∂2 log c(θ)
∂θi∂θl

+
k∑
j=1

∂2

∂θi∂θl
ωj(θ)tj(x)

hence

−∂
2 log c(θ)
∂θi∂θl

−
k∑
j=1

∂2

∂θi∂θl
ωj(θ)E (tj(X)) = Cov

 k∑
j=1

∂

∂θi
ωj(θ)tj(X),

k∑
j=1

∂

∂θl
ωj(θ)tj(X)


In the canonical parametrization

− ∂2

∂ηi∂ηl
log c∗(η) = Cov (ti(X), tl(X))

and

− ∂2

∂2ηi
log c∗(η) = Var (ti(X))

Example 6.12
For the Binomial example,

VarX = − ∂2

∂2η

(
log
(

1
1 + eη

)n)
= ∂2

∂2η
(n log(1 + eη))

= n
∂

∂η

eη

1 + eη

= n
eη + e2η − e2η

(1 + eη)2

= n
eη

1 + eη
1

1 + eη

= np(1− p)

Example 6.13
Let X ∼ P(λ); the Poisson is a member of the Exponential family. We have

f(x|λ) = e−λ
λx

x! 1(x∈{0,1,...})

choosing h(x) = 1
x!1(x∈{0,1,...}), c(λ) = e−λ and log(λ) = ω(λ) and so η = log λ ⇔ λ = eη
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and c∗(η) = e−e
η and so

E (X) = − ∂

∂η
(log c∗(η))

∂

∂η
eη = λ

and Var (X) = (eη)′′ = eη = λ

Notice that we have η = log p
1−p for the binomial and η = log λ will come again in generalized

linear model course; they are the link functions.

Recall that if f(x|θ) is an Exponential family and X is a random sample from f(x|θ), then

n∑
i=1

ti(Xi, . . . ,

n∑
i=1

tk(Xi)

is sufficient for θ. You will see that efficient estimators will be functions of the sufficient
statistics.

But for j ∈ {1, . . . , d},

E
(

n∑
i=1

tj(Xi)
)

= nE (tj(X1))

= n

(
− ∂

∂ηj
log c∗(η)

)
and

Var
(

n∑
i=1

tj(Xi)
)

= nVar (tj(X1))

Cov
(

n∑
i=1

tj(Xi),
n∑
i=1

tl(Xi)
)

= nCov (tj(X1), tl(X1))

Section 6.2. Exponential tilting

Suppose that f(x) is a PMF/PDF whose MGF exists in some neighborhood of O, say N .
Then, ∀ t ∈ N ,

M(t) = Ee
tX

=
∫ ∞
−∞

etxf(x)dx
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We can introduce the so-called cumulant generating function,

K(t) = log(M(t))

one recovers by differentiating and evaluating at zero, we recover the cumulants, namely the
central moments for the given distribution. We can write

eK(t) =
∫ ∞
−∞

etxf(x)dx

and we get

1 =
∫ ∞
−∞

etx−K(t)f(x)dx

and the integrand is non-negative, therefore

f∗(x|t) = etx−K(t)f(x)

for x ∈ R, t ∈ N is a family of PDFs/PMFs. The family f∗(x|t) is called the exponential
tilting of f

Setting t = 0, we get f∗(x|t) = f(x); the exponential tilting of f is an EF. and

f∗(x|t) = f(x)e−K(t)etx

is already in canonical parametrization ,with f(x) = h(x) and e−K(t) = c(t).

Let f(x) be a density or PMF. This density (PMF) may not have a closed form, but it
has a MGF which is available in closed form. This approximation is not a one-to-one
correspondence, but may work well in certain cases.

Suppose MX exists in a neighborhood N of O; ∀ t ∈ N : K(t) = log(M(t)). If we take
f(x)etx−K(t) = f(x|t) ∀ x ∈ R, t ∈ N . f(x|t) is thus a valid PMF/PDF.

· The value of the parameter t = 0 gives us f(x).

· {f(x|t), t ∈ N} is a one-parameter Exponential family in a canonical form.

If Xt has density/PMF f(x|t) then

E (Xt) = ∂

∂t

{
− log(e−K(t)

}
= ∂

∂t
K(t) = K̇(t)
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If we wanted to compute the variance,

E (Var (Xt)) = ∂2

∂t2
{K(t)} = K̈(t)

Let MXt denote the MGF of Xt. Then

MXt(s) = E
(
eXts

)
=
∫ ∞
−∞

exsf(x|t)dx

=
∫ ∞
−∞

exsf(x)etx−K(t)dx

= e−K(t)
∫ ∞
−∞

ex(s+t)f(x)dx

= M(s+ t)
eK(t)

= M(s+ t)
M(t)

for s sufficiently small so that s+ t ∈ N .

Saddle point approximation

If we are in the presence of a unimodal absolutely continuous distribution, then we can
use the saddle point approximation, and use the density of the Normal to approximate the
density around the mode of the distribution.

1. Fix x0 ∈ R

2. Compute tx0 so that K̇(tx0) = x0.

3. Approximate f(x0|t) by a Normal density at x0

f(x0|t) ≈
1√
2π

1√
K̈(tx0)

exp
(
− (x0 − x0)2

2K̈(tx0)

)

= 1√
2π

1√
K̈(tx0)

4. This gives the approximation

f(x0) ≈ exp(K(tx0)− tx0x0) 1√
2πK̈(tx0)
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This approximation works well for sums of random variables, especially in the IID case, of
the form Sn = X1 + · · ·+Xn.

Section 6.3. Exponential dispersion models

Observe that {f(x|η), η ∈ H} is a family of PDF/PMFs member of the Exponential family
canonical form. If we look at E (tj(X)) = ∂

∂ηj
(− log c∗(η)) and

Cov (tj(X), tl(X)) = ∂2

∂ηj∂ηl
(− log(c∗(η)))

For example, in the case of a Poisson distribution, we may see overdispersion, yet getting an
estimate of λ, we know the underlying variance parameter which doesn’t necessarily match
the observed sample variance.

We can generalize the form of the PMF/PDF to

f(x|θ,φ) = exp

d(x,φ) + log c(θ)
r(φ) + 1

r(φ)

k∑
j=1

ωj(θ)tj(x)


= ed(x|φ) {c(θ)}

1
r(φ) exp

 1
r(φ)

k∑
j=1

ω(θ)tj(x)


where φ is the dispersion parameter; in canonical parametrization, this is of the form

f(x|η, φ) = ed(x|φ) {c∗(θ)}
1

r(φ) exp

 1
r(φ)

k∑
j=1

ηjtj(x)


and taking logarithms, we get

log f(x|η, φ) = d(x|φ) + 1
r(φ) log(c∗(η)) + 1

r(φ)

k∑
j=1

ηjtj(x)

and

∂ log f(x|η, φ)
∂ηj

= 1
r(φ)

∂

∂ηj
log(c∗(η) + tj(x) 1

r(φ)

and

E (tj(X)) = − ∂

∂ηj
log(c∗(η))
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but more interestingly now

Cov (tj(X), tl(X)) = r(φ) ∂2

∂ηj∂ηl
(− log(c∗(η)))
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Chapter 7
Location and scale families

Lemma 7.1
Let f be a PDF, with µ ∈ R, σ > 0. Then

g(x|µ, σ) = f

(
x− µ
σ

)
1
σ

is a valid PDF.

Proof Clearly, g is non-negative. It remains to show that it integrates to 1. Indeed,∫ ∞
−∞

f

(
x− µ
σ

)
1
σ
dx =

∫ ∞
−∞

f(t)dt = 1

making the change of variable t = (x− µ)/σ. �

Remark
If X has PDF f , then σX + µ has PDF g (this is a linear transformation). If X is discrete,
with support S, then σX + µ is also discrete, with support {σs = µ, s ∈ S} and 9

P(σX + µ) = P(σs+ µ) = P(X = s) = f(s) = f

(
x− µ
σ

)

We call µ the location parameter and σ the scale parameter.

