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Section 1
Preliminaries

Let the indicator function be

1A(ω) =

1 if ω ∈ A

0 if otherwise

where A ∈ F = P(Ω)

where (Ω,F ,P) and the random variable X is a mapping (Ω,F ,P)→ (R,B).

Figure 1: Probability as a transformation
A P(A)

Recall the Kolmogorov’s axioms, σ-field closed under countable unions, complementation rules.
We also require P (∅) = 0 and similarly, P (Ω) = 1. If Ai ∩Aj = ∅, then P

(
A{
)

= 1−P (A) .
If all An are disjoint, then P (

⋃∞
i=1An) =

∑∞
i=1 P (An) Note thereafter we assume that F is

a σ−field, not necessarily P(Ω).

Definition 1.1 (Simple function)
We mean by simple function

ϕ(ω) =
K∑
i=1

ai1Ai(ω), Ai ∈ F

and ai ∈ R, for i = 1, . . . ,K.

Definition 1.2 (Borel functions)
f : (Ω,F)→ (R,B) is called a Borel function if f−1(A) ∈ F for any A ∈ B where B is the
smallest σ- field generated by open sets of R.

Proposition 1.3
Let f be a non-negative Borel function on (Ω,F). Then there exists a sequence of simple
functions {ϕn} satisfying 0 ≤ ϕ1 ≤ ϕ2 ≤ · · · ≤ f and limn→∞ ϕn = f (almost everywhere or
pointwise).

Using Lebesgue rather than Riemann integral allows interesting examples which are mixture
of continuous and discrete random variables, for example

fX(x) = pδ0(x) + (1− p)U
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where U ∼ U(0, 1) and where

δ0(x) =

1 if x = 0

0 otherwise .

1.1 Integration

Let ϕ ≥ 0 be a simple function, then we define

∫
ϕdν =

K∑
i=1

aiν(Ai)

where ϕ(ω) =
∑K
i=1 ai1Ai(ω) and ν is a measure on (Ω,F). 1

Recall that F is a σ−field if and only if

(i) ∅ ∈ F ,

(ii) A ∈ F ⇒ A{ ∈ F

(iii) {Ai}∞i=1 ∈ F ⇒
⋃∞
i=1Ai ∈ F .

Recall that a set function ν defined on F is called a σ-additive measure if and only if

(i) 0 ≤ ν(A) ≤ ∞ ∀ A ∈ F

(ii) ν(∅) = 0

(iii) If Ai ∈ F , i = 1, . . . , and Ai ∩Aj = ∅, ∀ i 6= j, then

ν

( ∞⋃
i=1

Ai

)
=
∞∑
i=1

ν(Ai)

Proposition 1.4
Let f ≥ 0 be a Borel function. Then∫

f dν = sup
{∫

ϕdν : ϕ ∈ Sf
}

where

Sf =
{
ϕ =

K∑
i=1

ai1Ai

}
1 In the case of step functions, this is the area under the curve.
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for some k and A1, . . . , AK ∈ F , ϕ ≤ f

Theorem 1.5
Let {fi}∞i=1 be a sequence of Borel functions on (Ω,F , ν). Assume fn, f, g are measurable.
Then

(i) Fatou’s lemma: If fn ≥ 0, we have∫
lim inf
n→∞

fn dν ≤ lim inf
n→∞

∫
fn dν (1.1)

where lim infn→∞ fn(x) = supn infk≥n fn(x).

(ii) Dominated convergence theorem If limn→∞ fn = f a.e. for some Borel measurable
function g such that

∫
g dν <∞, then

∫
limn→∞ fn dν = limn→∞

∫
fn dν.

Note
By almost everywhere, we mean

ν(x : lim
n→∞

fn(x) 6= f(x)) = 0

(iii) If 0 ≤ f1 ≤ f2 ≤ . . . , and limn→∞ fn = f almost everywhere, then

lim
n→∞

fn dν = lim
n→∞

∫
fn dν.

Note
For general, not necessarily non-negative functions, we define

∫
f dν =

∫
f+f dν −

∫
f− dν

where f := f+ − f− and where f+ = f ∨ 0 (∨ is the maximum) and −f− = f ∧ 0 ( ∧ here is
the minimum).

1.2 Interchanging integral and differential operators

Let (Ω,F , ν) be a measurable space and for any fixed θ ∈ R, f(ω, θ) be a Borel function
on Ω. Suppose that ∂f(ω, θ)/∂θ exists a.e. for θ ∈ (a, b) ⊆ R and |∂f(ω, θ)/∂θ| ≤ g(ω) a.e.
where g is an integrable function on Ω, i.e.

∫
g dν <∞. Then, for each θ ∈ (a, b),

∂f(ω, θ)
∂θ

∈ L1,

that is ∫ ∣∣∣∣∂f(ω, θ)
∂θ

∣∣∣∣ dν(ω) <∞
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and
d
dθ

∫
f(ω; θ) dν(ω) =

∫
∂f(ω, θ)
∂θ

dν(ω)

Proposition 1.6 (Change of variable)
Let f be (Ω,F , ν) − (Λ,S) measurable, that is f−1(A) ∈ F , ∀ A ∈ S and g be a Borel
function on (Λ,S). Then ∫

Ω
g ◦ f dν =

∫
Λ
g d(ν ◦ f−1)

1.3 Fubini’s theorem

Definition 1.7
A measurable function ν is called σ-finite if there exists {Ai}∞i=1 such that

∫∞
i=1Ai = Ω and

ν(Ai) <∞ for i = 1, 2, . . ..

Theorem 1.8 (Fubini’s theorem)
Let νi be a σ- finite measure on (Ωi,Fi) for i = 1, 2 and let f be a Borel measurable function
on (Ω1,F1)× (Ω2,F2) whose integral with respect to (ν1 × ν2) exist. Then

1.

g(ω2) =
∫

Ω1

f(ω1, ω2) dν1

exists almost everywhere with respect to ν2.

2. ∫
Ω1×Ω2

f(ω1, ω2) d(ν1 × ν2) =
∫

Ω2

[∫
Ω1

f(ω1, ω2) dν1

]
dν2

=
∫

Ω1

[∫
Ω2

f(ω1, ω2) dν2

]
dν1

Note
The product σ-field is generated by {A × B : A ∈ F1, B ∈ F2}. In general, the product
σ-fied is defined in such a way that the coordinate maps remain measurable.

1.4 Radon-Nikodym derivative

We say λ is absolutely continuous with respect to ν if ν(A) = 0 implies λ(A) = 0 ∀ A ∈ F
(where both ν and λ are defined on (Ω,F)). We denote this by λ << ν.
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Theorem 1.9 (Radon-Nikodym)
Let ν and λ be two measures on (Ω,F) such that ν is σ- finite. If λ << ν, then there exists
a Borel function f ≥ 0 on Ω such that

λ(A) =
∫
A

f dν

for all A ∈ F . 2 Furthermore, f is unique a.e. ν that is if λ(A) =
∫
A
g dν, ∀ A ∈ F then

f = g almost everywhere ν.

Proposition 1.10 (Properties of the Radon-Nikodym derivative)
◦ Cancellation rule: If λ << ν and h ≥ 0, then

∫
hdλ =

∫
h dλ

dν dν.

◦ If λi << ν for i = 1, 2, then so is λ1 + λ2 and

d(λ1 + λ2)
dν = dλ1

dν + dλ2

dν a.e.[ν].

◦ Chain rule: If λ is a σ-finite measure and τ << λ << ν, then

dτ
dν = dτ

dλ ·
dλ
dν a.e.[ν].

In particular, if λ << ν and ν << λ (in which case we say λ and ν are equivalent ),
then

dλ

dν =
(

dν
dλ

)−1
a.e.[ν]. or [λ]

◦ Let (Ωi,Fi, νi) be a measure space, i = 1, 2 and νi be σ-finite for i = 1, 2. Let λi be a
σ-finite measure on (Ωi,Fi) and λi << νi then λ1 × λ2 << ν1 × ν2

d(λ1 × λ2)
d(ν1 × ν2) (ω1, ω2) = dλ1

dν1
(ω1) · dλ2

dν2
(ω2) a.e.[ν1 × ν2].

1.5 Asymptotic theory and modes of convergence

Definition 1.11 (Convergence)
Let X,X1, X2, . . . be random vectors (functions) on a common probability space. 3

1. Convergence in distribution: We say Xn
d−→ X (or weakly; in this case we use

2Densities are thus derivatives with respect to the Lebesgue measure.
3Recall that a probability space is a measurable space such that P(Ω) = 1.
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Fn
w−→ F ) if and only if

lim
n→∞

Fn(x) = F (x), ∀ x ∈ CF .

where Cf = {continuity points of F} and where F, F1, F2, . . . are respectively CDF
of X,X1, X2, . . .. When we use “weakly”, we may use Pn

w−→ P instead of Fn
w−→ F ,

although authors have been also using Xn
w−→ X.

2. Convergence in probability We say Xn
P−→ X if and only if

lim
n→∞

P (‖Xn −X‖ > ε) = 0, ∀ ε > 0.

3. Convergence in rth moment: We say Xn
Lr−−→ if and only if

lim
n→∞

E‖Xn −X‖r = 0, r > 0.

4. Almost-sure convergence: We say Xn
a.s.−−→ X if and only if

P
(
ω : lim

n→∞
Xn(ω) = X(ω)

)
= 1.

Theorem 1.12 (Polya’s theorem)
Let

Zn = X̄n − µ
σ/
√
n
,

Fn is the CDF of Zn and F is the CDF of Z ∼ N (0, 1). If Fn
w−→ F and F is continuous on

Rk, then

lim
n→∞

‖Fn − F‖∞ = 0

where

‖Fn − F‖∞ = sup
x∈Rk

|Fn(x)− F (x)|

that is the convergence is uniform.

9



A useful result for almost sure convergence is

Xn
a.s.−−→ X ⇔ lim

n→∞
P
( ∞⋃
m=n
{‖Xm −X‖ > ε}

)
= 0.

Theorem 1.13
1. Xn

a.s.−−→ X ⇒ Xn
P−→ X ⇒ Xn

w−→ X. Furthermore, if P (X = c) = 1 for some constant
c, then Xn

w−→ X ⇒ Xn
P−→ X.

2. Xn
Lr−−→ X ⇒ Xn

P−→ X for r > 0

3. Skorohod’s theorem: If Xn
w−→ X, then there are random vectors Y, Y1, . . . defined

on a common probability space such that PY = PX ,PYn = PXn , n = 1, 2, . . . and
Yn

a.s.−−→ Y.

4. If, for any ε > 0,
∑∞
n=1 P (‖Xn −X‖ ≥ ε) <∞, then Xn

a.s.−−→ X.

5. If Xn
P−→ X, then there is a subsequence {Xnj , j = 1, 2, . . .} such that Xnj

a.s.−−→ X as
j →∞.

6. Suppose Xn
d−→ X, where Xn ∈ Rk. Then, for any r > 0

lim
n→∞

E‖Xn‖r = E‖X‖r <∞

if and only if {‖Xn‖r} is uniformly integrable in the sense4 that

lim
t→∞

sup
n

E
(
‖Xn‖r1‖Xn‖>t

)
= 0

Remark
An easy sufficient condition for uniform integrability is

sup
n

E‖Xn‖r+δ <∞

for some δ > 0.

Lemma 1.14 (Borel-Cantelli)
Let An be a sequence of events in a probability space and lim supn→∞An =

⋂∞
n=1

⋃∞
m=nAm.

(a) If
∑∞
n=1 P (An) <∞, then P (lim supn→∞An) = 0.

(b) If {An} is a sequence of pairwise independent events and
∑∞
n=1 P (An) = ∞, then

P (lim supn→∞An) = 1.
4For some norm (not metric), one can take the absolute value or Euclidian, or L1 norm
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Notation (“O” and “o” )
We say that

an = O(bn) ⇔
∣∣∣∣anbn

∣∣∣∣ ≤ c, n ≥ N
for some N , where {an} and {bn} are two sequences of real numbers.

We say that

an = o(bn) ⇔ an
bn
→ 0 as n→∞.

Likewise, we can define O, o almost surely and Op, op. Suppose {Xn} is a sequence of random
vectors and {Yn} is a sequence of random variables. Then

◦ Xn = O(Yn) almost surely if and only if

P (ω : ‖Xn(ω)‖ = O (‖Yn(ω)‖)) = 1

◦ Xn = o(Yn) almost surely if and only if Xn/Yn
a.s.−−→ 0 as n→∞.

◦ Xn = Op(Yn) if and only if for any ε > 0, there are Cε, Nε such that

sup
n≥Nε

P
(
‖Xn‖
‖Yn‖

≥ Cε
)
< ε

◦ Xn = op(Yn) if and only if Xn/Yn
P−→ 0 as n→∞.

Exercise 1.1
Some implications

◦ If Xn = op(Yn), then Xn = Op(Yn)

◦ If Xn = Op(Yn) and Yn = Op(Zn), then Xn = Op(Zn).

◦ Suppose {Xn} is a sequence of random variables and Xn
d−→ X, then Xn = Op(1). In

such case, we say {Xn} is bounded in probability.

◦ Establish whether o(1)/n ?= o(n−1) and similarly O(1)/n ?= O(n−1) using the defini-
tions.

1.6 Weak convergence
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Tighness

Definition 1.15 (Tighness)
A sequence {Pn} of probability measures on (Rk,Bk) is called tight if for an ε > 0, there is
a compact set C ⊂ Rk such that infn Pn(C) > 1− ε. If {Xn} is the corresponding sequence
of random vectors to {Pn}, then tightness of {Pn} is equivalent to boundedness of {‖Xn‖}
in probability.
Theorem 1.16
{Pn} is tight if and only if for any subsequence {Pnj} there is a further subsequence {Pnjk }
such that Pnjk

w−→ P as k →∞. Furthermore, if all these subsequences converge to the same
P, then Pn

w−→ P.
Theorem 1.17
Xn

w−→ X if and only if ∫
Ω
h(Xn(ω)) dPXn(ω)⇒

∫
Ω
h(X(ω))dP(ω)

for all bounded continous functions. Or equivalently,

lim sup
n→∞

PXn(C) ≤ PX(C), ∀ closed sets C

or equivalently

lim inf
n→∞

PX(O) ≥ PX(O), ∀ open sets O

Theorem 1.18 (Lévy-Cramer continuity theorem)
Let ΦX ,ΦX1 , . . . be the characteristic functions of X,X1, . . . respectively. Then Xn

d−→ X if
and only if ΦXn(t)→ ΦX(t), ∀ t ∈ Rk

Proposition 1.19 (Cramer-Wold device)
Xn

d−→ X if and only if c>Xn
d−→ c>X for all c ∈ Rk. 5

1.7 Convergence of transformations

Theorem 1.20 (Continuous mapping theorem)
Let X, {Xn}∞n=1 be a sequence of random vectors on (Rk,Bk). Suppose g : (Rk,Bk) →
(Rl,Bl) is a continuous map. Then

Xn
a−→X ⇒ g(Xn) a−→ g(X)

where a is almost surely or in probability (p) or weakly (w).

5In particular, we cannot say that if Xn
d−→ X, Yn

d−→ Y , then (Xn Yn)> d−→ (X Y )> and we need the
device
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Theorem 1.21 (Slutsky)
If Xn

d−→ X and Yn
P−→ c, a constant. Then

(a) Xn + Yn
d−→ X + c

(b) XnYn
d−→ cX

(c) Xn/Yn
d−→ X/c if c 6= 0

(d) Slutsky: if Xn
d−→ X and |Xn − Yn|

P−→ 0, then Yn
d−→ X

In particular, confidence intervals for proportions can be found using (c) with

p̂− p√
p(1−p)
n

d−→ p̂− p√
p̂(1−p̂)
n

d−→ N (0, 1)

approximating the denominator as the latter variance doesn’t depend on the unknown
parameter.

Proposition 1.22 (Delta method)
Let {Xn} and Y be random vectors, such that an(Xn− c)

d−→ Y , where c ∈ Rk and an > 0,
limn→∞ an =∞. Let g : Rk → R, g ∈ C1 (meaning continuous and differentiable at c). Then

an(g(Xn)− g(c)) d−→ [∇g(c)]>Y

where [∇g(c)] is the gradient of g at c.

If Y ∼ Nk(0,Σ), then

an
[
g(Xn)− g(c)

] w−→ [∇g(c)]>Y ∼ N
(
0, [∇g(c)]>Σ[∇g(c)]

)
This special case is often called δ-method. 6

Indeed, we can then use a Taylor’s series approximation

g(X̄n) = g(µ) + g′(µ)(X̄n − µ) +R

and we can then say

E
(
g(X̄n)

)
= g(µ) + g′(µ)E

(
X̄n − µ

)
+ E (R) .

6 To establish convergence for random processes, one need to establish convergence of the random variables
for finite-sequence, then combine with tightness to get the result for infinite dimensions. Also, we keep the
sequence an as the rate may not be

√
n
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The remainder is of importance, indeed 1/n is the maximum rate one can get. We have

E
(
g(X̄n)

)
≈ g(µ) +O

(
1
n

)
.

Theorem 1.23 (Second-order δ-method)
Let Yn be a sequence of random variables that satisfies

√
n(Yn − θ)

d−→ N (0, σ2). For a given
function g and a specific value of θ, suppose g′(θ) = 0 and g′′(θ) exists and is not zero. Then

n[g(Yn)− g(θ)] d−→ σ2 g
′′(θ)
2 χ2

1

Application
Consider Yn

iid∼ B(p) (Bernoulli) for n = 1, 2, . . . , and g(p) = p(1− p) so g′(p) = 1− 2p and
hence g′(1/2) = 0 i.e. g′ = 0 if p = 1

2 . If one wanted to find [X̄n(1− X̄n)− p(1− p)], one
needs to go to higher δ-methods.

The δ-method is essentially based on Taylor’s expansion. The first order expansion, in
particular, is often used.

Proposition 1.24 (Taylor’s series expansion)
If g : U ⊂ Rk → R has continuous partial derivatives of third order, then

g(x0 + h) = g(x0) + [∇g(x0)]>h+ 1
2h
>Hg(x0)h+R2(h,x0)

where R2(h,x0)/‖h‖2 → 0 as h→ 0 (namely o(‖h‖2)).

Note that we denote the gradient

[∇g(x0)]> =
(
∂g

∂x1
, . . . ,

∂g

∂xk

)∣∣∣∣
x0

and the Hessian matrix Hg(x0) is defined as

Hg(x0) =
[

∂2g

∂xi∂xj

]
i,j=1,...,k

∣∣∣∣∣
x0

Thus, we have

g(Xn) = g(c) + [∇g(c)]> + 1
2(Xn − c)>Hg(c)(Xn − c) +R2

14



where

R2

‖Xn − c‖2
→ 0

as

an(Xn − c)
w−→ Y

as |Xn − c| = Op

(
1
an

)
. If ∇g(c) = 0, then

g(Xn)− g(c) = 1
2(Xn − c)>Hg(c)(Xn − c) +Rn

then an(Xn − c)
w−→ Y and ‖Xn − c‖ = Op

(
1
a2
n

)
and (Xn − c)2 = Op

(
1
a2
n

)
For example,

with hazard function, we usually have remainder of the order 3
√
n; this causes many problems,

for example the usual bootstrap will not work.