Example 7.1 (Family of Normal distributions)
Consider the family of N (0, 1) variables; then {g(x|µ, σ), µ ∈ R, σ > 0} gives the N (µ, σ2)
random variables with PDF

1√
2π

1
σ

exp
(
− (x− µ)2

2σ2

)
Example 7.2 (Fréchet distribution)
This distribution has no MGF and has PDF given by

f(x) = α

xα+1 exp
(
−
(

1
x

)α)
1(x>0)

9In this case, there is no σ−1 parameter arising from the Jacobian of the transformation.
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for α > 0. The corresponding location and scale form is

g(x|µ, σ, α) = 1
σ

α(
x−µ
σ

)α+1 exp
(
−
(

σ

x− µ

)α)

This is an example of heavy-tailed distribution.

Definition 7.2 (Location family)
Let f be any PDF. The family of distributions with densities f(x − µ), µ ∈ R is called a
location family with parameter µ.

Observation
The mean of X + µ) is E (X + µ) = E (X) + µ if E (X) exists. In particular, if E (X) = 0,
then µ is the expectation of X + µ with density f(· − µ).

Example 7.3
The family N (0, 1) yields N (µ, σ2). However, we loose this interpretation when the ex-
pectation does not exist. For, given f(x) = 1

π(1+x2) , the Cauchy distribution, then E (X)
doesn’t exist, by the distribution f(x − µ) = 1

π(1+(x−µ)2) for µ ∈ R. However, if X is a
random variable with PDF f has median xmed

P(X ≤ xmed) = P(X ≥ xmed) = 1
2

If Y has PDF f(· − µ), then its CDF is

P(Y ≤ x) = F (x− µ)

where F () is the CDF of X, thus xmed + µ is the median of Y . If xmed = 0, then µ is the
median of Y .

Definition 7.3 (Scale family)
Let f be an arbitrary PDF. The family of densities

f
(x
σ

) 1
σ
, x ∈ R, σ > 0

is called the scale family with scale parameter σ. If X has PDF f , then Y = Xσ has PDf
f
( ·
σ

) 1
σ .

Example 7.4
If f : N (0, 1), N (0, σ2). If f : E(1), e−

x
σ

1
σ ∼ E

( 1
σ

)
. We can generalize also to

f : G(α) 1
Γ(α)

1
σ

xα−1

σα−1 e
− xσ
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which is equivalent to writing

1
Γ(α)

xα−1

σα
e−

x
σ

which is the distribution of a G
(
α, 1

σ

)
.

Observation (Interpretation of σ)

Var (Y ) = Var (σX) = σ2Var (X)

provided that Var (X) exists. If Var (X)=1, then σ2 = Var (Y ). Again, consider central
moment E (|Y − ymed|) and observe first that Y has CDF FY (y) = FX

(
y
σ

)
. If xmed is the

median of X then σxmed = ymed so that

E (|σX − σxmed|) = σE (|X − xmed|)

and the latter may or not exist.
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Chapter 8
Hierarchical models

Let (X,Y ) be a random vector. Observe that

fX|Y=y(x)fY (y) = f(x, y)
fY (y) fY (y) = f(x, y)

We could thus construct the joint model from the conditional distribution, specify the dis-
tribution for y and get the joint distribution. We start with an example to illustrate this
fact.
Example 8.1
Suppose we have a fruit fly. How many eggs will hatch out of the laid eggs?
Level 2: Take N ∼ P(λ)
Level 1: Given the number n of eggs laid, the number of eggs hatched, X can be modeled
using B(n, p). Yet the number of eggs laid is unknown.

First, remark that X is discrete, with support {0, 1, . . .} and we could try to compute
Pr(X = k), knowing that k < n

P(X = k) =
∞∑
n=k

P(X = k,N = n)

=
∞∑
n=k

P(X = k|N = n)P(N = n)

=
∞∑
n=0

e−λ
λn

n!

(
n

k

)
pk(1− p)n−k

=
∞∑
n=k

e−λ
λn

n!
n!

k!(n− k)!

(
p

1− p

)k
(1− p)n

= e−λ

k! p
kλk

∞∑
n=k

1
(n− k)!{λ(1− p)}n−k

= e−λ

k! p
kλkeλ(1−p)

= e−λp

k! (pλ)k

and so X ∼ P(λp).

Remark
Recall if X,Y are random variables, E (X|Y = y) =

∫∞
−∞ xfX|Y=y(x)dx or in the discrete
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case
∑
xfX|Y=y(x), which are both functions of y, say h(y). One can then show that h(y)

is a measurable mapping.

h(Y ) = E (X|Y ) is then a new random variable, which is a function of y. One could think
of this as a projection onto the space of functions of g(y) for g measurable.

Lemma 8.1 (Law of iterated expectation)
E (h(Y )) = E (E (X|Y )) = E (X)

Proof

E (E (X|Y )) = E
(∫ ∞
−∞

x
f(x, Y )
fY (Y ) dx

)
=
∫ ∞
−∞

∫ ∞
−∞

x
f(x, y)
fY (y) dxfY (y)dy

=
∫ ∞
−∞

∫ ∞
−∞

xf(x, y)dxdy

=
∫ ∞
−∞

xfX(x)dx

= E (X)

swapping the integrals �

Remark
Note that

E (g(X,Y )) = E (E (g(X,Y )|Y ))

Remark
We also have

min
g

E (X − g(Y ))2 = E (X − E (X|Y ))2

Example 8.2
We can use the above remarks to get the first moment in the previous example.

E (X) = E (E (X|N)) = E (pN) = pE (N) = pλ.

We could also if one is as lucky to get the moment generating function provided it exists.

MX(t) = E
(
etX
)

= E
(

E
(
etX|N

))
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and the inner expectation is the MGF of the Binomial distribution

E
(
etX|N=n

)
= (1− p+ pet)n

thus taking N random

E
(
(1− p+ pet)N

)
= E

(
eN log(1−p+pet)

)
= eλe

log(1−p+pet)−1

= eλ(1−p+pet−1)

= epλ(et−1)

the MGF of a Poisson distribution with parameter pλ.

In general, a hierarchical model is specified in terms of a hierarchy. At level k, Xk(=
Xk1 , . . . , Xkdk

) has some specified distribution (may have parameters). At level k − 1, we
have Xk−1|Xk has some distribution. The dimension of the vector needs not be the same
at every level. Similarly, at level k − 2, we have Xk−2|Xk,Xk−1. Repeating until level 1,
where we have X1|X2, . . . ,Xk.

We are thus writing this

fX1,...,Xk
(x1, . . . ,xk) = fXk

(xk)fXk|Xk−1(xk−1) · · · fX1|X2,...,Xk
(x1)

Note that we could have mixture of densities and counting densities, so that the above is a
mix of Lebesgue measure and counting measure.

Example 8.3
We could use the example of fruit flies and take it a little further.
Level 3: Λ ∼ G(α, β),
Level 2: N |Λ = λ ∼ P(λ)
Level 1: X|N = n ∼ B(n, p)
For this hierarchy, we would have in Level 3 a random probability of hatching, specified as
P ∼ B(α∗, β∗) so that we actually have X|N = n, P = p is B(n, p) in the first level.

X is discrete {0, 1, . . .} and

fX(x) =
∞∑
n=0

∫ ∞
0

fX|N=n(x)fN |Λ=λ(n)fΛ(λ)dλ

which we will not attempt to compute. If we instead look at the distribution of N , with
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support is {0, 1, . . .}

fN (n) =
∫ ∞

0
fN |Λ=λ(n)fΛ(λ)dλ

=
∫ ∞

0
e−λ

λn

n!
1

Γ(α)βαλ
α−1e−

λ
β dλ

= 1
n!Γ(α)βα

∫ ∞
0

λn+α−1e−λ(1+ 1
β )dλ

and upon making the change of variable t = λ
(

1 + 1
β

)
yields the Gamma function

1
n!Γ(α)βα

1(
1 + 1

β

)n+α−1

∫ ∞
0

tn+α−1e−tdt

= Γ(n+ α)
n!Γ(α)

(
β

β + 1

)n( 1
β + 1

)α
and in the particular case where α ∈ N, α = r

P(N = n) = (n+ r − 1)!
n!(r − 1)!

(
β

β + 1

)n( 1
β + 1

)r
= (n+ r − 1)!

n!(r − 1)! p
r(1− p)n

which is a Negative binomial. The one in the case where α > 0 is not an integer yields
that N is distributed according to the Extended negative binomial (α, (1 + β)−1) . It turns
out that X ∼ ENB(α, (1 + βp)−1) (using the moment generating function). Now we can
compute the expectation

E (X) = E (E (X|N))

= E (Np) = pE (N)

= pE (E (N |Λ))

= pE (Λ) = pαβ

Compare this to E (X) = pλ in the previous example. Comparing the hierarchy N ∼
P(λ), X|N = n ∼ B(n, p) to Γ ∼ G(α, β), N |Λ = λ ∼ P(λ) and X|N = n ∼ B(n, p).

We had in the first case X1 ∼ P(λp) versus X2 ∼ ENB(α, (1+βp)−1), with E (X1) = pλ and
E (X2) = pαβ with equality of the first moment if λ = λβ. For X1, clearly Var (X1) = pλ,
but the variance of X2 will be bigger. This comes from the following observation.
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Lemma 8.2 (Iterated variance formula)
For any two random variables X and Y ,

Var (X) = E (Var (X|Y )) + Var (E (X|Y ))

Proof

Var (X) = E (X − E (X))2

= E (X ± E (X|Y )− E (X))2

= E (X − E (X|Y ))2 + E (E (X|Y )− E (X))2 + 2E ((X − E (X|Y ))(E (X|Y )− E (X))

where the second term has E (X|Y ) which we can write as h(Y ). Thus the second term is
equal to Var (h(Y )) = Var (E (X|Y )), while the third term is equal to

2E ((X − h(Y ))(h(Y )− E (X))) = 2E (E (X|Y )) = 0

and so

E ((X − h(Y ))(h(Y )− E (X) |Y = y) = (h(y)− E (X))E (X − h(y)|Y = y)

= (h(y)− E (X))E (X|Y = y)− h(y) = h(y)− h(y) = 0

and the first term is, conditioning,

E (X − h(Y ))2 = E
(
E
(
(X − h(Y ))2|Y

))
and

E
(
(X − h(Y ))2|Y = y

)
= Var (X|Y = y)

and so the third term is E (Var (X|Y )). �

In the case of the Poisson-Binomial hierarchy,

Var (X) = E (Var (X|N)) + Var (E (X|N))

= E (Np(1− p)) + Var (Np)

= p(1− p)E (N) + p2Var (N)

= λp

98



and for the Gamma-Poisson-Binomial hierarchy,

Var (X) = p(1− p)E (N) + p2Var (N)

= p(1− p)E (E (N |Λ)) + p2 [E (Var (N |Λ)) + Var (E (N |Λ))]

= p(1− p)E (Λ) + p2[E (Λ) + Var (Λ)]

= E (Λ) p+ p2Var (Λ)

= pαβ + p2αβ2

so completing our example, Var (X2) = pαβ + p2αβ2.

We discuss two more examples of hierarchical models before continuing with inequalities.

Example 8.4
Consider an insurance company who incur claims, we are interested in the total amount of
claim size. Assuming that the pool of people is homogeneous, let X be the total loss at the
end of the year. If we knew the total number of claims, we could write this as

∑n
i=1Xi.

However, the number of claims is unknown, so we are really interested in

SN =
N∑
i=1

Xi.

Suppose that we model this with a two-level model hierarchy:
At level 2, say N follows a discrete distribution on {0, 1, . . .}, such as the Poisson with
parameter λ and the negative binomial with parameters (r, p).

At the first level, given N = n,

Sn
d=

n∑
i=1

Xi, Xi
iid∼ F, Xi ≥ 0

If N ∼ P(λ), this is called a compound Poisson distribution.

If we are interested in

E (SN ) = E (E (SN |N)) = E (NE (Xi)) = E (N) E (Xi)

We could also easily calculate the variance

Var (SN ) = E (Var (SN |N)) + Var (E (N |SN ))

= E (NVar (Xi)) + Var (NE (Xi))

= Var (Xi) E (N) + (E (Xi))2Var (N)
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In particular, if N ∼ P(λ), then this reduces to

Var (SN ) = λ(Var (Xi) + (E (Xi)2) = λE
(
X2
i

)
We could also look at the MGF of SN , since expectations are relatively easy in these models.
Assuming that the MGF exist (otherwise we could do the calculation with the characteristic
function).

MSN (t) = E
(
etSN

)
= E

(
E
(
etSN |N

))
= E

(
E
(
etSN |N = n

))
= E ((MX(t))n|N = n)

= E
(
MX(t))N

)
= E

(
eN log(MX(t))

)
= MN (logMX(t))

conditioning and then unconditioning, valid only for t which are valid for the neighborhood.
In the particular case where N is Poisson, this is

eλ(MX(t)=1), t ∈ R

If we were asked to find an approximation to the density of SN . One could use the saddle
point approximation, given the MGF, which could be remarkably accurate.

Example 8.5 (Location and scale mixture - Financial returns)
Financial return is the price of today relative to yesterday, given by

St − St−1

St−1
= Rt

If we look at the histogram of these return (which are not quite IID, there is some depen-
dence), they almost look like Normally distributed. The density is however a little more
heavy tailed than the normal, or more skewed. How can we tweak the model (using hi-
erarchies) to account for these factors. We aim at making the variance random (larger
kurtosis), and the mean random (will inject skewness in the model). In general, we can
consider location-scale mixture. Say f(m, ν) is the density of the original variable.

At level 2: (M,V ) ∼ g
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At level 1: X|M = m,V = ν has density

f

(
x−m
ν

)
1
ν
.

for some suitable density f .

Two suitable examples are the following:

At level 2, V ∼ G
(
ν
2 , 2
)
, ν > 0.

At level 1, X|V = v is Normal
(
0, vν

)
and interestingly enough X ∼ t(v). This will be

explored on Assignment 4.

At level 2, C ∼ G
(
ν
2 , 2
)
, ν > 0.

At level 1, X|V = v is Normal
(
γv
ν ,

v
ν

)
and X will be distributed as a skewed tv distribution.
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Chapter 9
Inequalities

Section 9.1. Concentration inequalities

We are interested in P(X ≥ x) and P(X ≤ x), which say are not tractable analytically. This
could be used to fix the financial reserves, for example (Value at Risk, or VaR).
Theorem 9.1 (Markov inequality)
Let X be an arbitrary random variable and g a measurable function, with P(g(X) ≥ 0) = 1.
Then ∀ ε > 0,

P(g(X) ≥ ε) ≤ E (g(X))
ε

and we will be interested in ε large . . .

Proof Let f be the density of X, then assuming wlog that g(X) is non-negative

E (g(X)) =
∫ ∞
−∞

g(x)f(x)dx ≥
∫
{x:g(x)≥ε}

g(x)f(x)dx

≥
∫
{x:g(x)≥ε}

εf(x)dx

= εP(g(X) ≥ ε)

�

Lemma 9.2 (Chebychev’s inequality)
Let X be a random variable with expectation E (X) and variance Var (X) (assumed to exist).
Then

P(|X − E (X) | ≥ ε
√

VarX) ≤ 1
ε2

Proof We can write the left hand side as

P
(
(X − E (X))2 ≥ ε2Var (X)

)
≤ Var (X)
ε2Var (X)

�
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Chebychev True Approx.
ε = 1 0 0.68 0.52
ε = 2 0.75 0.95 0.946
ε = 3 0.88 0.997 0.997

Remark
One could also have used the Markov inequality, namely

P
(
|X − E (X) | ≥ ε

√
Var (X)

)
≤ E (|)X − E (X) |

ε
√

Var (X)

which is less tractable.

The Chebychev inequality (also sometimes spelled Tchebychev) is rather liberal and not so
helpful.

ForX ∼ N (0, 1), which has no explicit CDF. Using the symmetry of the normal distribution,
if x ≥ 0,

P(|X| ≥ x) = P(X ≥ x) + P(X ≤ −x)

= 2P(X ≥ x)

= 2
∫ ∞
x

1√
2π
e−

t2
2 dt

and we cannot evaluate this using a change of variable; we would need to have a t. Suppose
that we put it there, and bound by adding t

x which is greater or equal than 1. This would
then become

≤ 2
∫ ∞
x

t

x

1√
2π
e−

t2
2 dt

= 2√
2π

1
x

∫ ∞
x2/2

e−zdz

=
√

2√
π

1
x
e−

x2
2

and using this “Normal approximation”, giving the approximation P(|X| ≥ x) ≤ 1
x2

Indeed, if we look at the standard Normal N (0, 1) random variable, The heavier tail, the
x for a given level, say 95%, would be smaller for distributions with light tail, which decay
quickly.
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Theorem 9.3 (Chernoff bounds)
Let X be a random variable with MGF M , defined on (−h, h). Then for x > 0,

P(X ≥ x) ≤ e−txM(t), ∀ t ∈ (0, h)

P(X ≤ x) ≤ e−txM(t). ∀ t ∈ (−h, 0)

Proof The proof follows from Markov’s inequality. Fix some t ∈ (0, h) arbitrary. Then

P(X ≥ x) = P(tX ≥ tx)

= P
(
etX ≥ etx

)
≤

E
(
etX
)

etx

= M(t)e−xt

and we can reverse the inequality for t negative. �

Example 9.1
Let X ∼ P(λ), then M(t) = eλ(et−1), t ∈ R and we could use Chernoff bounds to get

P(X ≥ x) ≤ eλ(et−1)e−xt, t > 0.