Suppose one performs a cross-sectional study (which are cheaper compared to other methods
to implement). You will recruit the prevalent cases (not incident), that is they already suffer
from some disease, rather than getting them in the early stage of study and assessing whether
they have the disease. This is a problem of length bias censored data. One can think for
example of studies on dementia or on unemployment in economics (in the latter, one may
have biased sampling as well).

Theorem 1.25
Let Y be a sequence of random variables that satisfies

√
n(Yn − θ)

d−→ N (0, σ2).

For a given function g ∈ C2 and a specific value of θ. Suppose g′(θ) = 0 and g′′(θ) exists and
are not zero. Then

n[g(Yn)− g(θ)] d−→ σ2 g
′′(θ)
2 χ2

1

g(Yn)− g(θ) = σ2

2

(
Yn − θ
σ

)2
g′′(θ) +R2

and so

n[g(Yn)− g(θ)] = σ2

2

[√
n(Yn − θ)

σ

]2

g′′(θ) + nR2

This was from a distributional perspective, but we can also use the Taylor expansion to
get expectation and variance results. The δ-method, being essentially based on Taylor’s
expansion, can be readily used to approximate E (g(X)) and Var (g(X)).
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Example 1.1
Suppose X is a random variable with E (X) = µ 6= 0. Then,

g(X) ≈ g(µ) + g′(µ)(x− µ)

if g is C1. This then leads us to E (g(X)) ≈ g(µ) and Var (g(X)) ≈ [g′(µ)]2Var (X).
Exercise 1.2
Consider for example g(x) = 1/x. Then

E
(

1
X

)
≈ 1
µ

while

Var
(

1
X

)
≈
(

1
µ

)4
Var (X) .

This type approximation can easily be extended to higher dimensions and be used for
approximation. Here Zn = (Xn Yn)>, with an(Zn − θ) d−→ V and take g(z) = x/y, z =
(x y)>, then E (X/Y ) and Var (X/Y ). For this purpose, we need multivariate version of
Taylor’s expansion.

If X,Y are two random variables with E (X) = µX and E (Y ) = µY and g(x, y) = x
y , then

E
(
X

Y

)
≈ µX
µY

Var
(
X

Y

)
≈ 1
µ2
Y

Var (X) + µ2
X

µ4
Y

Var (Y )− 2µX
µ3
Y

Cov (X,Y )

But be careful as weak convergence doesn’t imply convergence in moments. We need that
E (Y/X) to exist for this estimate to be meaningfull, for example if Xn, Yn ∼ N (0, 1) and
Xn/Yn ∼ C(0, 1). For more on the rate of error of these approximations, see Rickel and
Dokson (2007) on pages 306-309.

1.8 Generation of a random sample

Probability Integral Transform

If Y is a continuous random variable with CDF FY , then U = FY (Y ) ∼ U(0, 1). For example,
if Y ∼ E(λ), that is exponentially distributed with

fY (y) = λe−λy1y≥0

and

FY (y) = 1− e−λy1y≥0
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then U = 1− e−λY , U ∼ U(0, 1).

To generate random variables from E(λ)

◦ Generate Ui
iid∼ U(0, 1), for i = 1, 2, . . . , n

◦ Yi = − 1
λ log(1− Ui), for i = 1, . . . , n.

◦ Having done the first step, we can generate random samples from Gamma G(k, λ). If
Xi

iid∼ E(λ),
∑k
i=1Xi ∼ G(k, λ).

◦ For each i, we generate k samples from U(0, 1), say Ui1, . . . , Uik and then set wi =
− 1
λ

∑k
j=1 log(Uij).

◦ Having performed the second step, we can generate random sample from Beta B(k, l)
where both k, l are integers by generating n(k + l) iid samples from U(0, 1), then
compute

Vi =
∑k
j=1 logUij∑k+l
j=1 logUij

for i = 1, 2, . . . , n.

Remark
Note that we cannot perform the same procedure for generating random samples from Beta
distribution if either k or l is not an integer.

Accept-Reject algorithm

Algorithm 1.1
◦ Generate U, V independent U(0, 1)

◦ If U < 1
cfY (v), set Y = v, otherwise return to step 1. Here c = max0≤y≤1 fY (y).

Recall

fY (y) = Γ(a+ b)
Γ(a)Γ(b)y

a−1(1− y)b−11y∈[0,1]

if Y ∼ B(a, b). Thus

c = max
0≤y≤1

Γ(a+ b)
Γ(a)Γ(b)y

a−1(1− y)b−1

= Γ(a+ b)
Γ(a)Γ(b)y

a−1
∗ (1− y∗)b−1

17



where

y∗ = ymod = a− 1
a+ b− 2

if both a and b > 1.

Theorem 1.26
Let Y ∼ fY (y) (the target distribution) and V ∼ fV (v) (candidate distribution), where fY
and fV have common support with

M = sup
y

fY (y)
fV (y) <∞.

To generate a random variable Y ∼ fY

a. Generate U ∼ U(0, 1) and V ∼ fV independent

b. If U < 1
M

fY (v)
fV (v) , set Y = v, otherwise return to step a.

Proof

P (Y ≤ y) = P (V ≤ y|stop)

= P
(
V ≤ y|U <

1
M

fY (v)
fV (v)

)

=
P
(
V ≤ y, U < 1

M
fY (v)
fV (v)

)
P
(
U < 1

M
fY (v)
fV (v)

)
=
∫ y
−∞

∫ 1
M

fY (v)
fV (v)

0 dufV (v) dv∫
R
∫ 1
M

fY (v)
fV (v)

0 dufV (v) dv

=
∫ y
−∞

1
M

fY (v)
fV (v)fV (v) dv∫∞

−∞
1
M

fY (v)
fV (v)fV (v) dv

=
∫ y
−∞ fY (v) dv∫
R fY (v) dv

=
∫ y

−∞
fY (v) dv

= FY (y)

�
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Remark
The probability of stopping

P (stop) = P
(
U <

1
M

fY (V )
fV (V )

)
= E

(
E
(

1
U< 1

M

fY (V )
fV (V )

∣∣V ))
= E

(
E
(

1
U< 1

M

fY (v)
fV (v)

∣∣V=v

))
=
∫
v

1
M

fY (v)
fV (v)fV (v) dv

= 1
M

∫
v

fY (v) dv

= 1
M

since U ⊥⊥ V . Recall that P (A) = E (1A) =
∫
A

dF (x) and indeed

E
(

1
U< 1

M

fY (V )
fV (V )

∣∣V=v

)
= P

(
U <

1
M

fY (v)
fV (v)

∣∣∣∣V = v

)
= P

(
U <

1
M

fY (v)
fV (v)

)
= 1
M

fY (v)
fV (v)

Remark
Let N be the number of trials needed to generate one Y . Then N ∼ G(p = M−1). Note that
M = 1/P (stop) and also M = E (N). Therefore, the smaller the M , the lesser the number
of trials needed to generate Y.

Remark
The candidate density fV should be chosen such that fV has heavier tail than fY , the target
density. This esures a good representation of samples from fY .

1.9 Markov-Chain Monte Carlo (MCMC)

Definition 1.27 (Stochastic process)
A stochastic process is a family of random variables {Xt : t ∈ T}. A Markov process enjoys
the Markov property, that is

P
(
X(t+1) = x|X(t) = xt, X

(t−1) = xt−1, . . . , X
(1) = x1

)
= P

(
X(t+1) = x|X(t) = xt

)
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so that forecasting the next value depends only of the present. We call this chain if the
process is has discrete state space, process for continuous state space processes and in
higher dimensions, fields (Gaussian fields (brain mapping – points in manifolds)) .

Metropolis-Hastings algorithm

The MH algorithm constructs a Markov chain (MC) with state space X and equilibrium
distribution π(x). The algorithm works as follows; let q(x, x′) denote a transition probability
function such that if X(t) = x, x′ is drawn from q(x, x′), i.e. P

(
X(t+1) = x′|Xt = x

)
is

considered as a proposed possible value. for X(t+1). A further randomization, however, takes
place with some probability α(x, x′); we accept X(t+1) = x′, otherwise we reject the value
generated from q(x, x′) and set X(t+1) = x. This construction defines a Markov Chain with
transition probability given by

p(x, x′) =

q(x, x′)α(x, x′) if x′ 6= x

1−
∑
x′ 6=x q(x, x′)α(x, x′) if x′ = x

If we now set

α(x, x′) =

min
{
π(x′)q(x′,x)
π(x)q(x,x′) , 1

}
if π(x)q(x, x′) 6= 0

0 otherwise

It is not hard (exercise) to check that

π(x′)
π(x) = p(x, x′)

p(x′, x)

called Fouler’s principle of detailed balance, provided that q(x, x′) is irreducible and aperiodic
(that is ergodic). The principle of detailed balance is a sufficient condition for π to be the
equilibrium distribution of the constructed chain, i.e. πP = π.

For a stationary process, we can find the probability to go from y to x from time t to t+ 1.
The process is stationary if P

(
X(t+1) = x|X(t) = y

)
= p(y, x) ∀ t ≥ 0. The transition

matrix of conditional probabilities is

P =


p11 p12 · · · p1k

p21 p22 · · · p2k
...

. . . . . .
...

pk1 pk2 · · · pkk


then there a stable distribution for ergodic chains and pnij → π(j), the equilibrium probability,
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where π is the equilibrium distribution of the process.
Remark
The implementation of the algorithm only requires knowledge of π(x′)/π(x).

When the dimension of θ, the vector of parameters is high (say 100), then the posterior is

π(θ,x) = f(x|θ)π(θ)∫
θ
f(x|θ)π(θ) dθ

∝ f(x|θ)π(θ)

and working with the ratio allows cancellation of the normalizing constant.

Here are special cases of the algorithm.

◦ Tierney (1991) – Taking q(x,x′) = q(x′,x) entail α(x,x′) = π(x′)
π(x) ∧ 1. This is known

as Metropolis algorithm

◦ Muler (1991) – Take q(x,x′) = q′(x′ − x), this translation-invariance – “random walk
process” with multivariate Normal or Student-t, or split Student−t among other choices
for q′(x′ − x).

◦ Take q(x,x′) = q(x′), which leads to

min
{
ω(x′)
ω(x) , 1

}
where w(x) = π(x)/q(x). This is like the importance sampling via the importance
weights ω(x). Again, possible choices for q can be Student−t, or split Student−t -with
small degrees of freedom so that we explore the whole region including the tails more
easily.

Convergence is a big issue with these MCMC algorithms; there are valid results about
convergence, which are completely useless.7

The last case, the importance sampling type, is what is given in Casella and Berger.
Algorithm 1.2 (Importance sampling)
Let Y ∼ fY (y) and V ∼ fV (v) with common support

0. Generate V ∼ fV . Set Z0 = V . For i = 1, . . .

1. Generate Ui ∼ U(0, 1), Vi ∼ fV and calculate

ρi = min
{(

fY (Vi)
fV (Vi)

fV (Zi−1)
fY (Zi−1)

)
, 1
}

7A variant of simulated annealing (a method arising from metalogy) is the more recent proposal of
equi-energy sampler in Annals of Statistics
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2. Set

Zi =

Vi if Ui ≤ ρi
Zi−1 if Ui > ρi

Note that the probability of acceptance is ρi. P (move) = P (Zi+1 = Vi) = P (Ui ≤ ρi) = ρi.

An interesting article and another useful algorithm is the Gibbs sampler, when the
conditional π(θi|θ−i,x) is available ∀ θi is available. See to that effect the paper by Smith
and Roberts, Bayesian Computation via the Gibbs Sampler and Related Markov Chain Monte
Carlo Methods (1993).
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Section 2
Data reduction principle

2.1 Sufficiency

Consider first the easy (yet insightful) case of a Bernoulli random variable,

P (X = x) = px(1− p)1−x1x∈{0,1}

This distribution is used for example to analyse referendum and voting for a given party.
For Xi ∈ {0, 1},P (Xi = 1) = p, where p is also the average. The average has all the good
sample property: unbiased, MLE estimate, p̂n = 1

n

∑n
i=1Xi where we do estimate based on

an infinite population. From this, we can obtain confidence intervals. The Hypergeometric
could be used for sampling-resampling procedure (yet the gain in efficiency for using the
population is negligeable).

We also have Polya’s urn problem. As long as we do not know the probability of the first
draw, the probability of drawing doesn’t change, where drawing from an urn blue and red
marbles, as

P (X1 = 1) = R

R+B

P (X2 = 1) = P (X1 = 1|X1 = 1) P (X1 = 1) + P (X2 = 1|X1 = 0) P (X1 = 0) = R

R+B

which is still the same probability, yet we do not have independence.

Assuming that n is known, the likelihood

L(p;x1, . . . , xn) =
n∏
i=1

P (Xi = xi)

=
n∏
i=1

pxi(1− p)1−xi

= pΣxi(1− p)n−Σxi

=
(

p

1− p

)Σxi
(1− p)n

and define T =
∑n
i=1Xi. Then, to check for sufficient statistic, we need to assert whether

conditional on the postulated statistic, the likelihood is independent on the unknown
parameter (in this case p).
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Indeed,

Pp (Xi = xi, i = 1, . . . , n|T = t) = Pp (Xi = xi; i = 1, . . . , n, T = t)
Pp(T = t) 1Σxi=t

= Pp (Xi = xi; i = 1, . . . , n)
Pp(T = t) 1Σxi=t

= pΣ xi(1− p)n−Σ xi(
n
t

)
pt(1− p)n−t

1Σxi=t

= 1(
n
t

)1Σxi=t

In this case, the cardinality of the set

At =
{

(x1, . . . , xn) : xi ∈ {0, 1},
n∑
i=1

xi = t

}

is
(
n
t

)
. In this case, the dimension-reduction for the problem was from n to 1. However,

even if it always possible to get a sufficient statistic in every case, we may not be able to do
data-compression.

Example 2.1
Let {Xi}ni=1 be an IID sample Xi

iid∼ f , f continuous.

Looking at the order statistics, let us rederive the joint distribution of two order statistic
using the multinomial distribution

fX(r),X(s)(x, y) dx dy ≈ P
(
x < X(r) < x+ ∆x, y < X(s) + y + ∆y

)
=
(

n

r − 1, s− r − 1, n− s

)
P (X ≤ x)r−1 P (x < X < x+ ∆x)

× P (x+ ∆x < X < y)s−r−1 P (y < X < y + ∆y) P (Y > y)n−s

so that fX(r),X(s)(x, y)

= lim
∆x→0
∆y→0

P
(
x < X(r) < x+ ∆x, y < X(s) < y + ∆y

)
∆x∆y

=
(

n

r − 1, s− r − 1, n− s

)
F r−1
X fX(x)[FX(y)− FX(x)]s−r−1fX(y)[1− FX(y)]n−s

and in the case where we have all order statistics, fX(1),...,X(n)(y1, . . . , yn) = n!
∏n
i=1 fX(yi) =
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∏n
i=1 fX(xi) and

fX|X(1),...,X(n)(x|y) = fX(x)
f(X)(y)

=
∏n
i=1 fX(xi)

n!
∏n
i=1 fX(xi)

= 1
n!

The spacing of the empirical cumulative distribution function, the non-parametric estimate
for the CDF, takes into account the space, while f̂n = 1/n.

Example 2.2 (Sufficient statistics for the Normal distribution)
Let Xi

iid∼ N (µ, 1) and consider the random variable T =
∑n
i=1Xi. Then, the likelihood is

L(µ;x) =
n∏
i=1

1√
2π

exp
(
− (xi − µ)2

2

)

=
(

1√
2π

)n
exp

(
−1

2

n∑
i=1

(xi − µ)2

)

and we easily see that T ∼ N (nµ, n) through moment generating function arguments. We
also have

n∑
i=1

(xi − µ)2 =
n∑
i=1

x2
i − 2µ

n∑
i=1

xi + nµ2

which entails that the ratio is

fX(x|t) = fX(x)
fT (t) 1Σxi=t

=
(√

2π
)−n exp

(
− 1

2
∑n
i=1(xi − µ)2)

(2πn)− 1
2 exp

(
− (t−nµ)2

2n

) 1Σxi=t

= C
exp

(
− 1

2
[∑n

i=1 x
2
i − 2µ

∑n
i=1 xi + nµ2])

exp
(
− 1

2n (t2 − 2ntµ+ n2µ2)
) 1Σxi=t

= C
exp

(
− 1

2
[∑n

i=1 x
2
i

])
exp

(
− 1

2 t
2
) 1Σxi=t

We now consider a case for the Poisson, where X1, X2
iid∼ P(λ), it is easy to show T = X1 +X2
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is sufficient (exercise). For a Poisson, however, taking

P (X1 = x1, X2 = x2|T = t) =
(
t

x1

)
1
2t1x1+x2=t

and zero otherwise and in this example,

At = {(x1, x2) : x1 + x2 = t}.

However, taking X1 + 2X2 is not sufficient. Indeed,

P (X1 = 0, X2 = 1|X1 + 2X2 = 2) = P (X1 = 0, X2 = 1)
P (X1 + 2X2 = 2)

= P (X1 = 0, X2 = 1)
P (X1 = 0, X2 = 1) + P (X1 = 2, X2 = 0)

= e−λλe−λ

e−λλe−λ + e−λλ2

2! e−λ

= 1
1 + λ

2

which is still a function of λ.

2.2 Fisher-Neyman factorization theorem

Here is a general tool that gives us recipe to find a sufficient statistic.

Theorem 2.1 (Fisher-Neyman Factorization criterion)
Let X1, . . . , Xn be distributed according to Pθ(x1, . . . , xn), θ ∈ Θ. Then T (X1, . . . , Xn) is
sufficient for θ if and only if we can write

Pθ(x1, . . . , xn) = h(x1, . . . , xn)gθ(T (x1, . . . , xn)) (2.2)

where h is a non-negative function of x1, . . . , xn only and does not depend on θ and g is a
non-negative function of θ and T (x1, . . . , xn) only.