Denote g(t) = eλ(et−1)e−xt, and differentiating with respect to t, we have g′(t) = 0 for
t = log(x/λ) and for x > λ. Computing the second derivative, we find out that g′′(t) ≥ 0,
so that for x > λ,

P(X ≥ x) ≤ eλeλ(log( xλ )−1)−x(log( xλ ))

= e(x−λ)−x log( xλ )

= e−λ
(ex
λ

)x
Section 9.2. Triangle inequalities

Lemma 9.4
Let p, q > 1 conjugate exponents (such that 1

p + 1
q = 1), then for all a, b > 0

ap

p
+ bq

q
≥ ab
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Proof Fix b and consider g(a) = ap

p + b
q − ab and g

′′(a) > 0, then one finds that

g′(a) = 0⇔ ap−1 = b⇔ a0 = b
1
p−1

where a0 is the minimum. Then g(a0) = 0 and hence g(a) ≥ 0 ∀ a > 0. Filling in the gaps
is left as an exercise. �

Theorem 9.5 (Hölder inequality)
Let X,Y be random variable, with p, q conjugate exponents. Then if E|X|p < ∞ and
E|Y |q <∞, then

|E (XY ) | ≤ E (|XY |) ≤ (E|X|p)
1
p · (E|Y |q)

1
q

and as a special case, if p = q = 2, then we have the

|E (XY ) | ≤
√

E (X2) E (Y 2)

and in particular, we can use this

|E ((X − E (X))(Y − E (Y )))| = |CovX,Y |

≤
√

Var (X) Var (Y )

= |ρ(X < Y )| ≤ 1

Proof The first part follows from the triangle inequality.∣∣∣∣∫ xyf(x, y)dxdy
∣∣∣∣ ≤ ∫ |xy|f(x, y)dxdy

Using the previous inequality, ap/p + bq/q ≥ ab, and the fact that random variables are
mapping, ∀ ω ∈ Ω, take

a = X(ω)
(E|X|p)

1
p

b = Y (ω)
(E|Y |q)

1
q

thus

|X(ω)|p

p (E|X|p)
1
p

+ |Y (ω)|q

q (E|Y |q)
1
q

≥ |X(ω)Y (ω)|
(E|X|p)

1
p (E|Y |q)

1
q

.
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Now for Z ≤W , we know that E (Z) ≤ E (W ), the RHS becomes

E|XY |
(E|X|p)

1
p (E|Y |q)

1
q

≤ E|X|p

p (E|X|p)
1
p

+ E|Y |q

q (E|Y |q)
1
q

= 1
p

+ 1
q

= 1

�

An interesting case is the case where p = q = 2, then

E|XY | ≤
√

E (X2) E (Y 2) ⇔ |Cov (X,Y ) | ≤
√

Var (X) Var (Y )

and we can also take

E|X| ≤ (E|X|p)
1
p

∀ p > 1, then taking Y ≡ 1, we get

E|X|r ≤ (E|X|rp)
1
p ≡ (E|X|s)

r
s

where s = rp > r, which can be used to show existence of moments. This inequality we
derived from Hölder’s inequality, the so-called Lyapunov inequality , which can be termed
as

(E|X|r)
1
r ≤ (E|X|s)

1
s

whenever 1 ≤ r < s.

If we are interested in g(X) and g(EX) for some random variable X with finite first moment.

Theorem 9.6 (Jensen inequality)
Let X be a random variable and E (X) exist. Let g be a function such that E (g(X))

1. If f is convex,

E (g(X)) ≥ g(E (X))

2. If g is concave,
Eg(X) ≤ g(E (X))

Equality will hold for linear functions.

Proof For the second part, if g is concave, then −g is convex, so we will prove the first
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part. Suppose g is convex, then

g′+(x) = lim
h↓0
h>0

g(x+ h)− g(x)
h

exists for all x ∈ R. If we consider the graph of a continuous convex function and a
tangent, then the graph will lie above the tangent. Tangent in x is given by the expression:
g(x) + g′+(x)(z − x) for z ∈ R. Thus,

g(x) + g′+(x)(z − x) ≤ g(z), ∀ z ∈ R, ∀ x ∈ R

For all ω ∈ Ω, g(x) + g′+(x)(X(ω)− x) ≤ g(X(ω)), therefore cleverly chose x = E (X), then

g(E (X)) + g′+(E (X))(X(ω)− E (X)) ≤ g(X(ω))

and taking expectation on both sides, on the LHS we get

g(E (X)) + g′+(E (X))E (X − E (X)) ≤ E (g(X))

and since E (X − E (X)) = 0, we recover the Jensen’s inequality. To remember it, notice that
E
(
X2) ≥ (E (X))2, since Var (X) ≥ 0 and it can be composed into E

(
X2)−(E (X))2 ≥ 0. �

This inequality is particularly useful to asses whether they are biased estimators.

Example 9.2
Suppose we have a random sample X1, . . . , Xn

iid∼ E(λ), where the PDF is given by f(x) =
λe−λx, x > 0. Knowing E (X) = λ−1 and we are interested in estimating λ. Then, a natural
estimate could be the sample mean,

Xn = 1
n

(X1 + · · ·+Xn) E
(
Xn

)
= 1
λ

but we are interested in λ. Then, taking λn = 1/Xn, we have E (λn) = E
(
1/Xn

)
will be

biased, and always in the same direction. Since the function g(x) = 1
x is convex, then

E (λn) ≥ g(E
(
Xn

)
) = g

(
1
λ

)
= λ

so λn is overestimating the true value and the estimator is biased.

Exercise 9.1
If a1, . . . , an be positive real numbers. We could look at the arithmetic mean, which is given
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by

aA = a1 + · · ·+ an
n

or the geometric mean, given by

aG = n
√
a1 · · · an

and the harmonic mean

aH = 1
1
n

(
1
a1

+ · · ·+ 1
an

)
and one can show that aH ≤ aG ≤ aA. Trick: if X is a discrete random variable with
support {a1, . . . , an}, then P(X = ai) = 1

n and E (X) = aA. Take log and exp to get the
result
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Chapter 10
Properties of random samples

Definition 10.1
A random sample from either CDF F , PDF/PMF f or random variable X with CDF F is
a collection X1, . . . , Xn of IID random variables with CDF F or PMF/PDF or distribution
function. For now, we are interested in the distribution of statistics.

In practice, we can have different problems linked to dependence, failure of independence
assumption or other issues. This will be discussed in the second part of the course.

Definition 10.2 (Statistic)
T (X1, . . . , Xn) is a measurable function of X1, . . . , Xn, where n is called the sample size.

Example 10.1
1. The sample mean

Xn = 1
n

(X1 + · · ·+Xn)

2. The sample variance

S2
n = 1

n− 1

n∑
i=1

(Xi −Xn)2

3. The maximum X(n) = max(X1, . . . , Xn)

4. The range X(n) −X(1) = max(X1, . . . , Xn)−min(X1, . . . , Xn).

5. The rth order statistic X(r), the rth smallest observation among X1, . . . , Xn.

Observation
· T (X1, . . . , Xn) must not depend on any unknown parameters. Taking a sample from
N (µ, σ2), where µ, σ2 are unknown, the function n−1∑n

i=1(Xi−µ)2 is not a statistic.

· The distribution of T (X1, . . . , Xn) is called a sample distribution and it may well
depend on unknown parameters.

· The sample distribution often simplifies greatly if n→∞ (the asymptotic distribution,
on which frequentist approach to statistics is based).
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Section 10.1. Sample mean

Lemma 10.3
Suppose that E (X) and Var (X) exist. Then

1. E
(
Xn

)
= E (X)

2. Var
(
Xn

)
= Var(X)

n

so the estimate of the expectation of X gets more precise as the sample size goes to infinity.

Proof By linearity,

E
(

1
n

(X1 + · · ·+Xn)
)

= 1
n
nE (X)

and

Var
(

1
n

(X1 + · · ·+Xn)
)

= 1
n2nVar (X)

�

Lemma 10.4
If X has MGF, then the MGF of Xn is given by

MXn
(t) =

(
MX

(
t

n

))n
, t ∈ (−ε · n, ε · n)

Proof

E
(
et(n

−1(X1+···+Xn))
)

=
n∏
i=1

E
(
etn
−1Xi

)
=
(
MX

(
t

n

))n
and t/n goes smaller as n→∞ �

Example 10.2
Let X ∼ N (µ, σ2), then the MGF of X is

MX(t) = eµt+
σ2t2

2 , t ∈ R
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and therefore

MXn
(t) =

(
eµ

t
n+σ2t2

2n2
)n

= eµt+
σ2t2

2n

so we conclude that Xn ∼ N
(
µ, σ

2

n

)
Example 10.3
Consider a random sample from G(α, β) then

MX(t) = (1− βt)−α, t <
1
β

MXn
(t) =

(
1− βt

n

)−αn
, t <

n

β

then Xn ∼ G(αn, β/n). In the case where α = 1, this is an exponential distribution.

Lemma 10.5
The characteristic function (CF) of the sample mean is given by

CXn(t) =
(
CX

(
t

n

))n
, t ∈ R

and we can work with this if the MGF doesn’t exist.

Example 10.4
Consider X1, . . . , Xn, which is a random sample from Cauchy with parameters (0, 1). We
could look at

CX(t) = e−|t|CXn(t) =
(
e−
|t|
n

)n
= e−|t|

and this doesn’t give us any information, since the second moment not existing.

Example 10.5
Let X1, . . . , Xn be a random sample from N (µ, 1), then by previous results, Xn

d= N
(
µ, 1

n

)
and Normal random variables belong to Exponential family, where the density is given by

fX(x) = 1√
2π
e−

x2
2 eµxe−

µ2
2 1(x∈R)

and can be termed as (2π)− 1
2 e−

x2
2 and c(µ) = e−

µ2
2 , t1(x) = x, ω1(µ) = µ.
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Set T1 = X1 + · · ·+Xn ∼ N (nµ, n) and

fT1(t) = 1√
2πn

e−
t2
2n e−

µ2
2 neµt

with now h∗(t) = (2πn)− 1
2 e−

t2
2n , c(µ)n = e−

µ2
2 n and t1(t) = t, ω1(µ) = µ

We could look at another example with the Exponential family, that isX ∼ B(p), a Bernoulli
random variable.

fX(x) = (1− p)ex log( p
1−p )1(x∈{0,1})

and using the sufficient statistic for p, where T1 = X1 + · · ·+Xn ∼ B(n, p) and the PMF is
given by

fT (t) =
(
n

t

)
1(t∈{0,...,n})(1− p)net log( p

1−p )

and we remark again that C∗(p) = (C(p))n, which is a result of the following result, namely

Theorem 10.6
Let X1, . . . , Xn be a random sample from f which is from an Exponential family.

f(x) = h(x)c(θ) exp

 k∑
j=1

tj(x)ωj(θ)


Then, the PDF(PMF) of (T1, . . . Tk), that is Tj =

∑n
i=1 tj(Xi) is

fT1,...Tk(t1, . . . , tk) = h∗(t1, . . . , td) (c(θ))n exp

 k∑
j=1

tj(x)ωj(θ)



Section 10.2. Sample variance

Let X1, . . . , Xn be a random sample from F , and we write X ∼ F for any generic X. The
sample variance is given by

S2
n = 1

n− 1

n∑
i=1

(Xi −Xn)2.

Lemma 10.7
Let x1, . . . , xn be any real numbers (fixed). Then
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1.
∑n
i=1(xi − xn)2 =

∑n
i=1 x

2
i − n(xn)2;

2.
∑n
i=1(xi − a)2 is minimized if a = xn.

Proof Recall that Y is a random variable Var (Y ) = E
(
Y 2) − (E (Y ))2 and E (Y − a)2

is minimized of a = E (Y ) . Now choose Y to be a discrete random variable with support
{X1, . . . , Xn} and P(Y = xi) = 1

n . Then

E (Y ) = xn

the arithmetic mean and

Var (Y ) = 1
n

n∑
i=1

(xi − xn)2

= 1
n

n∑
i=1

x2
i − (xn)2

and also

E (Y − a)2 = 1
n

n∑
i=1

(xi − a)2

is minimized if a = xn. �

Lemma 10.8
If Var (X) exists, then E

(
S2
n

)
= Var (X).

Proof

E
(
S2
n

)
= 1
n− 1E

(
n∑
i=1

(Xi −Xn)2

)

= 1
n− 1E

(
n∑
i=1

x2
i − n(Xn)2

)
= n

n− 1E
(
X2) = n

n− 1E
(
X

2
n

)
Now E

(
X2) = Var (X) + (E (X))2 and

E
(
X

2
n

)
= Var

(
Xn

)
+ (E

(
Xn

)
)2 = Var (X)

n
+ (E (X))2
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and

E
(
S2
n

)
= n

n− 1

(
Var (X) + (E (X))2 − Var (X)

n
− (E (X))2

)
= n

n− 1Var (X)
(
n− 1
n

)
= Var (X)

and in the case where the variance does not exist, the sample variance can be computed,
but does not estimate anything meaningful. �

In the special case where X ∼ N (µ, σ2), then X1, . . . , Xn is a random sample from N (µ, σ2).
Theorem 10.9
In this special case

1. Xn and S2
n are independent

2. (n− 1)S2
n/σ

2 ∼ χ2(n− 1).

Proof Observe that
n∑
i=1

(Xi −Xn) = 0⇔ (X1 −Xn) = −
n∑
i=2

(Xi −Xn)

Therefore,

S2
n = 1

n− 1

 n∑
i=2

(Xi −Xn)2 +
(

n∑
i=2

(Xi −Xn)
)2


S2
n is thus a function of X2 − Xn, . . . , Xn − Xn. Now Xn happens to be independent

from (X2 −Xn, . . . , Xn −Xn) and the first statement follow. We prove it by brute force,
considering the transformation

g : (X1, . . . , Xn) 7→ (xn, x2 − xn, . . . , xn − xn)

g−1 : (y1, . . . , yn) 7→ (y1 − y2 − y3 − · · · − yn, y2 + y1, . . . yn + y1)

and the Jacobian is

J = J =


1 −1 · · · −1
1 1 0 · · ·
...

. . . . . . 0
1 · · · 0 1

 , |det(J)| = n
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In the simple case where we assume that µ = 0, σ2 = 1,

f(Xn,X2−Xn,...,Xn−Xn)(y1, . . . , yn = n
1

(2π)n2
exp

−1
2

(y1 −
n∑
i=2

yi

)2

+ (y2 + y1)2 + · · ·+ (yn + y1)2


= 1

(2π)n2
exp

−1
2ny

2
1 +

(
n∑
i=2

yi

)2

+
n∑
i=2

y2
i


=
√
n√
2π
e−

y2
1

2/n ·
√
n

(2π)n2− 1
2

exp

−1
2

(
n∑
i=2

yi

)2

+
n∑
i=2

y2
i


and we can also do the same thing for the general case.

For (2), recall that

· If Z ∼ N (0, 1), then Z2 ∼ χ2(1)

· W1, . . . ,Wn independent and W ∼ χ2(1), then

n∑
i=1

Wi ∼ χ2(n)

· The MGF of χ2(n) is (1− 2t)− ν2 , t < 1
2 .

First,

n∑
i=1

(
Xi − µ
σ

)2
∼ χ2(n)

and thus

1
σ2

n∑
i=1

(Xi ±Xn − µ)2 = 1
σ2

n∑
i=1

(Xi −Xn)2 + n

σ2 (Xn − µ)2

= (n− 1)
σ2S2

n

+
(
Xi − µ
σ

/
√
n

)2

and the MGF of the :LHS is

(1− 2t)−n2 = M (n−1)
σ2 S2

n
(t)(1− 2t)− 1

2

and the MGF of (n−1)
σ2 S2

n is (1−2t)−n2 + 1
2 which is the MGF of a χ2(n− 1) random variable.