Proof The proof in the general case is quite involved. We have a proof by Halmos and
Savage, with {Pθ : θ ∈ Θ} and Pθ << ν, θ ∈ Θ and is also available in Lehman’s book in
Testing of Statistical Hypothesis and in Shao’s book. We present the version for the discrete
case.
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Let T be sufficient for θ. Then Pθ(X = x|T = t) is independent of θ and we may write

Pθ(X = x) = Pθ(X = x, T (X) = t)

= P (T = t) Pθ(X = x|T = t)

= gθ(T (x))h(x)

Conversely, suppose (2.2) holds. Then

Pθ(T = t) =
∑

x:T (x)=t

Pθ(X = x)

=
∑

x:T (x)=t

gθ(T (x))h(x)

= gθ(t)
∑

x:T (x)=t

h(x)

Suppose Pθ(T = t) > 0, for some θ. Then

Pθ(X = x|T = t) = Pθ(X = x, T = t)
Pθ(T = t)

= Pθ(X = x)
Pθ(T = t) 1T (x)=t

= gθ(T (x))h(x)
gθ(T (x))

∑
x:T (x)=t h(x)1T (x)=t

= h(x)∑
x:T (x)=t h(x)1T (x)=t

�

Fisher defined information such that it increases linearly with the sample size, taking logs
yields a sum. The idea of derivative is for sensitivity.

Example 2.3 (Sufficient statistic for Normal)
Let Xi

iid∼ N (µ, σ2), then

L(µ, σ2;x) = fµ,σ2(x) =
n∏
i=1

1√
2πσ

exp
(
− 1

2σ2 (xi − µ)2
)

=
(

1√
2πσ

)n
exp

(
− 1

2σ2

n∑
i=1

(xi − µ)2

)
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and breaking up the sum, we get

n∑
i=1

(xi − µ)2 =
n∑
i=1

x2
i + nµ2 − 2µ

n∑
i=1

xi

so that the likelihood8 is rewritten in the form

L(µ, σ2;x) =
(

1√
2πσ

)n
exp

(
− 1

2σ2

(
n∑
i=1

x2
i + nµ2 − 2µ

n∑
i=1

xi

))

=
(

1√
2πσ

)n
gµ,σ2

(
n∑
i=1

xi,

n∑
i=1

x2
i

)
.

Using the factorization theorem, the pair (
∑n
i=1 xi,

∑n
i=1 x

2
i ) is a sufficient statistic for (µ, σ2)

Remark
It is false to say that

∑n
i=1 xi is sufficient for µ and

∑n
i=1 x

2
i for σ2; we will define later the

notion of partial sufficiency; writing out the problem, we keep dependence remaining.

Exercise 2.1
Show that if S is sufficient and h is a one-to-one function, then h(S) is also sufficient.

Using the result of the above exercise, we can show that (X̄n, S
2
n) is sufficient for (µ, σ2),

namely there is a injective map from(
n∑
i=1

xi,

n∑
i=1

x2
i

)
←→ (X̄n, S

2
n)

where

S2
n = 1

n− 1

n∑
i=1

(Xi − X̄n)2.

Before proving results for more general members of the exponential family, we review the
notion of
Definition 2.2 (Exponential family)
Let Θ ⊆ Rd and {x ∈ Rm : fθ(x) > 0} does not depend on θ. If there exists real-valued
functions ω1, . . . , ωk and c on Θ and real-valued functions t1, . . . , tk and h on Rk, where

8Recall that likelihood is a post-experimental approach
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d ≤ k,9 such that

fθ(x) = h(x)c(θ) exp
(

k∑
i=1

ωi(θ)ti(x)
)

(2.3)

we say that the family {fθ : θ ∈ Θ} is a d-parameter exponential family.

Remark
We like exponential family since they are the maximum entropy distributions, where entropy
is of the form H(p1, . . . , pk) = −

∑k
i=1 pi log(pi), which is maximized for discrete distribution

assigning equal weights to all points on the support. We require continuity. This is an
extension of Laplace principle of insufficient reason (give equal chance to all cases). In many
cases, we have some extra information about the mean of the variance, and in such case H
is maximized under some additional criterion.

Imposing second order conditions, and maximizing entropy, we get the Normal distribution
and setting conditions on the first order, the maximum entropy yields exponential distribution.
We use then the most “honest” distributions.

Remark
All GLMs and quasi-likelihood methods are based on the entropy principle. For more on
quasi-likelihood, refer to Wedderburn (1974) article Quasi-likelihood functions, generalized
linear models, and the Gauss-Newton method in Biometrika

Exercise 2.2 (Sufficient statistics for exponential family)
Suppose that Xi

iid∼ fθ(x) where fθ(x) is given by (2.3). Show that

T (X) =

 n∑
j=1

t1(Xj), . . . ,
n∑
j=1

tk(Xj)


is sufficient.

Example 2.4
Let fθ(x) = q(θ)h(x), 0 ≤ x ≤ θ where q and h are both positive functions and θ ∈ Θ = R+.
Suppose Xi

iid∼ fθ(x). Then

L(θ;x) = qn(θ)
n∏
i=1

h(xi)10≤xi≤θ ∀ i

9This requirement is for identifiability of wi, then we need from those equations to identify the θ from
those wi
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and note that the support of θ depends on the observation. We can write this as

L(θ;x) = qn(θ)
n∏
i=1

h(xi)
n∏
i=1
E(x)E(θ − xi)[

E

(
n∧
i=1

xi

)
n∏
i=1

h(xi)
][

qn(θ)E
(
θ −

n∨
i=1

xi

)]

where

E(x) =

1 if x ≥ 0

0 otherwise

and
n∧
i=1

xi = min
1≤i≤n

xi,

n∨
i=1

xi = max
1≤i≤n

xi

so that the sufficient statistic T (x) =
∨n
i=1 xi.

Take the mapping f : X → Y such that the values are partitionned into almost disjoint sets.
When conditioning on T , we restrict ourselves to a partition set. When the sets are bigger
(meaning there are more values mapped to the same point ai), we have more compression
taking the minimal sufficient statistic. If a statistic is complete, then it is also minimal

X

Y

a1

a2

a3

a4

a5

A1 A2 A3 A4 A5

Figure 2: Partition sets for minimal statistics

sufficient. Ancillary statistics are perpendicular to the minimal sufficient statistic.

Taking the joint distribution of all order statistics, n!
∏n
i=1 f(xi) for X(1), . . . , X(n). Let

R(Xi) =rank of Xi, then the joint distribution

P (Ri = ri ∀ i) = 1
n!
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The distribution of this does not depend on any unknown parameter (it is ancillary), while
the others (the order statistic) are complete sufficient statistics and thus minimal. This means
that the joint distribution of the order statistic with the ranks, we get from independence
back the data, despite the fact that the ranks have no information. There is orthogonality
(independence) between the sufficient and ancillary statistics. Putting them together, we get
exactly everything and we can recover the sample.

For minimal sufficient statistic, which we define shortly, the partitions sets are chubbiest.

Definition 2.3 (Minimal sufficient statistic)
A sufficient statistic T (X) is called minimal sufficient statistic if for any other sufficient
statistic T ′(X), then T (X) is a function of T ′(X).

Theorem 2.4
Let fθ(x) be the PMF or PDF of a sample x. Suppose10 there exists a function T (X) such
that for every two sample points x and y, the ratio fθ(x)/fθ(y) is constant as a function of
θ if and only if T (x) = T (y). Then T (X) is a minimal sufficient statistic for θ.

Proof For the sake of simplicity, assume that fθ(x) > 0 ∀ x ∈ X (the sample space) and
θ ∈ Θ (the parameter space).

First, we show that T is sufficient. Let

T = {t : t = T (x), for some x ∈ X}

Define the partition sets induced by T (x) as

At = {x ∈ X : T (x) = t} = T−1({t}).

For each At, choose and fix one element xt ∈ At. For any x ∈ X , xT (x) is the fixed element
that is in the same set, At, as x. Since x and xT (x) are in the same set At, T (X) = T (XT (x))
and hence the ratio fθ(x)/fθ(xT (x)) is constant as a function of θ. Thus we can define a
function on X by h(x) = fθ(x)/fθ(xT (x)) and h does not depend on θ. Define a function on
T by gθ(t) = fθ(xT (x)). Then

fθ(x) =
fθ(xT (x))fθ(x)
fθ(xT (x))

= gθ(T (x))h(x)

and by the factorization theorem, T (X) is a sufficient statistic for θ.
10Based on the axiom on choice
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Now to show that T is minimal, let T ′ be another sufficient statistic. By the factorization
theorem, there are functions f ′ and g′ such that

fθ(x) = g′θ(T ′(x))h′(x).

Let x,y be any two sample points with T ′(x) = T ′(y). Then

fθ(x)
fθ(y) = g′θ(T ′(x))h′(x)

g′θ(T ′(y))h′(y) = h′(x)
h′(y) .

Since the ratio does not depend on θ, the assumption of the theorem implies that T (x) = T (y).
Thus T (x) is a function of T ′(x) (why?) and T (x) is minimal. �

2.3 Completeness

The following notion is due to Lehmann & Scheffé, in an article published in 1950 in Sankhya

Definition 2.5 (Completeness)
Let {fθ : θ ∈ Θ} be a family of PDF’s (or PMF’s) (or bounded). We say this family is
complete (or boundedly complete; if for any g measurable) if

Eθ (g(X)) = 0, ∀ θ ∈ Θ implies that Pθ (g(X) = 0) = 1, ∀ θ ∈ Θ

Note that the probability is under the distribution of the sufficient statistic. This notion of
completeness is a uniqueness requirement.

This is a bias-variance tradeoff; in the L2-norm,

E
(
(T (X)− ψ(θ))2) = Var (T ) +

[
Biasψ(θ)T

]2
Recall that unbiasedness is the condition

Eθ(T ) = ψ(θ), ∀ θ.

we will try to minimize the mean-square error, and so a restriction to the subclass of
unbiased estimators; we will see UMVUE later in the course.. Rao and Blackwell showed
that conditioning on a sufficient statistic yields another statistic which has lower variability.
The missing piece of the puzzle was the notion of completeness; in such case, we get the
maximum reduction and conditioning once will be sufficient to get the minimum variance
estimator.
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Definition 2.6 (Complete statistic)
A statistic T is said to be complete if the family of distribution of T is complete.

Example 2.5
Let Xi

iid∼ B(p) for a sample of size n, and let T =
∑n
i=1Xi ∼ B(n, p). Consider

0 = Ep(g(T )) =
n∑
t=0

g(t)
(
n

t

)
pt(1− p)n−t

= (1− p)n
n∑
t=0

g(t)
(
n

t

)(
p

1− p

)t
= 0

Define θ = p
1−p , at = g(t)

(
n
t

)
and consider

n∑
t=0

atθ
t = 0, ∀ θ ∈ R+

by the Fundamental theorem of algebra, has at most n roots, therefore at = 0, ∀ t = 0, 1, . . . , n
and as such g(t) = 0. We have thus found a minimal complete sufficient statistic.

Example 2.6
Let X ∼ N (0, θ), θ ∈ R+. Since Eθ(X) = 0, one can easily see in this case that X is not
complete, however T = X2 is complete. Indeed, X2/θ ∼ χ2(1) and X2 ∼ θχ2(1) which
yields PDF

fT (t) = e−
t

2θ
√

2πθ
t−

1
2 1t>0

and as such

Eθ(g(T )) = 1√
2πθ

∫ ∞
0

g(t)t− 1
2 e−

t
2θ dt = 0, ∀ θ ∈ R+

which implies ∫ ∞
0

g(t)t− 1
2 e−

t
2θ dt = 0

and using the uniqueness property of the Laplace transform, we have g(t)t− 1
2 = 0, ∀ t > 0,

which implies g(t) = 0, ∀ t > 0.

In many cases, we will restrain ourselves to continuous functions, since we do not gain more
insight from looking at measurable function, and it takes more time (and requires measure
theory). Using Lusin and Egorov theorem, we can approximate by continuous functions,
using Littlewood’s principles.
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Example 2.7
Let X ∼ U(0, θ) for θ ∈ R+. Then

Eθ(g(X)) =
∫ θ

0

1
θ
g(x) dx = 0⇒

∫ θ

0
g(x) dx = 0.

Using the fundamental theorem of calculus, then g(θ) = 0 implies g(x) = 0, ∀ x ∈ R+. If we
only had measurable function, we could break this into g+(x) and g−(x) and these functions
are equal on any interval. Looking at this using Egorov’s theorem on a set where we have
almost continuous function, we can separate the interval into two sets U,A, one on which we
have continuity and the other of measure zero; looking at m∗(U∆A) < ε, the outer measure
of the symmetric difference, and we can provided that g(x) is bounded find such ε and get
the result for g(X) an arbitrary bounded measurable function.

Example 2.8
Consider again a case where Xi

iid∼ U(0, θ) and the statistic T = ∨ni=1Xi, which we have
shown to be sufficient Then

fT (x; θ) = n

θn
xn−110<x<θ

and so

Eθ(g(T )) =
∫ θ

0
g(x) n

θn
xn−1 dx = 0, ∀ θ ∈ R+

which is proportional to ∫ θ

0
g(x)xn−1 dx = 0

and using the Fundamental theorem of Calculus

g(θ)θn−1 = 0

and conclude that g(θ) = 0 ∀ θ ∈ R+.

Example 2.9
Let Xi

iid∼ N (θ, θ2). One can show (exercise) that T = (
∑n
i=1Xi,

∑n
i=1X

2
i ) is sufficient.

Then

g(t) = 2
(

n∑
i=1

xi

)2

− (n+ 1)
n∑
i=1

x2
i

and Eθ(g(T )) = 0, ∀ θ

Example 2.10
Consider the random variables Xi

iid∼ U(N), discrete uniform random variables. Again, it is
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easy to show that Mn =
∨n
i=1Xi is sufficient. Then, since the variable is discrete, write

P (Mn = x) = P (Mn ≤ x)− P (Mn ≤ x− 1)

=
( x
N

)n
−
(
x− 1
N

)n
.

Then, ∀ N ∈ N, we require

0 = En(g(Mn))

=
N∑
x=1

g(x)
[
xn

Nn
− (x− 1)n

Nn

]

= 1
Nn

N∑
x=1

g(x)[xn − (x− 1)n]

We thus have for all N = 1, 2, . . .

N∑
x=1

g(x)[xn − (x− 1)n] = 0 (2.4)

N−1∑
x=1

g(x)[xn − (x− 1)n] = 0 (2.5)

for N = 2, 3, . . . and using (2.4) and (2.5), we get g(N)[Nn − (N − 1)n] = 0 using the
telescoping sum. This imply that g(N) = 0 for N = 2, 3, . . . and it follows from (2.4) that
g(1) = 0.

2.4 Ancillarity and Basu’s theorem

Definition 2.7 (Ancillary statistic)
A statistic V (X) is said to be ancillary if its distribution doesn’t depend on any unknown
parameter. V (X) is called first-order ancillary if Eθ(V ) does not depend on θ.

An example of such statistic is the rank. We now go for a few more examples.

Example 2.11
If we have a location family, where Xi

iid∼ Fθ(x) = F (x − θ). For example, if X ∼ N (µ, 1)
then we have Z = X − µ ∼ N (0, 1) does not depend on µ.
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We have seen the range R = X(n) −X(1) and

FR(r) = P (R ≤ r)

= P
(
X(n) −X(1) ≤ r

)
= P

(
(X(n) − θ)− (X(1) − θ) ≤ r

)
= P

(
Z(n) − Z(1) ≤ r

)
does not depend on θ, where Zi = Xi − θ.

Theorem 2.8 (Basu)
If T is a complete sufficient statistic for the family P = {Pθ : θ ∈ Θ}, then any ancillary
statistic V is independent of T .

Proof If V is ancillary, the probability pA = P (V ∈ A) is independent of θ for all A. Let
ηA(t) = P (V ∈ A|T = t). Then

Eθ (ηA(T )) = pA

hence

Eθ (ηA(T )− pA) = 0

for all θ ∈ Θ. Then ηA(T ) = pA almost everywhere P. This means that P (V ∈ A|T = t) =
P (V ∈ A) . �

Note
We can replace completeness by boundedly completeness for the step Eθ (ηA(T )− pA) = 0.

With the ranks, we can get complete decompression and not only get similar data generation,
but the original data using a sufficient or a minimal sufficient statistic. When ancillary
statistic are placed next to them, those statistics (like ranks) become quite informative. If we
have pairs (Xi, Yi), knowing how concordant or disconcordant the ranks are, we can assess
the dependence structure.

Example 2.12 (Nonparametric completeness)
Consider F = {f : R → R+;

∫
R dµ = 1, f is continuous a.e. µ}. We show this family F is

complete, so for Xi
iid∼ f ∈ F , then T = (X(1), . . . , X(n)) is complete. We want to show that

Ef (g(T )) = 0, ∀ f ∈ F implies g ≡ 0. The complete proof for general measurable functions
is available in Lehmann Testing Statistical Hypotheses (second edition), on pages 143-144 or
in Lehmann and Romano (third edition) on page 118.
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Order statistics are sufficient, but not always complete. This is the case for example with
the logistic distribution, given by

f(x) = ex

1 + ex
1x∈R.

The logistic distribution was suggested by Berkson; it ressembles a Normal distribution, yet
has heavier tails.

Proof Let T = (X(1), . . . , X(n)) and h be a continuous function of T . Suppose Ef (h(T )) =
0, ∀ f ∈ F . Wlog, suppose f : [0, 1]→ [0, 1]. Then, by definition we have

Ef (h(T )) =
∫ 1

0

∫ 1

y1

· · ·
∫ 1

yn−1

h(y1, . . . , yn)n!
n∏
i=1

f(yi) dyi = 0, ∀ f ∈ F

implies ∫
[0,1]n

1A(y1, . . . , yn)h(y1, . . . , yn)
n∏
i=1

f(yi) dyi = 0, ∀ f ∈ F

where A = {(y1, . . . , yn) ∈ [0, 1]n : 0 ≤ y1 ≤ · · · ≤ yn < 1}. Suppose for a contradiction
h(y∗) > 0 for some y∗ = (y∗1 , . . . , y∗n) ∈ A. Then, there exists δ > 0 such that h(y) >
0, ∀ y ∈ By∗(δ) where By∗(δ) = {y ∈ [0, 1]n : ‖y−y∗‖ < δ}. Suppose Cy∗(δ) is the greatest
hypercube inscribed in By∗(δ) boundary faces, since data is IID.

Figure 3: Picture of simplex: illustration for sample of size two

y1

y2

Then, there exists 0 < α < β < 1 with Cy∗ = {(y1, . . . , yn) ∈ [0, 1]n, α < yi < β ∀ i}. Now
suppose f(y) = (β − α)−11α<y<β . Then∫

Cy∗ (δ)
1A(y)h(y)

n∏
i=1

dyi = 0.

This is a contradiction since h(y) > 0 on Cy∗ . �

To summarize, the idea of the proof is the following: look at greatest cube that fit in ball,
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and choose f that only puts mass on the sides, since it is uniform, since inside and uniformly
positive; since we integrate a positive function and the result is zero, the function must be
null.

T (X(1), . . . , X(n)) is complete sufficient for F and (R(X1), . . . , R(Xn)) is ancillary. Then,
using Basu’s theorem

T = (X(1), . . . , X(n)) ⊥⊥ (R(X1), . . . , R(Xn)) = R.

Thus fT ,R = fX =
∏n
i=1 f(yi). 11

2.5 Complete-sufficient statistic in an exponential family

Recall that a parametric family P = {Pθ : θ ∈ Θ} dominated by σ-finite measure ν on (Ω,F)
is called an exponential family if and only if

dPθ
dν (ω) = h(ω) exp

(
η(θ)>T (ω)− ξ(θ)

)
where T (ω) is a random p-vector, η is a function from Θ to Rp , h is a non-negative Borel
function on (Ω,F) and

ξ(θ) = log
(∫

Ω
exp

(
η(θ)>T (ω)

)
h(ω) dν(ω)

)
Note that any transformation η̃(θ) = Dη(θ) with p× p nonsingular matrix D gives another
valid representation with T replaced by T̃ = (D>)−1T (why?). A change of measure that
dominates the family also changes the representation. For example, if

λ(A) =
∫
A

hdν, ∀ A ∈ F ,

we obtain

dPθ
dν (ω) = exp

(
η(θ)>T (ω)− ξ(θ)

)
(why?). Consider the reparametrization η = η(θ) and

fη(ω) = exp
(
η(θ)>T (ω)− ζ(θ)

)
h(ω), (2.6)

ω ∈ Ω where

ζ(η) = log
(∫

Ω
exp

(
η>T (ω)

)
h(ω) dν(ω)

)
11To show independence, one must be careful without Basu’s theorem, since R is discrete, while T is

continuous.
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This is called the canonical form for the family. The new parameter η is called the natural
parameter. The new parameter space Z = {η(θ) : θ ∈ Θ}, subset of Rp is called the
natural parameter space. An exponential family in canonical form is called a natural
exponential family If there is an open set contained in the natural parameter space of an
exponential family, the family is said to be of full rank.

Example 2.13
Consider P = {Pθ : B(n, θ), θ ∈ (0, 1)} and

fθ(x) = dPθ
dN (x) = exp

(
x log

(
θ

1− θ

)
+ n log(1− θ)

)(
n

x

)
1x∈{0,1,...,n}

where N is the counting measure on N.

Note that T (x) = x, η(θ) = logit(θ), ξ(θ) = −n log(1− θ) and h(x) =
(
n
x

)
1x∈{0,1,...,n}. If we

let η = logit(θ), then Z = R and the family P with PMF’s

fη(x) = exp (xη − n log(1 + eη))
(
n

x

)
10,...,n(x)

is a natural exponential family of full rank. Then η(θ) = logit(θ) is called the natural link in
GLMs.

Theorem 2.9
If P is in an exponential family with PDF’s given by (2.6) and it is of full rank, then T (X)
is a complete sufficient statistic for η ∈ Z.

Proof We have already shown that T is sufficient (using the factorization theorem, left as
an exercise). Suppose that there is a function f such that Eη(f(T )) = 0, ∀ η ∈ Z. Then∫

t

f(t) exp
(
η>t− ζ(η)

)
dλ = 0, ∀ η ∈ Z

where λ(A) =
∫
A
hdν is a measure on (Rp,Bp). In fact,

P (T ∈ A) =
∫
x:T (x)∈A

exp
(
η>T (x)− ζ(η)

)
h(x) dν(x)

= exp
(
η>t− ζ(η)

) ∫
A

h(x) dν(x)

Let η0 be an interior point of Z. Then∫
f+(t)eη

>t dλ =
∫
f−(t)eη

>t dλ, ∀ η ∈ N(η0) (2.7)
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where N(η0) = {η ∈ Rp : ‖η − η0‖ < ε} for some ε > 0. In particular,∫
f+(t)eη

>t dλ =
∫
f−(t)eη

>t dλ = c

If c = 0, then f = 0 almost everywhere λ (why?). If c > 0, then c−1f+(t)eη>0 t and
c−1f−(t)eη>0 t and both PDF’s with respect to λ and (2.7) imply that their MGF’s are the
same in a neighborhood of η0. Using uniqueness of Laplace transforms,

c−1f+(t)eη
>t = c−1f−(t)eη

>t ⇒ f = f+ − f− = 0

almost everywhere λ. Thus T is complete. �

Lemma 2.10
Suppose

dPX,η(x) = exp
(
η>T (x)− ζ(η)

)
h(x) dν(x).

Then dPT,η(t) = exp
(
η>t− ζ(η)

)
dλ̃(t) where dλ̃(t) = dλT−1(t) and dλ(x) = h(x) dν(x)

Theorem 2.11 (Change of variable)
Let f be a measurable function from (X,F , µ) to R and g be a Borel measurable function
on R. Then ∫

g dµf−1 =
∫
g ◦ f dµ

in the sense that if either exists, so does the other and the two are equal. The measure µf−1,
defined by µf−1(B) = µ(f−1(B)) for all Borel sets B; B ∈ B, is the measure induced by f
on R.
Corollary 2.12
If B is a Borel set, then

∫
B
g dµf−1 =

∫
f(θ) g ◦ f dµ. If µf−1 is dominated by the Lebesgue

measure, µf−1 << m, then ∫
g ◦ f dµ =

∫
g(x)p(x) d(x)

where p(x) = dµf−1/ dm(x).

Proof We prove the lemma. Let PT be the probability measure induced by T .

PT (A) = PX(T−1(A)) =
∫
x∈T−1(A)

exp
(
η>T (x)− ζ(η)

)
h(x) dν(x)
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Define dλ(x) = h(x) dν(x). Then

PT (A) =
∫
T−1(A)

exp
(
η>T (x)− ζ(η)

)
dλ(x)

Define y = T (x), then using the theorem of change of variable, we have

PT (A) =
∫
T−1(A)

exp
(
η>T (x)− ζ(η)

)
dλ(x)

=
∫
A

exp
(
η>y − ζ(η)

)
dλT−1(y)

Let dλ̃(y) = dλT−1(y). Then

PT (A) =
∫
A

exp
(
η>y − ζ(η)

)
dλ̃(y)

dPT
dλ̃

(t) = exp
(
η>t− ζη

)
�

If δ is an estimate of θ, one way to look is to minimize MSE

mseθ(δ) = Eθ[(δ(x)− θ)2]

but one could have Eθ(|δ(x)− θ|), which is another loss function; if we look at the deviation
from target, we are thus picking the ones which have minimum variability, subject to extreme
weights. Hubert thus proposes to look at(δ(x)− θ)2 if |δ(x)− θ| ≤ d

d2 if |δ(x)− θ| > d

Follow Lehmann and Casella to get a more general account of this.
Definition 2.13 (Loss function)
Let L : Θ × Θ → R+. Thus if δ is an estimator of θ based on X = X1, . . . , Xn, then
δ : δn → Θ, where δ is the sample space. L(δ(X),θ) is the loss function and define the
risk of an estimator as

R(δ,θ) = Eθ (L(δ(X),θ))

If R(δ1,θ) ≤ R(δ2,θ), ∀ θ ∈ Θ and the inequality is strict for some θ0 ∈ Θ, we say δ2 is
inadmissible.

For example, take L(a, θ) = (a− θ)2 and R(δ, θ) = mseθ(δ).
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This entire field is called decision theory. If we have a unique Bayes,

RT (δ) =
∫
θ

R(δ, θ)π( dθ)

then it is admissible. However, some estimators are not unique Bayes and still admissible.
The fundamental theorem is complete class theorem.

Proposition 2.14 (Stein’s paradox)
If we consider Xi

iid∼ N (µ, 1), then X̄n = 1
n

∑n
i=1Xi (which we will show is UMVUE using

Rao-Blackwell and Lehmann-Scheffé) is admissible for dimension 1 and 2, but not for higher
dimensions. One can show that the so-called James-Stein estimator perform better than X̄n

in terms of MSE, since we are not restricting ourselves to unbiased estimates. This shows
that naive statistic is not possible.

Definition 2.15 (Convex loss functions)
A real valued-function φ defined on an open interval I = (a, b) with −∞ ≤ a < b ≤ ∞ is
convex if for any a < x < y < b and any 0 < γ < 1,

ϕ[λx+ (1− γ)y] ≤ γϕ(x) + (1− γ)ϕ(y) (2.8)

An example of convex function is ϕ(x) = x2.

Theorem 2.16 (Convexity)
1. If ϕ is defined and differentiable on (a, b), then a necessary and sufficient condition

for ϕ to be convex is that ϕ′(x) ≤ ϕ′(y) for all a < x < y < b. The function is stricly
convex if and only if (2.8) is strict for all x < y.

2. If in addition ϕ is twice differentiable, then the necessary and sufficient condition, (2.8)
is equivalent to ϕ′′(x) ≥ 0 for all a < x < b.

Theorem 2.17
Let ϕ be a convex function defined on I = (a, b) and let t be any fixed point in I. Then,
there exists a straight line y = L(x) = c(x− t)s+ ϕ(t) through the point [t, ϕ(t)] such that
L(x) ≤ ϕ(x), ∀ x ∈ I.

Theorem 2.18 (Jensen’s inequality)
If ϕ is a convex function defined over an open interval I, and X is a random variable with
P (X ∈ I) = 1 and finite expectation, then

ϕ(E (X)) ≤ E (ϕ(X)) (2.9)

If ϕ is strictly convex, the inequality is strict unless X is a constant with probability one.
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x y

Proof (from MATH 556) Suppose g is convex, then

g′+(x) = lim
h↓0
h>0

g(x+ h)− g(x)
h

exists for all x ∈ R. If we consider the graph of a continuous convex function and a
tangent, then the graph will lie above the tangent. Tangent in x is given by the expression:
g(x) + g′+(x)(z − x) for z ∈ R. Thus,

g(x) + g′+(x)(z − x) ≤ g(z), ∀ z ∈ R, ∀ x ∈ R

For all ω ∈ Ω, g(x) + g′+(x)(X(ω)− x) ≤ g(X(ω)), therefore cleverly chose x = E (X), then

g(E (X)) + g′+(E (X))(X(ω)− E (X)) ≤ g(X(ω))

and taking expectation on both sides, on the LHS we get

g(E (X)) + g′+(E (X))E (X − E (X)) ≤ E (g(X))

and since E (X − E (X)) = 0, we recover the Jensen’s inequality. To remember it, notice that
E
(
X2) ≥ (E (X))2, since Var (X) ≥ 0 and it can be composed into E

(
X2)− (E (X))2 ≥ 0.

�
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Corollary 2.19
We have

1
E (X) < E

(
1
X

)
and E (log(X)) < log(E (X)) (2.10)

Definition 2.20 (Entropy distance)
This notion is also know as Kullback-Leibler information of g at f (or KL distance between
g and f)

Ef
(

log
(
f(X)
g(X)

))
=
∫

log
(
f(x)
g(x)

)
f(x) dx

and using (2.10),

Ef
(

log
(
f(X)
g(X)

))
= −Ef

(
log
(
g(X)
f(X)

))
≥ − log Ef

(
g(X)
f(X)

)
= − log

∫
X

g(x)
f(x)f(x) dx

= − log(1) = 0

which shows that the Kullback-Leibler divergence between two probability measures is
positive.

Theorem 2.21 (Rao-Blackwell)
Let X be a random variable with distribution Pθ ∈ P = {Pθ : θ ∈ Θ} and let T be sufficient
for P. Let δ be an estimator of an estimand g(θ), and let the loss function L(a, θ) be a
strictly convex function of a. Then, if δ has finite expectation and risk

Rg(δ, θ) = E (Lg(δ(X), θ)) = E (L(δ(X), g(θ))) <∞

and if η(t) = E (δ(X)|t) , the risk of the estimator η(T ) satisfies Rg(η, θ) < Rg(δ, θ) unless
δ(X) = η(T ) with probability one.

Proof In Jensen’s inequality, let ϕ(A) be L(a, θ), let δ = δ(X) and let X given T = t have
the conditional distribution p(X|T ). Then

L(η(t), θ) < E (L(δ(x), θ)|t)

unless δ(x) = η(T ) with probability one. Taking the expectation from both sides of the
above inequality, we find the desired result. �
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Note
◦ Sufficiency of T is used in the proof only to ensure η(T ) does not depend on θ and
hence is an estimator.

◦ If the loss function is convex rather than strictly convex, the above holds if we replace
strict inequality by

L(η(t), θ) ≤ E (L(δ(x), θ)|t)

Why is this result useful? By conditioning, we reduce the risk and the variance. Conditioning
on a sufficient statistic, we guarantee that the resulting is a statistic and an estimator, and
not a variable.
Theorem 2.22 (Lehmann-Scheffé)
If T is a complete sufficient statistic and there exists an unbiased estimate h of θ, there
exists a unique UMVUE of θ, which is given by E (h|T ).

Definition 2.23 (Uniformly minimum variance unbiased estimate)
An unbiased estimator δ(x) of g(θ) is the uniform minimum variance unbiased (UMVU)
estimator of g(θ) if

Varθ (δ(x)) ≤ Varθ (δ′(x)) , ∀ θ ∈ Θ

where δ′ ∈ Ug and

Ug = {δ′ : Sn → Θ : Eθ(δ′(x)) = g(θ)}

where S is the sample space.

The requirement that there exists unbiased estimate is necessary (U estimable). One can
cook up examples where this does not hold. For example
Example 2.14
Suppose X = (X1, . . . , Xn) is a sample where X ∼ B(n, p) for p ∈ (0, 1). Looking at
g(p) = 1/p, then

Ep(δ(X)) = 1
p
, ∀ p ∈ (0, 1)

Then
n∑
x=0

δ(x)
(
n

x

)
px(1− p)n−x = 1

p

45



Now as p→ 0, the left hand side goes to δ(0) ∈ R, while the right hand side goes to ∞.

We now proceed with the proof of Lehmann-Scheffé.

Proof If h1, h2 ∈ U, where U is the class of all unbiased estimators of θ, then E (h1|T ) and
E (h2|T ) are both unbiased estimators of θ. Thus

0 = Eθ (E (h1|T )− E (h2|T )) , ∀ θ ∈ Θ

Since T is a complete sufficient, it follows that

E (h1|T ) = E (h2|T )

by Rao-Blackwell theorem. Thus E (h|T ) is the UMVUE. �

Example 2.15
If Xi

iid∼ N (µ, σ2), then
(∑n

i=1Xi,
∑n
i=1X

2
i

)
is complete sufficient. Thus consider the

function

g1

(
n∑
i=1

Xi,

n∑
i=1

X2
i

)
= 1
n

n∑
i=1

Xi = X̄n

g2

(
n∑
i=1

Xi,

n∑
i=1

X2
i

)
= 1
n− 1

n∑
i=1

(Xi − X̄n)2 = S2
n

then we see that Eθ(X̄n) = µ, ∀ θ ∈ Θ = R× R+ and Eθ(S2
n) = σ2 are UMVUE.

Example 2.16
Again consider the Normal case ψ(µ, σ2) = σ. Unfortunately, we cannot look at

√
S2
n

since UMVUE is not invariant; we need to start afresh every time. If ψ(θ) is a linear
function of θ and θ̂ is the UMVUE of θ, then ψ(θ̂) is UMVUE of ψ(θ). It boils down to
E (ψ(x)) = ψ(E (X)). If we want to find the UMVUE for σ, starting with Sn, we try to find
a linear function fo σ, then we may invert it; in other cases, its not good.

We have Xi
iid∼ N (µ, σ2) and V ≡ (n− 1)S2

n/σ
2 ∼ χ2

n−1. Looking at the inverse map for S

y = (n− 1)x2

σ2 ⇒ x =
√

σ2y

n− 1
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and so as a result

E (Sn) =
∫ ∞

0

√
σ2v

n− 1
1

2n−1
2 Γ

(
n−1

2
)v n−1

2 −1e−
v
2 dv

= σ√
n− 1

1
2n−1

2 Γ
(
n−1

2
) ∫ ∞

0
v
n−1

2 −
1
2 e−

v
2 dv

= C(n)
∫ ∞

0
v
n
2−1e−

v
2

2n2 Γ
(
n
2
)

2n2 Γ
(
n
2
)dv

which we recognize to be the kernel of a chi-square distribution which has density given by

f(x) = 1
2n2 Γ

(
n
2
)xn2−1e−

x
2 1x≥0

and so E (Sn) = d(n)σ where

d(n) =
2n2 Γ

(
n
2
)√

(n− 1)2n−1
2 Γ

(
n−1

2
)

=
√

2
n− 1

Γ
(
n
2
)

Γ
(
n−1

2
)

and Sn/d(n) is the UMVUE of σ.
Example 2.17
Suppose we look again as the Normal case Xi

iid∼ N (µ, σ2) and we consider zp, the quantile

p = P (X ≤ zp) = P
(
Z ≤ zp − µ

σ

)
for Z ∼ N (0, 1). Thus zp = σZ(1−p) + µ. The UMVUE of zp is

Sn
d(n)Z(1−p) + X̄n

and

E
(
Sn
d(n) zp + X̄n

)
= σZ(1−p) + µ = zp

Theorem 2.24
Let U be the class of all unbiased estimators T of a parameter θ ∈ Θ with Eθ(T 2), ∀ θ ∈ Θ
and suppose that U is non-empty. Let U0 be the set of all unbiased estimators ν of 0, that is

U0 = {ν : Eθ(ν) = 0,Eθ(ν2) <∞, ∀ θ ∈ Θ}
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Then T0 ∈ U is a UMVUE if and only if Eθ(νT0) = 0, ∀ θ ∈ Θ, ∀ ν ∈ U0.

Proof The conditions of the theorem guarantee the existence of Eθ(νT0), ∀ θ ∈ Θ, ν ∈ U0

(by Cauchy-Schwartz inequality). By contradiction: suppose that T0 ∈ U is a UMVUE
and Eθ(ν0T0) 6= 0 for some θ0 ∈ Θ and some ν0 ∈ U0. Then T0 + λν0 ∈ U ∀ λ ∈ R . If
Eθ0(ν2

0) = 0, then Eθ0(ν0T0) must hold since P (θ0) (ν0 = 0) = 1.12

Let Eθ0(ν2
0) > 0; choose λ0 = −Eθ0(ν0T0)/Eθ0

(
ν2

0
)
. Then

Eθ0(T0 + λ0ν0)2 = Eθ0T
2
0 −

(Eθ0(ν0T0))2

Eθ0(ν2
0) < Eθ0(T 2

0 ) (2.11)

Since T0 + λ0ν0 ∈ U and T0 ∈ U; it follows from (2.11) that Varθ0(T0 + λ0ν0) < Varθ0(T0)
which is a contradiction.

Conversely, let T0 be orthogonal to U0 and let T ∈ U. Then T0 − T ∈ U0 and for every
θ ∈ Θ, we have

Eθ(T0(T0 − T )) = 0.