�
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Theorem 10.10
If Z ∼ N (0, 1), and W ∼ χ2(ν), Z ⊥⊥W , then

Z√
W/ν

∼ t(ν)

Corollary 10.11
If X1, . . . , Xn is a random sample from N (µ, σ2), then

√
nXn−µσ√
(n−1)S2

n

σ2(n−1)

=
√
n(Xn − µ)√

S2
n

∼ t(n− 1)

Theorem 10.12
If W1 ∼ χ2(ν1) and W2 ∼ χ2(ν2) and W1 ⊥⊥W2, then

W1/ν1

W2/ν2
∼ F (ν1, ν2)

which is the Fisher-Snedecor distribution.

Corollary 10.13
If X1, . . . , Xn are random variable from N (µ, σ2) and Y1, , . . . , , Ym are random variables
from N (µ∗, σ2) (that is, they share the same variance) are independent. Then

(n−1)S2
n

σ2(n−1)
(m−1)T 2

m

σ2(m−1)

where T 2
m is the sample variance of Y1, . . . , Ym. Simplifying, we get

S2
n

T 2
m

∼ F (n− 1,m− 1)

Exercise 10.1
· If X ∼ F (ν1, ν2), then 1

X ∼ F (ν2, ν1).

· If T ∼ t(ν), then T 2 ∼ F (1, ν)

· If X ∼ F (ν1, ν2), then

ν1
ν2
X

1 + ν1
ν2
X
∼ Be

(ν1

2 ,
ν2

2

)
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The following is not to be disregarded for the final exam preparation. There are other
measures of central tendency

Section 10.3. Order statistics

Definition 10.14
Let X1, . . . , Xn be a random sample from F , then

X(1) ≤ X(2) ≤ · · · ≤ X(n)

the X ′is are ordered in ascending order) is called an order statistic.

Example 10.6
if we have X1 = 1.12, X2 = 2.04, X3 = −0.5, then X(1) = −0.5, X(2) = 1.12, X(3) = 2.04.

In the above, the random variableX(1) is the sample minimum, X(n) is the sample maximum,
X(n) −X(1) is the range, and the sample median is

X(med) =

X(n+1
2 ) if n is odd;

1
2

(
X(n2 ) +X(n+1

2 )
)

if n is even

by convention, although any value between those could be chosen

Example 10.7
Let X1, . . . , Xn be a random sample from E(1), then

P(X(1) ≤ x) = 1− P(X(1) > x)

= 1−
n∏
i=1

P (Xi > x)

= 1− e−nx

and we conclude that X(1) ∼ E(n).

For the sample maximum,

P(X(n) ≤ x) = (P(Xi ≤ x))n = (1− e−x)n

which is no longer exponentially distributed.
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Theorem 10.15
Let X1, . . . , Xn be a random sample from a distribution F . Then, for the jth order statistic,

P(X(j) ≤ x) =
n∑
k=j

(
n

k

)
{F (x)}k{1− F (x)}n−k

Proof

P(X(j) ≤ x) = P(at least j observations are less than or equal to x)

and so YX u #X ′is that are ≤ x, so YX ∼ B(n, F (x)) which is P (Yx ≥ j).

If F is continuous with density f , then

fX(j)(x) =
n∑
k=j

(
n

k

)
k{F (x)}k−1f(x){1− F (x)}n−k

−
n−1∑
k=j

(
n

k

)
{F (x)}kf(x){1− F (x)}n−k−1(n− k)

=
(
n

j

)
j{F (x)}j−1f(x){1− F (x)}n−j

which we can simplify big time in the last line, since the last term, upon making a simple
change of variable k∗ = k − 1

n−1∑
k∗=j−1

n!
(n− k∗ − 1)!(k∗ + 1)! (k

∗ + 1)k
∗
{F (x)}k

∗
f(x){1− F (x)}n−k

∗−1

−
n−1∑
k=j

n!(n− k)
k!(n− k)!{F (x)}kf(x){1− F (x)}n−k−1

which are equal. Here is a trick to remember it.

fX(j)(x) = n!
(j − 1)!1!(n− j)!{F (x)}j−1f(x){1− F (x)}n−j

�

This trick applies in general; as for the joint distribution, if j < k

f(X(j),X(k))(x, y) = 1(x<y)
n!

(j − 1)!(k − 1− j)!(n− k)!F (x)j−1f(x)(F (y)− F (x))k−jf(y)(1− F (y))n−k
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Figure 10: Distribution of jth order statistics at x: multinomial interpretation
1

f(x)F (x)j−1

j − 1

(1− F (x))n−j

n− j

Figure 11: Joint distribution of (j, k)th order statistics at (x, y): multinomial interpretation
1

f(x)

k − j − 1

(F (y)− F (x))k−j−1F (x)j−1

1

f(y)

j − 1

(1− F (y))n−k

n− k

and for all order statistic,

f(X(1),...,X(n))(X1, . . . , Xn) = 1(x1<···<xn)n!f(x1) · · · f(xn)

Exercise 10.2
If X1, . . . , Xn ∼ U(0, 1), then

fX(j)(x) = n!
(j − 1)!(n− j)!x

j−1(1− x)n−j ∼ B(j, n− j + 1)

If F is discrete, there is no simple formula. Indeed, we have to work with

P(X(j) = x) = P(X(j) ≤ x)− P(X(j) < x)

=
n∑
k=j

(
n

k

)(
F (x)k(1− F (x))n−k − F (x−)k(1− F (x−))n−k

)
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Chapter 11
Convergence concepts

Recall we had some intuition of convergence and consistency of estimators. For a frequentist,
one would want to know about the distribution of the estimator or the statistic, expecting
that as the sample size increase to the population size, as n → ∞, we get asymptotic
distribution which gives approximate P values and confidence interval.

Recall that X1, . . . , Xn is a random sequence of mapping, from Ω⇒ Rd. Characterizing the
convergence of the sequence, as in analysis with pointwise convergence or uniform conver-
gence. However, we have random samples, and we cannot talk about the above. Instead,
we define probabilistic concepts.

Definition 11.1 (Convergence in probability)
A sequence of random variables, X1, X2, . . . is said to converge in probability to a random
variable X, denoted Xn

p−→ X if

∀ ε > 0,P(|Xn −X| > ε)→ 0 as n→∞.

Probability is more general because every number can be regarded as the realization of a
random variable.
Remark
· X1, X2, . . . are arbitrary; in particular, they are most of the time not IID, nor are they
independent.

· Often X is a constant, say c and we have in that case

Xn
p−→ c⇔ P(|Xn − c| > ε) as n→∞

Example 11.1 (Convergence in probability of the sample variance)
E
(
S2
n

)
= σ2 if Var (X) = σ2. If X1, . . . , Xn is a random sample from N (µ, σ2), we have

E
(
S2
n − σ2) = Var

(
S2
n

)
= Var

(
(n− 1)S2

n

σ2
σ2

n− 1

)
= σ4

(n− 1)2 Var
(

(n− 1)S2
n

σ2

)
= σ4

(n− 1)2 2(n− 1)

= 2σ4

(n− 1)
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as (n−1)S2
n

σ2 ∼ χ2(n − 1) and this gives us a reason to believe our estimate is getting more
and more precise. What does this have to do with convergence in probability? If we can get
an upper bound that goes to zero, this will imply convergence. Fix ε > 0 arbitrary, then

0 ≤ P(|S2
n − σ2| > ε) = P((S2

n − σ2)2 > ε2)

≤
Var

(
S2
n

)
ε2

= 2σ4

(n− 1)ε2 → 0 asn→∞

using Chebychev’s inequality.

Theorem 11.2 (Weak law of large number)
Let X1, X2 be an IID sequence such that E (X1) = ν and Var (X1) <∞. Then

Xn = 1
n

(X1 + · · ·+Xn) p−→ µ.