We have

Eθ(T 2
0 ) = Eθ(TT0) ≤

(
Eθ(T 2

0 )
) 1

2
(
Eθ(T 2)

) 1
2

by Cauchy-Schwartz inequality. If Eθ0

(
T 2

0
)

= 0, then P (T0 = 0) = 1 and there is nothing to
prove. Otherwise, (

Eθ(T 2
0 )
) 1

2 ≤
(
Eθ(T 2)

) 1
2

or equivalently

Varθ(T0) ≤ Varθ(T ).

�

Before proceeding with a geometric proof of the previous theorem, we need some preliminary
results.
Theorem 2.25
Let M be a non-empty closed convex subset of the Hilbert space H. If x ∈ H, there is a
unique element y0 ∈M such that

‖x− y0‖ = inf{‖x− y‖ : y ∈M}
12Note that E is a projection operator.
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Figure 4: Geometric interpretation of UMVUE, δ(2) ⊥ U0

U0

δ(2)

δ
(2)
U

δ(1) δ
(1)
U

δ
(1)
U0

U

Theorem 2.26
Let M be a closed subspace of the Hilbert space H and y0 an element of M . Then

‖x− y0‖ = inf{‖x− y‖ : y ∈M} ⇔ x− y0 ⊥M

that is 〈x− y0〉 = 0 for all y ∈M.

Remark
The element y0 is called projection of x on M .

Theorem 2.27 (Projection theorem)
Let M be a closed subspace of the Hilbert space H. If x ∈ H, then x has a unique
representation x = y + z where y ∈M and z ⊥M . Furthermore, y is the projection of x
on M

We restrict ourselves to a subspace since for δi unbiased estimator, then any linear combi-
nation

∑K
i=1 aiδi is unbiased if

∑
ai = 1. Recall that a Hilbert space is heuristically the

generalization of the Euclidian space, and we have the norm defined based on the inner
product. Since we have angles, this gives a geometric interpretation. Hilbert space also
enjoys nice properties, such as completeness.

Let

Hθ0 =
{
δ : Eθ0

(
(δ − θ0)2) <∞}

and

Mθ0 =
{
ν : Eθ0

(
ν2) <∞}

Then, ∀ δ ∈ Hθ0 ,∃νδ ∈ Mθ0 such that δ = νδ + (δ − νδ) (using the projection theorem)
where δ − νδ ⊥Mθ0 . Note

mseθ0 (δ) = Eθ0

(
(δ − θ0)2) = ‖δ‖2
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and

‖δ‖2 = ‖νδ‖2 + ‖δ − νδ‖2

≥ ‖δ − νδ‖2

which implies ‖δ‖ ≥ ‖δ − νδ‖. Note that Eθ0 (δ) = Eδ0 (δ − νδ). Then

‖δmin‖ = inf
δ∈U
‖δ‖ ⇔ δmin ⊥Mθ0

where U = {δ ∈ Hθ0 : Eθ (δ) = θ0}.

Example 2.18
Let X be a random variable with PMF

Pθ (X = x) =

θ if x = −1

(1− θ)2θx if x = 0, 1, 2, . . .

The family P = {Pθ : θ ∈ Θ} is not complete.

Proof Let Eθ (g(X)) = 0, ∀ θ ∈ (0, 1). Thus

0 =
∞∑

x=−1
g(x)Pθ (X = x)

= θg(−1) +
∞∑
x=0

g(x)(1− θ)2θx

Thus
∞∑
x=0

g(x)θx = θ

(1− θ)2 (−g(−1))

and define c = −g(−1) and use
1

(1− θ)2 =
∞∑
x=0

(x+ 1)θx. (2.12)

Then
∞∑
x=0

g(x)θx =
∞∑
x=0

c(x+ 1)θx+1

=
∞∑
x=1

cxθx
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Therefore

g(0) +
∞∑
x=1

(g(x)− cx) θx = 0

for all θ ∈ (0, 1). This then implies that g(x) = cx, x = 0, 1, . . . . In other words,

C0 = {T (x) : T (−1) = −c ∈ R and T (x) = cx, x = 0, 1, . . .}

is the class of all unbiased estimators of zero. �

Now suppose δ is an estimator. For δ to be the UMVUE of its expectation, Eθ (δ(X)), a
necessary and sufficient condition is δ ⊥ C0, i.e.

0 = Eθ (δ(X)T (X))

=
∞∑

x=−1
δ(x)T (x)Pθ (X = x)

= δ(−1)T (−1)θ +
∞∑
x=0

δ(x)cx(1− θ)2θx

= −cδ(−1)θ + c(1− θ)2
∞∑
x=1

δ(x)xθx

and c = 0 corresponds to T ≡ 0. If c 6= 0, then

δ(−1)θ = (1− θ)2
∞∑
x=1

δ(x)xθx,

for all θ ∈ (0, 1)
δ(−1)θ
(1− θ)2 =

∞∑
x=1

δ(x)xθx

Applying (2.12),

δ(−1)
∞∑
x=1

xθx =
∞∑
x=1

δ(x)xθx

This then implies δ(x) = δ(−1), x = 1, 2, . . . . This δ(0) and δ(−1) are arbitrary and
δ(x) = δ(−1) ∀ x = 1, 2, . . . . The class of all estimators orthogonal to C0 is therefore

O = {δ : δ(0) = a, δ(x) = b, x = −1, 1, 2, . . . and a, b ∈ R}
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If δ ∈ O, then

Eθ (δ(X)) = δ(−1)θ + δ(0)(1− θ)2 + δ(−1)(1− θ)2
∞∑
x=1

θx

= a(1− θ)2 + bθ + b(1− θ)θ

= (a− b)θ2 − 2(a− b)θ + a

= g(θ)

So the only UMVUE are quadratic forms of θ. This fact illustrate that UMVUE may not
exist for many estimand of interest in given problems.

Example 2.19
Let Xi

iid∼ B(p). Then T =
∑n
i=1Xi ∼ B(n, p) and g(p) = pr. By Rao-Blackwell, if we have

a function of T sufficient such that for r ∈ N

Ep (δ(T )) = pr

n∑
t=0

(
n

t

)
δ(t)pt(1− p)n−t = pr,

for all p ∈ (0, 1)
n∑
t=0

δ(t)
(
n

t

)(
p

1− p

)t
= pr

(1− p)n

and let now θ = p/(1− p), so that p = θ/(1 + θ) and 1/(1− p) = 1 + θ. Then,

n∑
t=0

δ(t)
(
n

t

)
θt = θr(1 + θ)n−r

= θr
n−r∑
s=0

(
n− r
s

)
θs

=
n−r∑
s=0

(
n− r
s

)
θr+s

=
n∑
t=r

(
n− r
t− r

)
θt
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for all θ ∈ (0, 1) using the binomial expansion.13 Then

δ(t)
(
n

t

)
=
(
n− r
t− r

)
for t = r, . . . n. We thus have

δ(t) =


0 if t = 0, 1, . . . , r − 1(
n−r
t−r
)(

n
t

) if t = r, . . . , n

Note that we cannot estimate pr if n < r.

Before moving to the next topic, that of M -estimators and maximum likelihood, we look at a
result for Generalized Estimating Equations (GEE). Coming back to loss function and convex
functions, we let a be an action for δ(x) with L(θ, a) = ρ(θ− a) and ρ a convex function; we
look at the estimating equation, a function of the data and the unknown parameter.
Theorem 2.28
Let ρ be a convex function defined on (−∞,∞) and X a random variable such that
ϕ(a) = E (ρ(x− a)) is finite for some a. If ρ is not monotone, ϕ(a) takes on its minimum
value and the set on which this values is taken in a closed interval. If ρ is stricly convex, the
minimizing value is unique.

Lemma 2.29
Let ϕ be a convex function on (−∞,∞) which is bounded below, ϕ(x) ≥ k for some k ∈ R,
and suppose that ϕ is not monotone. Then ϕ takes on its minimum value, the set S on which
this value is taken is a closed interval and is a single point if ϕ is strictly convex.

Proof Since ϕ is convex and not monotone, it tends to ∞ as x→ ±∞ (why?) 14. Since ϕ
is also continuous, it takes on its minimizing value.
Note
This result does not follow from max/min value theorem (any continuous functions on a
compact set achieves its minimum and maximum) since we need compactness.

This result follows from continuity and being bounded below and not monotone as follows.
Since ϕ is bounded below,

ϕ(x) ≥ K, ∀ x ∈ D(ϕ)

13Recall that the binomial expansion is given by (x+ y)n = Σnk=0

(
n
k

)
xn−kyk = Σnk=0

(
n
k

)
xkyn−k. Taking

y = 1, this translates into (1 + x)n =
∑n

k=0

(
n
k

)
xk

14Otherwise, this violates condition from Theorem (2.17)
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Thus we have inf ϕ(x) = α. Then ∀ n ∈ N,∃xn ∈ D(ϕ) such that α < ϕ(xn) < α + 1
n .

Consider {xn}∞n=1. This sequence is bounded, otherwise xn →∞ and since ϕ(x)→∞, we
have a contradiction. Since {xn} is bounded, by Bolzano-Weirstrass theorem, we have a
convergent subsequence {xn′}. Let x∗ = limn→∞ xn′ and

α < ϕ(xn′) < α+ 1
n

and limn→∞ ϕ(xn′) = α. On the other hand, using continuity,

ϕ(x∗) = lim
n→∞

ϕ(xn′)

�

2.6 MLE, M -estimators and Generalized Estimating Equations

Suppose that X iid∼ fθ(x) We can link the observed quantities, L(θ;x) = P (Xi = xi;θ) =
Pθ (Xi = xi) and we treat what we have observed as being typical of what one would expect
to observe. We thus wish to maximize the likeliness of observations. The maximum
likelihood estimate

θ̂MLE = arg max
θ

L(θ;x)

is recognized as a post-experimental approach. Unbiasedness or UMVUE are properties
of procedures, rather than of the point estimates. The post-experimental approaches are
good for large size of the populations, and need to guard again the cases not observed.
Pre-experimental approach are better for small sample size, as opposed to post-experimental
approach. We do a simple example.

Example 2.20
If Xi

iid∼ B(p), then

L(p,x) =
n∏
i=1

pxi(1− p)xi

= pΣxi(1− p)n−Σxi
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where we denote
∑
xi = t since applying monotone transformations does not affect the

maximization, therefore

log(L(p;x)) ≡ `n(p;x) = t log(p)− (n− t) log(1− p) = 0

⇒ t

p
− n− t

1− p = 0

⇒ t(1− p)− (n− t)p = 0

⇒ p̂ = t

n

since we have a smooth function, if the function has an extrema, then we can solve analytically.
Note that for the MLE, we could also have different distribution, for consistency, we need
smoothness and identifiability. For asymptotic normality, we need existence of the first
derivative.

Let ρ(x, t) be a function Rd ×R→ Θ ⊆ R. An M-functional is defined to be a solution of
15 ∫

X
ρ(x, T (G)) dG(x) = min

t∈Θ

∫
X
ρ(x, y) dG(x)

for G ∈ F0, F0 contains all CDFs on Rd for which the above integrals are well-defined. If
X1, . . . , Xn ∼ F ∈ F0, then T (Fn) is called anM -estimator of T (F ). For Fn = 1

n

∑n
i=1 E(x−

Xi), the empirical CDF. Then∫
X
ρ(x, y) dFn(x) = 1

n

n∑
i=1

ρ(xi, t)

and ρ(x, t) = − log ft(x) which corresponds to maximum likelihood.

We can get the counterpart of the score equations; if ρ is differentiable a.e.,

ψ(x, y) = ∂ρ(x, y)
∂t

and

λG(t) =
∫
X
ψ(x, y) dG(x)

∂

∂t

∫
X
ρ(x, y) dG(x).

Then λ(T (G)) = 0.

15M stands for minimization, functional is for function input. Here dG(x) is the Lebesgue Stieltjes integral.
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Example 2.21
(i) Consider ρ(x, y) = 1

2 (x− t)2 with ψ(x, y) = t− x. Then

T (F ) =
∫
X
x dG(x)

T (Fn) = X̄n

we have adding and subtracting x

Φ(a) = E
(
(X − a)2)

= Var (X) + (µ− a)2

≥ Var (X)

where µ = E (X) and the minimum is obtained at a = µ.

(ii) For the median, ρ(x, y) = |x− t|, T (G) is the media, T (Fn) is the sample median. In
this example, Φ(a) = E (|X − a|),

Φ(a) =

φ(m) + (a−m)[P (X ≥ m)− P (X > m)] + 2
∫ a
m

(a− x) dp if a ≥ m

φ(m) + (m− a)[P (X ≥ m)− P (X > m)] + 2
∫m
a

(x− a) dp if a < m

and Φ(a) ≥ φ(m) where m is a median. This absolute value is less sensitive to tails
and extreme value, known as L1 regression. Another loss function could be

ρ1(x, y) =

(x− t)2 if |x− t| ≤ K

2K|x− t| −K2 if |x− t| > K

ρ2(x, t) = |x− t|p, if 1 < p < 2

or ρ2

We can show that
√
n[T (Fn)− T (F )] d−→ N (0, σ2

F where σ2
F = E (ΦF (x))2 is the variance of

the influence function, where 16

ΦF (x) = −ψ(x, T (F ))
λ′F (T (F ))

16We did not define since it requires Gâteau derivative, since T is a functional
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We can view the least-squares in a more general form, known as generalized estimating
equations

n∑
i=1

(Xi − γ>Zi)Zi = 0

which leads to
n∑
i=1

ψ(Xi,γ) = 0

This gives approximation to the margin of error. A further generalization the covers many
more interesting cases is as follows:
Definition 2.30 (Generalized estimating equations)
Let Θ ⊆ Rk, ψi be a function from Rdi ×Θ→ Rk for i = 1, . . . , n and

Sn(γ) =
n∑
i=1

ψi(Xi,γ) (2.13)

for γ ∈ Θ. If θ is estimated by θ̂ ∈ Θ satisfying Sn(θ̂) = 0, then θ̂ is called a generalized
estimating equations (GEE) estimate. The equation Sn(γ) = 0 is called a GEE.

Note
When choosing a GEE, we need E (Sn(θ)) = 0 for convergence.

Analogous to the earlier result on UMVUE, we have
Theorem 2.31 (Blyth (1974))
A necessary and sufficient condition for Cov (δ, ψ) to depend on δ only through g(θ) = Eθ (δ)
is that for all θ, ψ ⊥ U0 where U0 is the space of unbiased estimators of 0.

Indeed, using Cauchy-Schwartz

Var (δ) ≥ [Cov (δ, ψ)]2

Var (ψ)

and we get a lower bound. This result does not require likelihood, as opposed to Fréchet-
Rao-Carmer inequality.
Theorem 2.32
Let ρ be a non-negative convex function defined on R and X a random variable such that
Φ(a) = E (ρ(X − a)) is finite. If ρ is not monotone, Φ(a) takes its minimum value and the
set of minimum values is a closed set. If ρ is strictly convex, the minimizer is unique.

We need first to prove the following lemma

57



Lemma 2.33
Let Φ be a convex function on R which is bounded below. Suppose Φ is not monotone. Then
Φ takes its minimum value. The set S of minimum values is closed and is a singleton if Φ is
strictly convex.

Consistency of GEE

We need first recall equicontinuity of a class of functions.

Definition 2.34 (Equicontinuity)
A sequence of functions {gi} from Rk → Rk is called equicontinuous on an open set
O ⊆ Rk if and only if, for any ε > 0, there exists a δε > 0 such that supi ‖gi(t)− gi(s)‖ < ε

for all t, s ∈ O such that ‖t− s‖ < δε.

Since a continuous function on a compact set is uniformly continuous, functions such as
gi(γ) = g(ti, γ) form an equicontinuous sequence on O if ti’s vary in a compact set containing
O and g(ti, γ) is a continuous function in (t, γ).

We recall a version of the WLLN: if there is a sequence {Xi} of independent random variables
with p ∈ (1, 2] such that

lim
n→∞

1
np

n∑
i=1

E (|Xi|p) = 0,

then 1
n

∑n
i=1(Xi − E (Xi))

P−→ 0.

Proof Indeed, recall from Markov inequality.

P
(∣∣∣∣∣ 1n

n∑
i=1

(Xi − E (Xi))

∣∣∣∣∣ > ε

)
≤ P

(
1
n

n∑
i=1
|Xi − E (Xi)| > ε

)

≤ 1
nε

n∑
i=1

E (|Xi − E (Xi) |)

and we have

E (|Xi − E (Xi) |) ≤ 2E (|Xi|) ≤
2
nε

n∑
i=1

E (|Xi|)

�

Lemma 2.35 (Consistency of generalized estimating equations)
Suppose Θ ⊆ Rk is compact. Let hi(xi) = supγ∈Θ ‖ψi(xi, γ)‖ for i = 1, 2, . . .
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Let supi E
(
|hi(Xi)|1+δ) < ∞ and supi E

(
‖Xi‖δ

)
< ∞ and ψi ≡ ψ). Suppose further

that for any c > 0 and sequence {xi} satisfying ‖xi‖ ≤ c, the sequence of functions
{gi(γ) = ψi(xi, γ)} is equicontinuous on any open subset of Θ. Then

sup
γ∈Θ

∥∥∥∥∥ 1
n

n∑
i=1

(
ψi(Xi, γ)− E (ψi(Xi, γ))

)∥∥∥∥∥ P−→ 0

We want that the sequence of ψi(Xi, γ) converge to the target E (ψi(Xi, γ)) and as such the
roots also converge for the GEE equations.

Proof Since we need only consider components of ψi’s, without loss of generality we can
assume that ψi’s are functions from Rd1 ×Θ→ R. For any c > 0,

sup
n

E
(

1
n

n∑
i=1

hi(Xi)1‖Xi‖∈(c,∞)

)
≤ sup

i
E
(
hi(Xi)1‖Xi‖∈(c,∞)

)
Let c0 = supi E (hi(Xi)1 + δ) and c1 = supi E

(
‖Xi‖δ

)
. Recall Hölder’s inequality, namely

E (|XY |) ≤ (E (|X|p))
1
p (E (|Y |q))

1
q

where p, q are conjugate exponents, that is p−1 + q−1 = 1, p ≥ 1. The proof of this inequality
follows from the concavity of f(x) = log(x). Using Hölder’s inequality with p = 1 + δ

E
(
hi(Xi)1‖Xi‖∈(c,∞)

)
≤
(
E
(
|hi(Xi)|1+δ)) 1

1+δ
(

[P (‖Xi‖ > c)]
1+δ
δ

) δ
1+δ

≤
(
E
(
|hi(Xi)|1+δ)) 1

1+δ (P (‖Xi‖ > c))
δ

1+δ

≤ c
1

1+δ
0 c

1
1+δ
1 c−

δ
1+δ

using Markov’s inequality as P (‖Xi‖ > c) ≤ 1
cE (‖Xi‖).

Let ε,> 0, ε̃ > 0 be given. Choose a c such that

c
1

1+δ
0 c

1
1+δ
1 c−

δ
1+δ < ε

ε̃

4

Then, for any O ⊂ Θ,

P
(

1
n

n∑
i=1

(
sup
γ∈O

ψi(Xi, γ)− inf
γ∈O

ψi(Xi, γ)
)

1‖Xi‖∈(c,∞) >
ε

2

)
< ε̃ (2.14)
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using Markov inequality and the fact that

sup
γ∈O

ψi(Xi, γ)− inf
γ∈O

ψi(Xi, γ) ≤ 2hi(Xi).

Using the equicontinuity of {ψi(xi, γ)} we have a δε such that

1
n

n∑
i=1

(
sup
γ∈Oε

ψi(Xi, γ)− inf
γ∈Oε

ψi(Xi, γ)
)

1‖Xi‖∈(0,c) <
ε

2 (2.15)

for sufficiently large n, where Oε denotes any open ball in Rk with radius less than δε. These
results, together with the WLLN and ‖ψi(Xi, γ)‖ ≤ hi(Xi) imply that

P
(

1
n

n∑
i=1

(
sup
γ∈Oε

ψi(Xi, γ)− E
(

inf
γ∈Oε

ψi(Xi, γ)
))

> ε

)
→ 0 (2.16)

For this, add and substract infγ∈Oε ψi(Xi, γ) and then use (2.14) and (2.15).

Let

Hn(γ) = 1
n

n∑
i=1

(ψi(Xi, γ)− E (ψi(Xi, γ)))

Then

sup
γ∈Oε

Hn(γ) ≤
n∑
i=1

(
sup
γ∈Oε

ψi(Xi, γ)− E
(

inf
γ∈Oε

ψi(Xi, γ)
))

and using (2.16) we have

P
(

sup
γ∈Oε

Hn(γ) > ε

)
P−→ 0

as n→∞. Likewise,

P (supHn(γ) < −ε) P−→ 0

Since Θ is compact, there exists mε, open balls Oε,j such that Θ ⊂
⋃
j Oε,j . Then the result

follows from

P
(

sup
γ∈Θ
|Hn(γ) > ε

)
≤

mε∑
j=1

P
(

sup
γ∈Oε,j

|Hn(γ)| > ε

)
→ 0

�
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We shall not prove the asymptotic normality of generalized estimating equations. Let
Xi = (Xi1, . . .Xid) for i = 1, . . . , n where E (Xit) = µ(ηit) = g−1(β>zit) and Var (Xit) =
Φiµ

′(ηit) and zit are k-vector value of covariates.

Suppose one looks at repeated measurement for calcium suplement on blood pressure. We
have many measurements on the longitudinal setting, with few covariates that are not time
dependent, t = 1, . . . d time points. Balanced data when measurements are not equally
spaced.

Which race show earlier reaction to this treatment. If we knew whe the drug kicks in, knowing
the change the mean blood pressure, we have a mixture distribution, with a changepoint
problem. If we have unbalance, this problem becomes quite difficult. If we have the mixture∑di
j=1 pjfj(x). and di are not the same, the dimensin of the parameter space is not fixed.

We lose the asymptotics since the point may not be inside the space.

In biostatistics and lifetime testing problems, components of Xi are repeated measurements
at different time points, from subject i and are called longitudinal data.

Let Ri be the di × di correlation matrix whose (t, l)th element is the correlation coefficient
between Xit and Xil. Then, the covariance matrix

Var (Xi) = Φi[Di(β)] 1
2Ri[Di(β)] 1

2

where Di is the di × di diagonal matrix with the tth diagonal denotes (g−1)>(γ>Zit). If Ri

are known,

n∑
i=1

Gi(γ)
(

[Di(γ)] 1
2Ri[Di(γ)] 1

2

)−1
[xi − µi(γ)] = 0. (2.17)

where µi(γ) = (µ(ψ(γ>zi1)), . . . , µ(ψ(γ>zidi))) so that ψ(g ◦ µ)−1 (which becomes the
identity link if one choses the canonical link function), and Gi = ∂µi(γ)/∂γ.

Consider (2.17) in which the true R is replaced by a known R̃i and define

ψi(xi,γ) = Gi(γ)
(

[Di(γ)] 1
2 R̃i[Di(γ)] 1

2

)−1
[xi − µi(γ)]

and suppose the parameter space is compact and supi ‖zi‖. Then we can show that all the
conditions of Lemma 2.35 are fulfilled.

2.7 Maximum likelihood

We have four types of results for maximum likelihood estimates, under continuity assumption,
namely the following, which we will show also extend to the non-parametric case.
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1. Consistency

2. Asymptotic normality.

3. Invariance, if θ̂ML is the MLE for θ, then ψ(θ̂ML) is the MLE for ψ(θ)

4. Convolution theorem: confining ourself to a class of estimators, if θ̃ is regular and
converges at the same rate as ML estimate, given

√
n(θ̂ML − θ) = Op(1)

and we can show that θ̃n = θ̂ML +X, where X ⊥⊥ θ̂ML and as such always have larger
variance.

The minimal conditions that we will need are identifiability, smoothness, positive
definitiveness of the Information matrix.
Definition 2.36 (Identifiability)
For θ ∈ Θ → fθ(x), θ1 = θ2 ⇒ fθ1(x) = fθ2(x) a.s. ν, and fθ1(x) = fθ2(x) a.e. ν implies
θ1 = θ2 given a one-to-one map θ π←→ fθ, where π : Θ→ L1.

This is crucial condition for consistency, as if it was to fail, then we could have the entire
population and yet not have enough to know the parameter. This guarantees some form of
uniqueness to the target.

Definition 2.37 (Information matrix)
We define Fisher information as

I(θ) = Eθ
(
∂

∂θ
log fθ(X)

)2

and under regularity conditions, we have also

I(θ) = −Eθ
(
∂2

∂θ2 log fθ(X)
)
.

Thus, the information is

I(θ) = Var
(

∂

∂θ1
log fθ(X), . . . , ∂

∂θk
log fθ(X)

)

We have sensitivity with changes in θ. Given for example fθ at x = 2 and x = 5 with
the corresponding plot for values of θ displayed below, one would choose 2 on the basis
of sensitivity for estimation purpose. One may also wonder the observed information, or
the observed information, a paper by Efron and Hinckley in Biometrika discuss about the
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θ fθ(x)

fθ(5)

fθ(2)

efficiency of the estimators. Compute the observed information, the empirical estimate
of the Information matrix,

1
n

n∑
i=1

(
∂

∂θ
log fθ(xi)

)2

versus the estimated information that uses the MLE estimator for θ.

− 1
n

n∑
i=1

(
∂2

∂θ2 log fθ(xi)
)

and for more, refer to Rothenberg (1971) in a paper in Econometrica.

2.8 Consistency of the MLE

The proof is due to Ibragimov and Hasminski, 1981

Lemma 2.38
Suppose Xi

iid∼ f(x; θ) for i = 1, 2, . . . , n and θ ∈ Θ ⊆ Rp is a bounded open set. Define

R
1
2
n,θ(u) =

[
L(θ + u;x1, . . . , xn)
L(θ;x1, . . . , xn)

] 1
2

=
n∏
i=1

f
1
2 (xi; θ + u)
f

1
2 (xi; θ)

(2.18)

where u ∈ U = Θ− θ and we understand the latter as being the set of all points of Θ shifted
by θ . Then

θ̂ML
P−→ θ if P

(
sup
‖u‖>γ

R
1
2
n,θ ≥ 1

)
n→∞−−−−→ 0 ∀ γ > 0.

If the last bit holds true uniformly in θ ∈ K ⊆ Θ, then θ̂ML is uniformly consistent in K.

Proof The idea of the proof is simple. We want to show that θ̂ML should be in the
vicinity of θ. In other words, the chance that θ̂ML falls outside of a neighbourhood around
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θγ

θ̂ML

ûn
u0
δ

Γ

γ/2

θ tends to zero, no matter how small is the neighbourhood. Set ûn = θ̂ML − θ so that
Rn,θ(ûn) = supuRn,θ(u). Then

P∗θ
(
‖θ̂ML − θ‖ > γ

)
= Pθ (‖ûn‖ > γ)

≤ P
(

sup
‖u‖>γ

Rn,θ(u) ≥ 1
)

n→∞−−−−→ 0

�

Theorem 2.39 (Consistency of the Maximum Likelihood Estimators)
Suppose Θ is a bounded open subset of Rp and f(x; θ) is the PDF of Pθ with respect to the
σ-finite measure ν. Let f(x; θ) be a continuous function of θ on Θ; 17 for almost all x ∈ X

and let the following conditions be satisfied

1. For all θ ∈ Θ and all γ > 0,

0 < Kθ(γ) = inf
‖θ−θ′‖>γ

r2
2(θ, θ′) = inf

‖θ−θ′‖>γ

∫
x

[
f

1
2 (x; θ)− f 1

2 (x; θ′)
]
ν( dx)

is positive and thus distinguishable. This is an identifiability condition. 18

17Θ denotes the closure of the set Θ
18Here r2

2 is the Hellinger distance between two distributions given as above. Since densities are in L1,
we could try to embed into the unit ball of a Hilbert space; we can then invoke the notion of orthogonality,
which is the L2 norm in that space.
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2. For all θ ∈ Θ,19

{∫
X

sup
‖t‖≤δ

[
f

1
2 (x; θ)− f 1

2 (x; θ + t)
]2} 1

2

= ωθ(δ)
δ→0−−−→ 0

Then θ̂ML
P−→ θ (or in fact almost surely) and as such this proves consistency of the maximum

likelihood estimates.

Proof In view of the above lemma and Markov’s inequality, it suffices to find an upper
bound for the expectation Eθ (supΓRn(u)) which tends to zero as n→∞. This is the core
of the proof which is given below.

Suppose θ is fixed. Consider Rn,θ(u) as a function of u. Let Γ be a sphere of small
radius δ situated in its entirety in the region ‖u‖ > 1

2γ. We shall bound the expectation
Eθ (supΓRn(u)). If u0 is the center of Γ, then

sup
Γ
R

1
2
n (u) = sup

Γ

n∏
i=1

[
f(xi; θ + u)
f(xi; θ)

] 1
2

≤
n∏
i=1

f−
1
2 (xi; θ)

[
f

1
2 (xi; θ + u0)

+ sup
‖t‖≤δ

∣∣∣f 1
2 (xi; θ + u0 + t)− f 1

2 (xi; θ + u0)
∣∣∣ ]

for t = u − u0. Note that f(x; θ + u) = f(x; θ + u0) + [f(x; θ + u0 + t) − f(x; θ + u0)].
Therefore, we obtain by Markov inequality

Eθ
(

sup
Γ
Rn(u)

)
≤

n∏
i=1

[ ∫
X

f
1
2 (xi; θ)f

1
2 (xi; θ + u0)ν( dx)

+
∫
X

sup
‖t‖≤δ

∣∣∣f 1
2 (xi; θ + u0 + t)− f 1

2 (xi; θ + u0)
∣∣∣ f 1

2 (xi; θ)ν( dx)
]

19This condition is some type of modulus of continuity condition. Indeed, if we could invoke the mean
value theorem, we would have the distance between the two giving boundedness of the derivative, and so
when δ → 0, we would get the result.
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Now, it is easy to see that∫
X

f
1
2 (xi; θ)f

1
2 (xi; θ + u0)ν( dx)

= 1
2

{∫
X

f(x; θ)dν +
∫
X

f(x; θ + u0)dν

−
∫
X

[
f

1
2 (x; θ + u0)− f 1

2 (x; θ)
]2
dν

}
= 1

2[2− r2
2(θ, θ + u0)]

≤ 1−
κθ
(
γ
2
)

2

On the other hand, using the Cauchy-Schwartz inequality and condition 2,∫
X

sup
‖t‖≤δ

∣∣∣f 1
2 (xi; θ + u0 + t)− f 1

2 (xi; θ + u0)
∣∣∣ f 1

2 (xi; θ)dν ≤ ωθ+u0(δ).

Taking this into account together with the elementary inequality 1 + a ≤ ea for a ∈ R, we
obtain

Eθ
[
sup

Γ
R

1
2
n (u)

]
≤ exp

{
−n

[
κθ
(
γ
2
)

2 − ωθ+u0(δ)
]}

. (2.19)

It follows from (2.19) that to each point ξ of the set U \{‖u‖ ≤ γ} there corresponds a sphere
Γ(ξ) with center ξ such that Eθ

[
supΓ(ξ)R

1
2
n (u)

]
→ 0 in Pθ−probability as n→∞. Using

compactness of Θ, select a finite cover Γ(ξq) for q = 1, 2, . . . , N of the set U \ {‖u‖ ≤ γ}
from the collection {Γ(ξ)}. Then

sup
‖u‖≥γ

R
1
2
n (u) ≤

N∑
q=1

sup
Γ(ξq)

R
1
2
n (u) n→∞−−−−→ 0 in Pθ.

Since each of the expectation of each term on the right hand side tends to zero, the proof is
complete.20 �

20Note that κ is positive and ω goes to zero, so −nκ is negative and e−nκ → 0 as n→∞.
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Consistency for quasi-identifiable models

In a regression context, if we have Zi = (Xi, Yi) for i = 1, . . . , n, then

n∏
i=1

f(xi, yi) =
n∏
i=1

f(yi|xi)f(xi) =
[
n∏
i=1

f(yi|xi)
][

n∏
i=1

f(xi)
]
∝

n∏
i=1

f(yi|xi)

which can be the case for people with different covariates, this leads to a conditional analysis.
In this context, we have independent, but not identically distributed. The proof given above
can be arranged to work, with some additional conditions. See paper for the statement and
proof. If possible values for covariates can be discretized and is finite, then as long as the
number of observations in the categories increase faster than log(n), we still have consistency.

Consistency of the MLE

We have under the regularity conditions established below that

√
n(θ̂n − θ) d−→ N (0, I−1(θ))

where the information is

I(θ) = Eθ
(
∂

∂θ
log fθ(x)

)2
= [Iij(θ)]

where

Iij = Cov
(
∂

∂θi
log fθ(x), ∂

∂θj
log fθ(x)

)
.

2.9 Cramer-Fréchet-Rao lower bound

If we have the following conditions, namely Eθ (T ) = g(θ),

∂

∂θ

∫
X

fθ(x) dx =
∫
X

∂

∂θ
fθ(x) dx

∂

∂θ

∫
X

T (x)fθ(x) dx =
∫
X

T (x) ∂
∂θ
fθ(x) dx

We then have the following uncertainty bound, the so-called Fréchet-Cramer-Rao bound,
which we give the proof of in the one dimensional case: if Eθ

(
T 2) <∞, then

Var (T ) ≥ (g′(θ))2

I(θ)
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Proof Consider the case where

Eθ
(
∂

∂θ
log fθ(x)

)
= 0∫

X

f ′θ(x)
fθ(x)fsθ(x) dx = 0

Then

Eθ
(
T (x) ∂

∂θ
log fθ(x)

)
= g′(θ)

and thus ∫
X
T (x)f

′
θ(x)
fθ(x)fθ(x) dx =

∫
X
T (x) ∂

∂θ
fθ(x) dx

= ∂

∂θ

∫
X
T (x)fθ(x) dx

= g′(θ)

thus

Eθ
(

[T (x)− g(θ)] ∂
∂θ

log fθ(x)
)

= g′(θ)

and then applying Cauchy-Schwartz inequality,

(g′(θ))2 ≤ Var (T ) Var
(
∂

∂θ
log fθ(x)

)
and as such

Var (T ) ≥ (g′(θ))2

I(θ)

and if g(θ) = θ, we have Var (T ) ≥ I(θ)−1. �

Suppose that Eθ (δ) = g(θ), then the Fréchet-Cramer-Rao lower bound is given by

Var (δ) ≥ [g′(θ)]2

I(θ)

In the proof, what we used was really the fact that |Cov (X,Y ) |2 ≤ Var (X) Var (Y ) using Y
as the score function, provided that Var (Y ) 6= 0. Suppose we want to generalize the above

68



and replace the score function

∂

∂θ
log fθ(x)

Take ψ(x, θ) and δ an estimator of g(θ), then

Var (δ) ≥ Cov (δ, ψ)
Var (ψ)

if Var (ψ) 6= 0. However, this is not useful since the covariance depends on δ, so we do not
have a gold standard.

Blyth’s theorem states the necessary and sufficient conditions for the Cov (δ, ψ) to be a
function solely of ψ. Suppose Eθ (T ) = 0, then if

U0 =
{
T : Eθ (T ) = 0,Eθ

(
T 2) <∞}

and thus we have

Eθ
(
T (X) ∂

∂θ
log fθ(X)

)
=
∫
X
T (x) ∂

∂θ
log fθ(x)fθ(x) dx

=
∫
X
T (x)f

′
θ(x)
fθ(x)fθ(x) dx

=
∫
X
T (x)f ′θ(x) dx

and under regularity conditions

= ∂

∂θ

∫
X
T (x)fθ(x) dx

= ∂

∂θ
Eθ (T ) = 0

and so ψ ⊥ U0, θ̂ is the solution ψ(x; θ̂) = 0, which implies

Var
(
θ̂
)

= Cov (δ, ψ)
Var (ψ)

and Cov (δ, ψ) only depends on E
(
θ̂
)
.

The result presented next is due to Blyth (1974)

Theorem 2.40
A necessary and sufficient condition for Cov (δ, ψ) to depend on δ only through g(θ) (= Eθ (δ))
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is that for all θ,

Cov (U,ψ) = 0, ∀ U ∈ U0

where

U0 =
{
U : Eθ (U) = 0,Eθ

(
U2) <∞, ∀ θ ∈ Θ

}
Therefore, if ψ ⊥ U0,

Var (δ) ≥ h(Eθ (δ))
Var (ψ)

where g(θ) ≡ h(Eθ (δ)).

Proof See assignment. �

We can now extend the FCR result to higher dimension.

Theorem 2.41
For any unbiased estimator δ of g(θ) and any function ψi(x;θ) with finite second moments,
we have

Var (δ) ≥ γ>C−1γ

where γ> = (γ1, . . . , γr) and

C =
[
Cij

]
i,j=1,...,r

with

γi = Cov (δ, ψi) Cij = Cov (ψi, ψj) . (2.20)

The right hand side of (2.20) depend on δ only through g(θ) = Eθ (δ) provided each of the
functions ψi ⊥ U0 for i = 1, . . . , r. Now, if θ = (θ1, . . . , θr) and ψi = ∂

∂θi
log fθ(x) and

Cij = Cov (ψi, ψj) = Cov
(
∂

∂θi
log fθ(x), ∂

∂θj
log fθ(x)

)
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and ψ(x;θ) = ∇ log fθ(x) where we recover the information matrix, as

I(θ) =
[
Iij(θ)

]
i,j=1,...,r

Iij(θ) = Eθ
(
∂

∂θi
log fθ(x) ∂

∂θj
log fθ

)

Proof For any constants a1, . . . , aj , it follows that

Var (δ) ≥
[Cov (δ,

∑r
i=1 aiψi)]

2

Var (
∑r
i=1 aiψi)

. (2.21)

We thus have

Cov
(
δ,

r∑
i=1

aiψi

)
=

r∑
i=1

aiγi = a>γ

Var
(

r∑
i=1

aiψi

)
= a>Ca

Since (2.21) is true for any vector a, we have

Var (δ) ≥ max
a

[a>γ]2

a>Ca = γ>C−1γ

The above result is based on spectral decomposition. �

Lemma 2.42
Suppose P = pp> where p is a (r × 1) vector and Q is a positive definite matrix, then

max
a

a>Pa
a>Qa

equal to the largest eigenvalue of Q−1P = p>Q−1p . For more, see C.R. Rao Linear
Statistical Inference and its applications(1965), p.48.