This result is the so-called Weak law of large numbers (WLLN)

Proof Using Chebychev’s inequality,

P(|Xn − µ| > ε) ≤
Var

(
Xn

)
ε2 = Var (X1)

nε2
n→∞−−−−→ 0

�

Remark
The WLLN holds if E (X1) exists (meaning that E|X1| <∞)

Remark
A stronger concept of stochastic convergence is convergence almost surely , which means
that X1, X2, . . . is a sequence of random variables and X another random variable and

Xn
a.s.−−→ X(a.s.)⇔ P

(
lim
n→∞

|Xn −X| = 0
)

= 1

Alternatively, we can say that Xn → X almost surely if and only if

∀ ε > 0,P
(

lim
n→∞

|Xn −X| > ε
)

= 0

The take home messages are

· XnX ⇒ Xn
p−→ X, but not conversely.
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· If X1, X2, . . . is an IID sequence with E|X1| < ∞, then Xn → E (X1) almost surely
(this is the Strong law of large number, SLLN)

· Almost sure convergence is often (much) harder to establish than convergence in prob-
ability and it is often too strong and not very useful (in statistics)

· There is an interesting partial converse, if Xn
p−→ X if and only if for any subsequence

{Xnk}, there exists a subsubsequence Xnkj
such that Xnkj

→ X almost surely.10

Theorem 11.3 (Continuous mapping)
If Xn

p−→ X and g is continuous, then g(Xn) p−→ g(X).

Proof If Zn → Z almost surely, then g(Zn)→ g(Z) almost surely. Looking at the sequence
g(Xn), then the subsequence Xnk has a subsequence Xnkj

converges to X almost surely,

and so the subsequence g(Xnk), then for the subsubsequence g(Xnkj
) j→∞−−−→ g(X) almost

surely. �

This could be used for the sample variance.
Example 11.2

S2
n = 1

n− 1

(
n∑
i=1

X2
i − n(Xn)2

)

= n

n− 1

(
1
n

n∑
i=1

X2
i

)
− n

n− 1
(
Xn

)2
and by the continuous mapping theorem, we have(

Xn

)2 p−→ (E (X))2

and if E (Xi)4
<∞, then by the WLLN,

1
n

n∑
i=1

X2
i

p−→ E
(
X2) = Var (X) + (E (Xi))2.

Definition 11.4 (Convergence in rth mean)
If X1, X2, . . . is a sequence of random variables, then Xn → X in rth mean, if

E|(Xn −X)|r → 0 as n→∞
10This also holds for finite measure.
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We illustrate this concept with an artificial example

Example 11.3
If Xn ∈ {0, n}, then

P(Xn = 0) = 1− 1
2n , P(Xn = n) = 1

2n

and
E (Xn − 0)2 = n2

2n → 0 as n→∞

and even Xn → 0 in rth mean for r ≥ 1.

Now, choosing instead P(Xn = 0) = 1 − 1
n2 and P(Xn = n) = 1

n2 , then this time
E (Xn − 0)2 = n2

n2 9 0, but E|Xn − 0| = n
n2 → 0 and so we conclude that Xn → 0 in

1st mean, but not 2nd mean. This motivates the following

Theorem 11.5
Let 1 ≤ r ≤ s. Then Xn → X in sth mean implies that Xn → X in rth mean.

Proof Using Hölder inequality, or more cleverly Lyapunov inequality, we have

0 ≤ (E|Xn −X|r)
1
r ≤ (E|Xn −X|s)

1
s

and as the right hand side converges to zero, then so does the left hand side. �

Theorem 11.6
Let X and X1, X2, . . . be random variables; for r ≥ 1, Xn → Xare random vectors in rth

mean, then Xn
p−→ X. The former concept of convergence, although stronger, if often easier

to establish.

Proof Using Markov inequality, we have

0 ≤ P(|Xn −X| > ε) = P(|Xn −X|r > εr)

≤ E|Xn −X|r

εr
→ 0 as n→∞

�

Definition 11.7 (Convergence in distribution)
Let X1, X2, . . . be a sequence of random variables. Then Xn converges in distribution (in
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law, or weakly), to a random variable X  X, if

lim
n→∞

FXn(x) = FX(x)

for all x ∈ R such that F is continuous in x.

Example 11.4
Let Xn ∈

{
− 1
n ,

1
n

}
and P(Xn = −1/n) = P(Xn = 1/n) = 1/2.

The CDF of Xn is of the form

0

0.5

1
F (x)

x

− 1
n

1
n

and

FXn(x)→


0 if x < 0
1
2 if x = 0

1 if x > 0

and so we define

F (x) =

0, if x < 0

1, if x ≥ 0

and FXn(x)→ F (x) allx ∈ (−∞, 0) ∪ (0,∞) and so Xn  0.

Remark
1. If Xn

p−→ X and Xn → X, then X is almost surely unique.

2. If Xn  X, then the distribution of X is unique.

Example 11.5
If U1, . . . Un are IID U(0, 1), and suppose we look at max(U1, . . . , Un) = U(n),, then the
density of U(1) is

fn(y) = un−1n1(x∈(0,1))
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and the corresponding CDF of the maximum is

Fn(u) =


0, u < 0

un, u ∈ [0, 1)

1, u ≥ 1

and

Fn(u) −−−−→
n→∞

=

0, u < 1

1, u ≥ 1

the CDF of a constant 1, so U(n)  1. Looking at a rescaled version of the variable,
Xn := n(1− U(n)), then

P(Xn ≤ x) =


0, x < 0

P(n(1− U(n)) ≤ x) = P(1− x
n ≥ U(n)) = 1−

(
1− x

n

)n
, x ∈ [0, n)n,

1, x ≥ n

and the limiting CDF as n→∞ is

P(X ≤ x) =

0 x < 0

1− e−x x > 0

and Xn  E(1).

Theorem 11.8
We have

1. Xn
p−→ X ⇒ Xn  X

2. Xn  c⇒ Xn
p−→ c, for c constant

Proof

1. Let x be a continuity point of FX , then to have convergence in distribution means

FXn(x) −−−−→
n→∞

FX(x).
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Let ε > 0 be arbitrary, then

P(Xn ≤ x) = P(Xn ≤ x,X ≤ x+ ε) + P(Xn ≤ x,X > x+ ε)

≤ FX(x+ ε) + P(|Xn −X| > ε)

and as n →∞, we get the second term on the RHS tends to zero. Taking ε → 0, we
get convergence. We however need a lower bound, found by taking

P(X ≤ x− ε) = P(X ≤ x− ε,Xn ≤ x) + P(X ≤ x− ε,Xn > x)

≤ P(Xn ≤ x) + P(|Xn −X| > ε).

Together,

FX(x− ε) + P(|Xn −X| > ε) ≤ FXn(x) ≤ FX(x+ ε) + P(|Xn −X| > ε)

and as n→∞, taking the limit P(|Xn −X| > ε)→ 0, and ∀ ε > 0,

FX(x− ε) ≤ lim
n→∞

FXn(x) ≤ FX(x+ ε)

and both converge to FX(x) using continuity.

2. We know that FXn(x)→ 0 if x < c and FXn(x)→ 1 if x > c. If we look at

P(|Xn − c| > ε) = P(Xn − c > ε) + P(c−Xn > ε)

= P(Xn > c+ ε) + P(Xn < c− ε)

≤ 1− P(Xn ≤ c+ ε)
→1

+ P(Xn ≤ c− ε)
→0

�

Theorem 11.9
Convergence in distribution is equivalent to pointwise convergence ( ∀ t for which MX

exists) of the characteristic functions or the moment generating functions. In other
words

Suppose thatXn, X have moment generating functions. Then, ifXn  X ⇔MXn(t) n→∞−−−−→
MX(t)

1.2. Xn  X ⇔ CXn(t)⇒ CX(t) ∀ t ∈ R.
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Theorem 11.10 (Central limit theorem)
Let X1, X2, . . . be an IID sequence of random variables such that E (Xi) = µ,Var (Xi) =
σ2 <∞, both moments assumed to exist. Then

√
n
Xn − µ

σ
 N (0, 1)

or equivalently,

√
n(Xn − µ) N (0, σ2).

Proof (Sketch) Assume that Xi has a MGF. We could write the above as

√
n

(
1
n

n∑
i=1

(
Xi − µ
σ

))

and Xi−µ
σ are IID with mean zero and variance is one. Hence, assume wlog µ = 0, σ2 = 1.