If ψ(x,θ) = ∇ log fθ(x) and C = I(θ), then

Var (δ) ≥ γ>I(θ)−1γ

where

γi = Cov (δ, ψi) = Cov
(
δ,

∂

∂θi
log fθ(x)

)
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Under the FCR regularity conditions,

Eθ
(
∂

∂θi
log fθ(X)

)
= 0

and

Cov
(
δ,

∂

∂θi
log fθ(X)

)
= Eθ

(
δ(X) ∂

∂θi
log fθ(x)

)
= ∂

∂θi
g(θ)

as it is easily seen that

Eθ
(
δ(X) ∂

∂θi
log fθ(x)

)
=
∫
X
δ(x)

f ′θi(x)
fθ(x) fθ(x) dx

= ∂

∂θi

∫
X
δ(x)fθ(x) dx

= ∂

∂θi
g(θ)

Corollary 2.43
If ψ = ∇ log fθ(x), then

Var (δ) ≥ [∇g(θ)]>I(θ)−1[∇g(θ)]

We need positive definitiveness of the matrix. For exponential family, unless one has linear
dependence. For mixtures, this is a difficult problem. Recall that an (r × r) matrix C is
positive-semi definite if for any vector a>Ca ≥ 0 and the inequality is strict for positive
definite. Other condition is that det C > 0, so we require in our case that det I(θ) > 0. If
we cannot establish positive definitiveness

Γ{θ ∈ Θ : det(I(θ)) = 0}

F = {fθ(x) : θ ∈ Θ}

then Λ is a nowhere dense set, Γ◦ = ∅.

We now aim at showing that the MLE has asymptotic distribution is given by

√
n(θ̂n − θ) d−→ N

(
0, I−1(θ)

)
Weak consistency does not imply E (|Xn −X|) to be finiete, however if Xn −−→

L2
X, then

E
(
|Xn −X|2

)
→ 0 and Xn

P−→ X.
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Hodges gave an example of super efficient estimators that goes as follows.21 Suppose that
Xi

iid∼ N (θ, 1), then I(θ) = 1, since information in the 1d case for Normal is reciprocal to
the variance as

I(θ) = Eθ
(
∂

∂θ
log fθ(X)

)2

where

fθ(x) = 1√
2πσ

exp
(
− (x− θ)2

2σ2

)
If σ is known,

log fθ(x) = − log(
√

2πσ)− (x− θ)2

2σ2

and thus
∂

∂θ
log fθ(x) = 2(x− θ)

2σ2

= 1
σ2 (x− θ)

This means that

I(θ) = Eθ
(

1
σ4 (X − θ)2

)
= 1
σ4 E

(
(X − θ)2)= 1

σ2

Back now to Hodges’ example. The FCR lower bound for unbiased estimators of θ is 1,
Eθ (δ) = θ, Var (δ) ≥ 1

I(θ) = 1 and so

δn =

X̄n if |X̄n| ≥ 1
n

1
4

aX̄n if |X̄n| < 1
n

1
4

and
√
n(δn − θ)

d−→ N (0, ν(θ)) where

ν(θ) =

1 if θ 6= 0

a2 if θ = 0.

If a2 < 1, then the FCR inequality is violated. These estimators are called shrinkage
estimator.

21There is an article connecting this to penalization and variable selection by R. Beran
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Theorem 2.44 (Le Cam theorem)
Let X1, . . . , Xn be IID with density fθ(x) where θ is real-valued and suppose the following
conditions hold:

1. The parameter space Θ is an open interval

2. The distribution fθ(x) have common support A = {x : fθ(x) > 0} does not depend on
θ.

3. For every x ∈ A, the density fθ(x) is twice continuously differentiable with respect to θ

4. The integral
∫
fθ(x) dx can be twice differentiated under the integral sign.

5. 0 < I(θ) <∞

6. For any θ0 ∈ Θ, there exists a positive number c and a function M(x) such that∣∣∣∣ ∂2

∂θ2 log fθ(x)
∣∣∣∣ ≤M(x) ∀ x ∈ A, θ ∈ (θ0 − c, θ0 + c)

and Eθ0 (M(X)) <∞.

Under these assumptions if δn = δn(x1, . . . , xn) is any estimator such that

√
n(δn − θ)

d−→ N (0, ν(θ))

then ν(θ) ≥ I−1(θ) except on a set of Lebesgue measure zero.

We now tackle the problem of showing that
√
n(θ̂ML − θ) d−→ N (0, I−1θ), which gives

asymptotic confidence intervals, P |Z| < 1.96 = 0.95, then

P
(√
I(θ)|θ̂ML − θ| < 1.96

)
= 0.95

P
(
θ̂ML −

1.96√
I(θ)

< θ < θ̂ML + 1.96√
I(θ)

)
= 0.95

and replacing I(θ) by the consistent estimate I(θ̂) = Î(θ). If θ̂ is the maximum likelihood
of θ, h(θ̂) is the maximum likelihood of h(θ), under regularity conditions

E
(
∂

∂θ
log fθ(X)

)2
= −E

(
∂2

∂θ2 log fθ ∗X)
)
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if we do not have regularity, we can use the Chapman-Kiefer-Robins hold, which may not be
as sharp. This was not satisfactory for Hajek and Le Cam; they introduced regular estimators,
not far from MLE (in the sense they converge at the same rate as MLE, |θ̃ − θ| = Op(n−

1
2 )).

If we denote fθ̃ the asymptotic distribution of θ̃, we then can use the convolution theorem to
show that fθ̃ = fθ̂ ∗ h, then θ̃ = θ̂ +X and so since the two variables are independent, the
variance of fθ̃ estimator must be bigger.

Confidence interval is also discussed, since they are approximate. It either covers the true
value or not, so it should be zero or 1. The interpretation that one should have in mind is
that of Buehler of betting, since the confidence interval is a pre-experimental approach; it
holds before collecting the data, being a procedure of the estimators rather than the estimate.
It is also approximate in the sense that the procedure depends on the sample size. θ is also
in a Bayesian perspective not a random variable, assumed to be drawn from a prior π(θ);
the posterior is

π(θ|x) = f(x|θ)π(θ)∫
θ
f(x|θ)π(θ) dθ

In machine learning and computer science, since the flow of data is continuous, this is the
approach. In survival analysis, this is not the right approach. From a scientist perspective,
since the choice of a prior that match the data can always be made, and always against the
data. The choice of the prior is thus a form of scientific pollution which should be avoided.

Credible intervals work with the inference being made on the posterior distribution, so we
can find an interval that covers 95% of the mass. We then have a probability statement.

For Bayesian statistics, under minimal conditions, we have π(θ|x) P−→ δθ0 and convergence to
the mass when θ ∈ Θ ⊆ Rk. However, when Θ is infinite, like often the case in non-parametric
(like the Kaplan-Meier estimator) and survival analysis (we have finite data, but infinite
dimension parameter space), we get this very often. F (x) is estimated by F̂n(x), and the
survival function, our parameter S(x) = 1−F (x) is infinite dimensional since we are making
no assumption; we have robustness.

The problem with non-parametric is ‖F̂n − F‖ = O

(√
log log(n)

n

)
has a constant in front

which grows rapidly when the dimension go up. Most of the time, the amount of data
required is huge. See “Consistency of Bayes estimates for nonparametric regression: normal
theory” by Diaconis and Freedman in Bernoulli(1998). We now sketch the proof for one
dimension, can be extended easily for finite dimension.

Proposition 2.45 (Asymptotic Normality of the MLE)
Let Xi

iid∼ fθ where f ∈ C3 (i.e. fθ(x) is three times continuously differentiable w.r.t. θ for
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almost all x). Then, using a Taylor expansion around the MLE,

∂

∂θ
log fθ(xi) = ∂

∂θ
log fθ̂(xi) + (θ − θ̂) ∂

2

∂θ2 fθ̂(xi) + εi

and since θ̂ is the solution of the first derivative of the likelihood (MLE is solution to the
score function), we therefore have summing both sides

n∑
i=1

∂

∂θ
log fθ(xi) = 0 + (θ̂ − θ)

[
−

n∑
i=1

∂2

∂θ2 log fθ̂(xi)
]

+ εn

where εn =
∑n
i=1 εi, using the fact that

∑n
i=1

∂
∂θ log fθ̂(xi) = 0 and the left hand side is the

so-called score function and thus
n∑
i=1

∂

∂t
log fθ(xi)

n∑
i=1

∂2

∂θ2 log fθ̂(xi)
= (θ̂ − θ) + εn

n∑
i=1

∂2

∂θ2 log fθ̂(xi)
.

This then implies that if we can get the rightmost term to go to zero and apply CLT to show
that the LHS converges to Normal, then by Slutski we are done. However, we need to scale
properly. We want that for Ȳ , where

Ȳ = 1
n

n∑
i=1

∂

∂θ
log fθ(Xi)

and Var
(
Ȳ
)

= Var(Y )
n . Using the properties of information, we have

Var
(
∂

∂θ
log fθ(X)

)
= E

(
∂

∂θ
log fθ(X)

)2
= −E

(
∂2

∂θ2 log fθ(X)
)

Then, back to the problem, we can rearrange as to get

1√√√√− n∑
i=1

∂2

∂θ2 log fθ̂(xi)n

A

·

1
n

n∑
i=1

∂

∂t
log fθ(xi)√√√√ 1

n

n∑
i=1

∂2

∂θ2 log fθ̂(xi)
/√

n

B

=
√
n(θ̂ − θ) +

√
nεn

−
n∑
i=1

∂2

∂θ2 log fθ̂(xi)
.
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We now note,22 using WLLN, that A P−→
(
−E

(
∂2

∂θ2 log fθ(x)
))− 1

2 and using the CLT that

B
d−→ N (0, 1). The second term on the right hand side is equal to

εn√
n
·

(
− 1
n

n∑
i=1

∂2

∂θ2 log fθ̂(xi)
)−1

P−→ εn√
n
I(θ)−1.

It then suffices to show that εn/
√
n

P−→ 0, or equivalently εn = Op(
√
n), provided that I(θ)

is non-zero, since otherwise the variance is infinite.

Theorem 2.46 (Asymptotic normality of MLE)
Under the assumptions of the previous proposition, we have

1√
I(θ)

Z
d=
√
n(θ̂ − θ)

for Z standard Gaussian as n→∞, or equivalently that√
nI(θ)(θ̂n − θ)

d−→ N (0, 1).

Wemust also be wary that the above proof sketch does not work if I(θ) = 0. Indeed, recall that
consistency requires identifiability and some smoothness. For asymptotic normality, we
need consistency, and further smoothness and positive definitiveness of the information
matrix (linked to identifiability, see Rothenberg 23) that I(θ) > 0. If the information is zero,
then the rate goes down and we need to go further in the Taylor series expansion and for
(θ̂ − θ)2, we need to multiply by n to get stabilization, but the rates will change. We have if
I(θ) is smooth map (analytic function here), as we have I(θ) = Cov

(
∇ ∂
∂θ log fθ(X)

)
, we

have positive semi-definitiveness. Then Γ = {θ : det I(θ) = 0} and Λ is nowhere dense sets.
However, the proof requires differential topology, so the result will be skipped.

Imposing some prior, uniform on λ, and reparametrize θ = e−λ, then you impose expo-
nential distribution. The information vehiculed by the prior depends quite heavily on the
parametrization. A result from analysis shows that mapping from nowhere dense set to
nowhere dense set and measure zero are meager.

Consider also if E (Xi) = µ,Var (Xi) = σ2 ∀ i where Xi are orthogonal.
22Warning! some things swept under the carpet, since we have θ̂ and not θ0
23Conditions include checking the rank of I(θ) is locally constant
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Then

P
(
|X̄n − µ| > εn

)
≤

Var
(
X̄n

)
ε2
n

= σ2

nε2
n

where εn = δn/
√
n where δn is e.g. logn such that

εn = δn√
n
→ 0, δn →∞.

Then we have

P
(
|X̄n − µ| >

δn√
n

)
≤ σ2

n
(
δn√
n

)2 = σ2

δ2
n

→ 0 as n→∞

and thus P
(√
n|X̄n − µ| > δn

)
→ 0. This implies that X̄n − µ = Op(n−

1
2 ). Indeed, by

definition, ∀ ε > 0,∃Cε and Nε mean

sup
n≥Nε

P
(√
n|X̄n − µ| > Cε

)
< ε

Then ε = σ2

δ2
n

= σ2

(log(n)2 where if δn = log(n), then log(n) = σ√
ε
and n = e

σ√
ε then Nε ≥ e

σ√
ε

with Cε = log(n) = σ√
ε
.

Back to the case where information is zero. We have

εn = (θ̂n − θ)2
n∑
i=1

∂3

∂θ3 log fθ(Xi)

If we have ∣∣∣∣ ∂3

∂θ3 log fθ(X)
∣∣∣∣ ≤M(X)

where E (M(X)) <∞. Then

εn = n(θ̂ − θ)2E (M(X))

= n

(
1√
n

)2
E (M(X))

= E (M(X)) .

Another way (simpler) to prove it would be to expand the score function around θ0, and
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then to evaluate the equation θ at θ̂; this allows to use WLLN on the latter term, without
requiring smoothness.

To relax the assumptions of the above theorem, one can show only consistency, f ∈ C1 and
I(θ) > 0. Using Morse’s lemma would allow to approximate the likelihood by quadratic
functions. Relaxing the continuity assumption, we cannot perform the Taylor series expansion
anymore. Since I(θ) = Cov (∇ log fθ) requires only the first derivative. Using Fréchet
derivative and embeding onto a unit ball of a Hilbert space, if the map is Fréchet differentiable
(guaranteed by consistency), then establishing that the score function is Normal, then show
that appropriately normalized and standardized,

√
n(θn − θ) minus the score goes to zero in

probability. Using Slutski theorem, we can then show that the two have the same asymptotic
distribution. Why are relaxing these conditions useful? If we have for example Laplace
distribution, we do not have differentiable everywhere, but almost everywhere, so this allows
generalizations. For more, see Ibragimov and Has’minskii (1981) or Bickel, Klaassen, Ritov,
and Wellner (1993).

For more on the FCR bound when the dimension space is not finite, see U. Grenander (1981)
in Abstract Inference, defined for normed linear space, using the Bochner integral.
Theorem 2.47
Suppose X1, . . . , Xn are iid and satisfy the assumptions of Le Cam’s theorem 2.44 and (c)
and (d) are replaced by the corresponding assumptions on the 3rd (rather than the 2nd)
derivative, thais is by the existence of a 3rd derivative satisfying∣∣∣∣ ∂3

∂θ3 log fθx)
∣∣∣∣ ≤M(x)

for all x ∈ A = {x : fθ(x) > 0} for θ ∈ (θ0 − c, θ0 + c) with E (M(X)) < ∞. Then, any
consistent sequence θ̂n = θ̂n(X1, . . . , Xn) of roots of the likelihood equation satisfies

√
n(θ̂n − θ)

d−→ N (0, I−1(θ))

2.10 Invariance property of MLE

We will show that if θ̂ is the MLE of θ, then for any estimand h, h(θ̂) is the MLE of h(θ).
The property of θ̂ is that of the estimate and not the estimator, since maximum likelihood is
a post-experimental approach. If the sample is small in comparison with the dimension of θ,
then UMVUE or other pre-experimental approaches in frequentist statistics will be proposed.

Before we present Zehna’s theorem, here is the foreword of the original article that illustrate
the need to develop results for maps that are not injective.

“One of the distinguishing features of the method of maximum likelihood in
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statistical estimation is the fact that it enjoys a certain invariance property.
likelihood estimator for u(θ̂) where u is some function of u(θ). Some textbooks
on the subject avoid any explicit mention of properties that u must possess in
order for invariance to hold. When a proof of the property is given, it is at least
assumed, either explicitly or implicitly that u is 1-1 thereby defining a unique
inverse.

Now if the assumption that u be 1-1 is really necessary, then the invariance
principle could not be invoked to find the maximum likelihood estimator for even
as common a case as the variance, p(1− p), of a Bernoulli random variable.

Indeed, there may be some doubt as to the meaning of maximum likelihood
in such a case. The purpose of this note is to point out that the notion of a
maximum likelihood estimator for u(θ) when u is not 1-1 can and should be
made explicit.

The method used for accomplishing this task has the desirable feature that it
coincides with the usual method employed when u is 1-1.

Theorem 2.48 (Zehna’s theorem (1969))
Let {fθ : θ ∈ Θ} be a family of PDF’s (PMF’s) and let L(θ) be the likelihood function.
Suppose that Θ ⊂ Rk, for k ≥ 1. 24 Let h : Θ→ Λ be an (arbitrary) mapping of Θ onto Λ.
If θ̂ is an MLE of θ, then h(θ̂) is an MLE of h(θ).

This result does not hold in infinite dimensions. See Søren Johansen on this.

Proof For each λ ∈ Λ, let us define

Θλ = {θ : θ ∈ Θ, h(θ) = λ} and M(λ;x) = sup
θ∈Θλ

L(θ,x)

Then M defined on Λ is called the likelihood function induced by h.

If θ̂ is any MLE of θ, then θ̂ belongs to one and only one set Θλ̂ say. 25 Since θ̂ ∈ Θλ̂, λ̂ = h(θ̂).
Now

M(λ̂,x) = sup
θ∈Θλ̂

L(θ,x) ≥ L(θ̂,x) (2.22)

On the other hand

M(λ̂,x) ≤ sup
λ∈Λ

M(λ,x) = sup
θ∈Θ
L(θ,x) = L(θ̂,x) (2.23)

24This precision is important as we usually don’t have this property in ∞-dimension
25Indeed, if θ ∈ Θλ1 ∩Θλ2 and so h(θ) = λ1, h(θ) = λ2, which contradicts the partition for our function h.
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Thus, using (2.22) and (2.23),

M(λ̂,x) = sup
λ∈Λ

M(λ,x)

It then follows that λ̂ ≤ h(θ̂) is the MLE of h(θ). �
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Section 3
Computational statistics

3.1 Newton-Raphson algorithm

We present two methods here, the Newton-Raphson iterative process and Expectation-
Maximization (EM) algorithm. We want to find the root of the function

l(θ) := ∂

∂θ
logL(θ;x) = 0

using a Taylor series expansion

l′(θ̂) ≈ l′(θ̃) + (θ̂ − θ̃)l′′(θ̃)

which yields

θ̂ = θ̃ − l′(θ̃)
l′′(θ̃)

or in the multivariate setting

θ̂ = θ̃ −∇l(θ̃)H−1(θ̃)

and applying this procedure iteratively yields a fixed point xn+1 = f(xn).
Theorem 3.1 (Newton-Raphson algorithm)
Suppose that the assumptions of the theorem of asymptotic normality (Theorem 2.46) hold
and θ̃n is

√
n-consistent estimator of θ, i.e.