Thus, it suffices to show that
√
nXn

?
 N (0, 1). The MGF of Xn is

MXn
(t) =

(
MX

(
t

n

))n
⇒M√nXn(t) =

(
MX

(
t√
n

))n
n→∞−−−−→

?
et

2/2

and since MX(0) = 1 and MX is differentiable at an arbitrary degree. Thus, taking the
Taylor’s expansion,

MX

(
t√
n

)
= 1 +M ′X(0) t√

n
+M ′′X(0) t

2

2n + o

(
1
n

)
hence

MX

(
t√
n

)
= 1 + t2

2n + o

(
1
n

)
and so (

1 + t2

2n + o

(
1
n

))n
−−−−→
n→∞

et
2/2

�

Example 11.6
Consider the simple case Xn ∼ Γ(n, 1). We know that Xn

d= Y1 + · · · + Yn where Y ′i s are
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IID E(1). By the CLT,

√
n(Y n − 1)  

n→∞ N (0, 1)

If n is large enough,

√
n(Y n − 1) ≈ N (0, 1)

and we approximate

P(Xn ≤ x) = P(Y1 + · · ·+ Yn ≤ x)

= P
(√

n(Y n − 1) ≤
√
n
(x
n
− 1
))

≈ Φ
(√

n
(x
n
− 1
))

and similar results can be derived for P(λ), χ2(ν) if λ, ν = n and n is large enough. What
about the case where Xn ∼ Γ(α, 1), then Xn

d
n Y1 + · · ·+ Yn ∼ F

(
α
n , 1
)

Remark
Some results are available for non-IID variables (still independent), then CLT can be ex-
tended. The extensions are known for as Lindeberg CLT and Lyapunov Central limit theo-
rem.

Theorem 11.11 (Continuous mapping theorem)
Let X1, X2, . . . be a sequence of random vectors in Rd, X a random variable ∈ Rd. Let also
g : Rd → Rn such that g is continuous in A and {(X ∈ A) = 1.

1. If Xn
a.s.−−→ X, then g(Xn) a.s.−−→ g(X)

2. If Xn
p−→ X, then g(Xn) p−→ g(X)

3. If Xn  X, then g(Xn) g(X).

The proof will be omitted due to lack of time. Here is a proof in the univariate case (from
MATH 356).

Proof

1. Given that P({ω : Xn(ω) → X(ω)}) = 1, once you fix ω, you get a sequence of
numbers and continuity of the mapping
P({ω : g(Xn(ω))→ g(X(ω))}) = 1 if continuous on R.
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2. ∀ k > 0, g is uniformly continuous on [−k, k] by definition if

(
∀ ε > 0

)(
∃ δ(ε,k) > 0

)(
∀ x ∈ [−k, k]

)(
|x − y| < δ(ε,k) ⇒ |g(x) − g(y)| < ε

)
equivalent to saying that |g(x) − g(y)| ≥ ε ⇒ |x − y| ≥ δ(ε,k). For all ε positive, we
have by the Law of total probability

P
(
|g(Xn)− g(X)| ≥ ε

)
= P

(
|g(Xn)− g(X)| ≥ ε, |X| ≤ k

)
+ P

(
|g(Xn)− g(X)| ≥ ε, |X| > k

)
≤ P

(
|Xn −X| ≥ δ(ε,k), |X| ≤ k

)
+ P

(
|X| > k

)
≤ P

(
|Xn −X| ≥ δ(ε,k)

)
+ P

(
|X| > k

)
by first enlarging the probability and secondly using the fact that P(A ∩ B) ≤ P(B).
Since both probabilities are non-negative, we obtain

0 ≤ lim
n→∞

P
(
|g(Xn)− g(X)| ≥ ε ≤ 0 + P

(
|X| > k

) k→∞−−−−→ 0

as n→∞ so the limit must indeed be zero.

�

Lemma 11.12 (Slutsky)
Let {Xn} and {Yn} be sequences of random variables.

1. If Xn  X and Y + n
p−→ c, then

Xn + Yn  X + c

2. If Xn  X and Yn
p−→ c, then

XnYn  cX

and to zero if c = 0.

This follows from the continuous mapping theorem (CMT) because one can prove (Xn, Yn) 
(X, c).

Example 11.7
By the Central limit theorem (CLT),

√
n(Xn − µ)  N (0, σ2) this actually implies that
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Xn
p−→ µ by Slutsky theorem, then

√
n(Xn − µ)
 N (0,σ2)

(
1√
n

)
→0

 0

but here we need some existence requirements for variance.

Coming back to previous example, if U1, . . . Un
iid∼ U(0, 1), then n(1− U(n)) E(1) and

n(1− U(n))
 E(1)

1
n
→0

 0

Observation
Suppose that r > 0, c ∈ R {Xn} a sequence of random variables such that nr(Xn−a) X,
then Xn

p−→ a.
Example 11.8 (Odds ratio)
If X1, X2, . . . are IID Bernoulli, then we may be interested in the odds ratio θ = p/(1− p),
where p is the probability of 1. An estimator using the sample proportion is

θn = Xn

1−Xn

By the CLT,

√
n

(Xn − p)√
p(1− p)

 N (0, 1)

and θn = g(Xn), g(x) = x/(1− x) the continuous mapping theorem (CMT) would give us

g
(√
n(Xn − p)

)
 g(X)

whereX ∼ N (0, p(1−p) but this is of no use. Rather, we need nr(θn−θ) = nr(g(Xn)−g(p));
we know that θn

p−→ θ. If we take g(Xn), where g is assumed to be differentiable, we could
take a Taylor series expansion to get the approximation

g(Xn) ≈ g(p) + g′(p)(Xn − p)

and rearranging these terms,

√
n
(
g(Xn)− g(p)

)
≈ g′(p)

√
n(Xn − p)
 N (0,p(1−p))

 N
(
0,
{
g′(p)2} p(1− p))
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and this motivates the following approximation, under some smoothness conditions and
assuming that the scaling is such that g′(p) 6= 0

Theorem 11.13 (Delta method)
Let Z1, Z2, . . . a sequence of random variables such that

√
n(Zn − θ) N (0, σ2). Suppose

that g is twice differentiable and g′(θ) 6= 0.

Example 11.9
Continuing the odds ratio example, we have θ = p/(1− p) = g(p) and g′(p) = 1−p+p

(1−p)2 = (1−
p)−2 non-zero if p ∈ (0, 1) Then

√
n

(
Xn

1−Xn

− p

1− p

)
 N

(
0, p(1− p)(1− p)4

)
and the variance is p/(1− p)3.

Example 11.10
If X1, X2, . . .

iid∼ E(λ) for λ > 0, then λn = 1/Xn and so taking g(x) = 1/x, we get
g′(x) = −1/x2 and g′(λ) > 0.

√
n(λn − λ) =

√
n

(
1
Xn

− λ
)
 N

(
0, 1
λ2

1
λ4

)

We omit the proof of the Delta method, which can be found in the book and deals with
details in a careful fashion.
Example 11.11
If X1, . . . , Xn are random variables Xi ∼ B(p). Then Var (X) = p(1 − p) = σ2, and
σ2
n = Xn(1−Xn). Now, if we take g(x) = x(1−x), g′(x) = 1−2x and we are in big trouble

if p = 1
2 . However if p 6= 1

2 , then

√
n
(
σ2
n − σ2) N (0, p(1− p)(1− 2p)2)

and if p = 1
2 , we will pursue with a quick and dirty calculation, and we need to get the

appropriate scaling parameter. However, if we go further in the Taylor’s series expansion,

g(Xn) = g(θ) + g′(t)(Zn − θ) + g′′(θ)/2(Zn − θ)2

and g(Zn)− g(θ) ≈ g′′(θ)/2(Zn − θ)2 and we need to multiply by n. Indeed, we know that
√
n(Zn − θ) N (0, σ2) as

n(g(Zn)− g(θ)) ≈ g′′(θ)
2

(√
n(Zn − θ)

)2
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Theorem 11.14 (Delta Method II)
If Zn and θ as before, that is

√
n(Zn − θ)  N (0, σ2). Suppose that g is three times

differentiable, g′(θ) = 0, g′′(θ) 6= 0 then

n(g(Zn)− g(θ)) g′′(θ)
2 σ2χ2(1)

Example 11.12
We have n

(
Xn(1−Xn)− p(1− p)

)
 − 1

4χ
2(1).
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