√
n(θ̃n − θ) = Op(1). Then

δn = θ̃n −
l′(θ̃n)
l′′(θ̃n)

is asymptotically efficient, that is

√
n(δn − θ)

d−→ N (0, I−1(θ)).

Remark
If the function is concave of convex, this is good. If we have mixtures, the Newton-Raphson
or EM algorithms will give local maxima. Other approaches, like simulated annealing (see
Ingher (1993)), work well for global maximization.

If we have missing data (such as censoring where you observe Xi = Ti ∧ Ci where Ti is
follow-up and Ci a competing variable. Instead, we observe (Xi, δi) where δi = 1Ti≤Ci . We
lose longer survivors, so we are underestimate values; throwing the data would induce bias.
We can use EM to augment the incomplete data with the complete data we which to have,
for which the likelihood is easier to maximize. We augment the data, get a simple likelihood
to maximize. One then expectate over the unknown values. Then maximize and we repeat
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the procedure. One can show that it converges to the MLE. This is also useful for mixtures;
if we have fθ(x) =

∑k
j=1 pjgj(x;θj) from a mixture of Normal populations, where pj are

the proportion. If we knew for observations x1, x2, x3 which population they arise from (say
respectively x1 7→ kth population, x2 7→ 3rd and x3 7→ 4rd; then the likelihood would be
much easier to work with (being some gk(x1,θk)g3(x2,θ3)g4(x3,θ4), rather than the product
of three mixtures fθ(x1)fθ(x2)fθ(x3).

3.2 Expectation-Maximization (EM) algorithm

The EM algorithm was designed for missing data cases. Consider the case of a simple mixture
with two distribution, with X ∼ f(x) = pg(x) + (1 − p)h(x). In this case, identifiability,
maximization and invariance is difficult. If we observed from which distribution the sample
observations were drawn, it would be then easy to augment the data as (Xi, δi) and write
down the likelihood. The EM algorithm we will see is guaranteed to converge to a solution
of the MLE equations, but it may not be the global maximum.

Let X1, . . . , Xn and Y1, . . . , Yn be bivariate data with (Xi, Yi) for i = 1, . . . , n with Xi ∼ P(τi)
and Yi ∼ P(βτi) independent between and within pairs (Xi, Yi). Then

Lc(β, τ ; (x,y)) =
n∏
i=1

fβ,τ (xi, yi) =
n∏
i=1

e−βτi(βτi)yi
yi!

e−τiτxii
xi!

and maximization of the log-likelihood yields

β̂ =
∑n
i=1 yi∑n
i=1 xi

, τi = xi + yi

β̂ + 1

Suppose X1 is missing. Then we have

∞∑
xi=0

n∏
i=1

fβ,τ (xi, yi)

The incomplete data consists of {y1, (x2, y2), . . . , (xn, yn)} while the complete data comprises
of all pairs {(xi, yi), i = 1, . . . , n}. The likelihood for the incomplete data is

L(β, τ ; y1, (x2, y2), . . . , (xn, yn)) =
[
n∏
i=1

e−βτi(βτi)yi
yi!

][
n∏
i=2

e−τiτxii
xi!

]

and the corresponding MLE equations are

β̂ =
∑n
i=1 yi∑n
i=1 τ̂i

, y1 = β̂τ̂1, xi + yi = τ̂i(β̂ + 1) for i = 2, 3, . . .
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We have for θ = (β, τ ) the likelihoods Lc(θ;y,x) = f(y,x|θ) and L(θ;y) = g(y|θ) where
here y = {y1, (xj , yj) for j = 2, . . . , n} and x = x1. Let

k(x|θ,y) = f(y,x;θ)
g(y;θ)

and consider the log-likelihood

log(g(y;θ)) = log(f(y,x;θ))− log(k(x|θ,y))

and so

`(θ|y) = `(θ;x,y)− log(k(x|θ,y))

and we have

`(θ|y) ≈ EX|Y=y,θ′ (`(θ|Y ,X))− EX|Y=y,θ′ (log(k(x|θ,y)))

and θr+1 is the value that maximizes

EX|Y=y,θr (`(θ|y,X)) =
∫
x

`(θ|y,x)k(x|θ′,y) dx

EX|Y=y,θ′ (log(k(x|θ,y))) =
∫
x

log(k(x|θ′,y))k(x|θ′,y) dx

taking θ = θ(r) and θ′ = θ(r+1). The choice of a θ(0) is a difficult one if we do not have
unimodal distribution and concavity.

At each step, θ(r+1) is the value that maximizes

EX|Y=y,θ(r) (`(θ|y,X)) = arg max
θ

∫
X
`c(θ;y,x)k(x|θ(r),y) dx

Back to the toy example, we have for the E step

EX1|y,β(r),τ (r) (logL(β, τ ;x,y)) =
∑
x1

log
(

n∏
i=1

e−βτi(βτi)yi
yi!

e−τiτxii
xi!

)
e−τ

(r)
1 τ

(r)
i

x1

x1!
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Simplification yields

=
n∑
i=1

[−βτi + yi(log(β) + log(τi)− log(yi!)] +
n∑
i=2

[−τi + xi log(τi)− log(xi!)]

+
∞∑

x1=0
[−τ1 + x1 log(τ1)− log(x1!)]e

τ
(r)
1 (τ (r)

1 )x1

x1!

=

 n∑
i=1

[−βτi + yi(log(β) + log(τi)] +
n∑
i=2

[−τi + xi log(τi)] +
∞∑

x1=0
[−τ1 + x1 log(τ1)]e

τ
(r)
1 (τ (r)

1 )x1

x1!


−

(
n∑
i=1

log(yi!) +
n∑
i=2

log(xi!) +
∞∑

x1=0
log(x1!)e

τ
(r)
1 (τ (r)

1 )x1

x1!

)

where we can further simplify the underlined term as

−τ1 + log(τ1)
∞∑

x1=0
x1
eτ

(r)
1 (τ (r)

1 )x1

x1! = −τ1 + log(τ1)τ (r)
1

Substituting back in the equation and this completes the E step. For the M step, we can
maximize to get the sequence

β̂(r+1) =
∑n
i=1 yi

τ
(r)
1 +

∑n
i=2 xi

,

τ̂
(r+1)
1 = τ̂

(r)
1 + y1

β̂(r+1) + 1

τ̂
(r+1)
i = xi + yi

β̂(r+1) + 1
, for i = 2, . . . , n

The heart of the algorithm is to build a sequence of θ such that the likelihood increases. If
we have the incomplete data log-likelihood `(θ|y) and the complete data one `(θ|y,x), then
using the simple conditional probability distribution.

log `(θ|y) = log `(θ|x,y)− log(K(x|θ,y))

and set

log `(θ|y) = EX (log `(θ|X,y))− EX (logK(X|θ,y))

and now

EX (log `(θ|X,y)) =
∫
X

log `θ|x,y)K(x|θ(r),y) dx
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We then have

log(`(θ(r+1)|y))

=
∫

log(`(θ(r+1)|x,y))K(x|θ(r+1),y) dx−
∫

log(K(x|θ(r+1),y))K(x|θ(r+1),y) dx

> `(θ(r)|y)

=
∫
X

log(`(θ(r)|x,y))K(x|θ(r),y) dx−
∫
X

log(K(x|θ(r),y))K(x|θ(r),y) dx

and since the first term is the minimizer, and we have using Jensen’s inequality the second
part is Eg

(
log f

g

)
< 0. Thus, the EM algorithm converges to a local maximum.

3.3 Presentation on non-parametric MLE

We can use kernel density estimation of the form

f̂n(t) = lim
h→0

∫ 1
n
K

(
x− t
n

)
dF̂n(x)

with e.g. K(U) = 1√
2π e
−u2/2. This can be used to assess multimodality. The Komolos-

Major-Tusnady (KMT) result gives tools to determine the best choice of K and the optimal
bandwith and optimal choice of rate hn = log(n)/n.

3.4 Jackknife and bootstrap

Jackknife started with Quenouille in mid 50’s for bias reduction purposes. Suppose calculate
a statistic from an n-sample, Tn = T (X1, . . . , Xn) and Bias (Tn) = E (Tn)− θ. The original
suggestion was to look at T(−i) = T (X1, . . . , Xi−1, Xi+1, . . . , Xn), which consists in removing
the ith observation. One may then look at the mean obtained from the subsample

T̄n = 1
n

n∑
i=1

T(−i) and bjack = (n− 1)(T̄n − Tn)

and the corresponding bias-corrected estimator Tjack = Tn − bjack.

Efron started from T̄n = 1
n

∑n
i=1 T(−i), which allows for more copies of the sample . Extending

this idea, we coud remove multiple copies. Having θ = T (F ), if µ = E (X) =
∫
X x dF = T (F ),

and σ2 = Var (X) = E
(
X2)− (E (X))2. We however have dependence in the data, so the

draws are all not interesting. Since most parameters are of the form of integrals, we can use
θ̂ = T (F̂ ) and resampling using the ECDF allows for independent draws conditional on the
observed covariates. For variance computation, this is important, but not for bias which
relies only on the first moment. We can resample X1, . . . , Xn from the discrete distribution,
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with x1, . . . , xn.

For a large class of estimators,

Bias (Tn) = a

n
+ b

n2 +O

(
1
n3

)
where for example for the variance plug-in estimator

σ̂2
n = 1

n

n∑
i=1

(Xi − X̄n)2 = n− 1
n

S2

E
(
σ̂2
n

)
= n− 1

n
σ2 = σ2 − σ2

n

Bias
(
σ̂2
n

)
= −σ

2

n

so here a = −σ2, b = 0.

We have

Bias
(
T(−i)

)
= a

n− 1 + b

(n− 1)2 +O

(
1
n3

)
(3.24)

Now

Bias
(
T̄n
)

= Bias
(

1
n

n∑
i=1

T(−i)

)

also fulfills (3.24) and bjack = (n− 1)(T̄n−Tn) = (T̄n− θ)− (Tn− θ) adding and substracting
θ to have an expression for the bias. Now

E (bjack) = (n− 1)
[
E
(
Bias

(
T̄n
))
− E (Bias (Tn))

]
= (n− 1)

[(
1

n− 1 −
1
n

)
a+

(
1

(n− 1)2 −
1
n2

)
b+O

(
1
n3

)]
= a

n
+ 2n− 1
n2(n− 1) +O

(
1
n2

)
= Bias (Tn) +O

(
1
n2

)
and

Bias (Tn) = a

n
+ b

n2 +O

(
1
n3

)
and bjack estimates the bias of Tn up to order O

( 1
n2

)
. Similarly, we can show that
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Bias (Tjack) = Tn − bjack and get

Bias (Tjack) = − b

n(n− 1) +O

(
1
n2

)
= O

(
1
n2

)
Definition 3.2 (Pseudo-values)
Let T̃i = nTn − (n− 1)T(−i) are pseudo-observations. Then, we define

Tjack = 1
n

n∑
i=1

T̃i

The jackknife estimate of Var (Fn) is

vjack = s̃2

n
where S̃2 = 1

n− 1

n∑
i=1

(T̃i − Tjack)2

Theorem 3.3
Let µ = E (X1) , σ2 = Var (X1) and suppose Tng(X̄n) where g has a continuous, non zero
derivative at µ. Then vjack/σ

2
n

a.s.−−→ 1 where

σ2
n = 1

n
(g′(µ))2

σ2

and
Tn − g(µ)

σn

w−→ N (0, 1)

Theorem 3.4 (Inconsistency of the jackknife for quantiles (Efron, 1982))
If T (F ) = F−1(p), the pth quantile, then the jacknife estimate is inconsistent. For the median
(p = 0.5), we have

vjack

σ2
n

−→
w

(
χ2

2
2

)2

where σ2
n is the asymptotic variance of the sample median.

Recall the following result for the distribution of the difference of quantiles and order statistic

Theorem 3.5
If X(r) denotes the rth order statistic of a sample of size n X1, . . . , Xn with PDF F . For
0 < p < 1, let F be absolutely continuous with PDF f , which is positive at F−1(p) and
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is continuous at that point (that is F (zp) = p exists and is unique at p). For r = np, as
n→∞,

√
nf(zp)

(X(r) − zp)√
p(1− p)

d−→ N (0, 1)

If we have a statistical function T : {F : F ∈ F } → Rk. We could take length bias sampling
and find a one-to-one map from the sample population estimate distribution function to the
target population. We have

fB(x) = xfU (x)
µU

, µU =
∫
x

xf(x) dx

then

fU (x)
µU

= fB(x)
x

and integrating both sides,
1
µU

=
∫
x

fB(x)
x

and as such

µU =
(∫ ∞

0

dFB(x)
x

)−1

⇒ fU (x) =

fB(x)
x∫∞

0
dFB(x)

x

⇒ FU (x) =

∫ x
0 dfB(t)

t∫∞
0

dFB(x)
x

If this map is not linear, we need something akin to Taylor series expansion; this requires
different types of derivatives.

Definition 3.6 (Fréchet derivative (F -differentiable))
If we have B Banach spaces (normed complete linear spaces), of infinite dimensions, and
f : B1 → B2, we can define the Fréchet derivative as

‖f(x+ h)− f(x)− Lf,x(h)‖ = o(‖h‖)

as n→∞ where L is a linear map (like the tangent to the curve f at point x). Recall the
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“usual ” derivative

f(x+ h)− f(x)
x

≈ f ′(x) ⇒ |f(x+ h)− f(x)− f ′(x)h| → 0

and in infinite dimension, we have this as the inner product and the above is a hyperplane
tangent to the curve; this is simply the gradient. This should be linear as we move to higher
dimensions.

This condition is too strong. We could have the directional derivative instead,

Definition 3.7 (Gâteau derivative (G-differentiability))

∥∥∥∥f(x+ th)− f(x)
t

− LGf,x(h)
∥∥∥∥ = o(1) as t→∞

Definition 3.8 (Hadamard derivative (H-differentiability))
We have

sup
h∈K

∥∥∥∥f(x+ th)− f(x)
t

− LHf,x

∥∥∥∥ = o(1)

for any compact set K. 26

This then allows to define the notion of an influence function, as

Definition 3.9 (Influence function)

ΦF (x) = LGF (δx − F )

where δx is the point map at x, degenerate CDF at point x and F̂n(t) = 1
n

∑n
i=1 E(t−Xi).

If we consider a Taylor expansion using the Gâteau derivative, we have

√
n
(

(F̂n)− T (F )
)

= LGF

(√
n
(
F̂n − F

))
+ o(1)

and since L is a linear map,

T (F̂n) = T (F ) + LG(F̂n − F ) + o
(
n−

1
2

)
26The superscript denotes the type of derivative, the first subscript the function at which we approximate,

the second subscript the point and the argument inside parenthesis the direction.
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or

√
n

[
T (F + 1√

n
(
√
n(F̂n − F )))− T (F )

]
− LGF (

√
n(F̂n − F ))→ 0

using the Gâteau derivative with t =
√
n
−1. Then

F̂n(t) = 1
n

n∑
i=1

1xi∈(−∞,t) = 1
n

n∑
i=1

δXi

and then since we have a linear map, we interchange summations and LG

LGF (
√
n(F̂n − F )) = 1√

n

n∑
i=1

LGF (δXi − F ) = 1√
n

n∑
i=1

ΦF (Xi);

the resulting for any functional gives a Normal approximation.

We can show under mild conditions if E (ΦF (Xi)) = 0 and σ2
F = E (ΦF (Xi))2

<∞ then

1√
n

n∑
i=1

ΦF (Xi)
w−→ N (0, σ2

F )

If we have a parameter of interest, θ = T (F ), then with Tn = T (F̂n) where T̃i = T (δXi);
then

T (F + ε(δXi − F )− T (F )
ε

− LGF (δX − F )→ 0.

Choosing ε = −(n− 1)−1 and replace F by F̂n, we get

−(n− 1)
[
T
(
F̂n − (n− 1)−1(δXi − F̂n)

)
− T (F̂n)

]
− LGF (δXi − F̂n)

or

T
(

n
n−1 F̂n −

1
n−1δXi

)
− T (F̂n)

−1/(n− 1) − ΦF (Xi) (3.25)

and if we open up, we get

1
n− 1

n∑
j=1

δXj −
1

n− 1δXi = 1
n− 1

n∑
j=1
j 6=i

δXj
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and substituting this back up in (3.25), we getting

−(n− 1)

T
 1
n− 1

n∑
j=1
j 6=i

δXj

− T (F̂n)

 = (n− 1)[Tn − T(−i)]

and then

T̃i = nTn − (n− 1)T(−i) = Tn + (n− 1)(Tn − T(−i)) = Tn + Φ
F̂n

(Xi);

we have the approximation

T (δXi) ≈ T (F̂n) + Φ
F̂n

(Xi)

3.5 Bootstrap

We can replace F by F̂n; to see why it works. If we work with MLE or NPMLE, we have
nα(θ̂ − θ) converges weakly to a Gaussian process. However, we need VarF (Tn), we can
replace with Var

F̂n
(Tn). The general procedure for bootstrap is as follows:

Algorithm 3.1 (Nonparametric Bootstrap)
Assume we have IID samples,

1. Draw X∗1 , . . . , X
∗
n ∼ F̂n with replacement.

2. Compute T ∗n = g(X∗1 , . . . , X∗n)

3. Repeat step 1 and 2 B times and set T ∗n,1, . . . , T ∗n,B

4. Let

vboot = 1
B

B∑
b=1

(
T ∗n,b −

1
B

B∑
r=1

T ∗n,r

)2

We have ‖F̂n − F‖∞ = O
(

log(log(n))
n

)
and so this means that as the empirical distribution

function, ECDF, converges to the CDF.

The order is respectively O(n− 1
2 ) and O(B− 1

2 ). We also have

VarF (Tn) ≈ Var
F̂n

(Tn) ≈ vboot.

We want F ∗−F = (F ∗− F̂n) + (F̂n−F ). If both rates are 3
√
n, we have balance for the first

term, but the second will blow up and bootstrap blows up. If we take faster convergence,
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Figure 5: Bootstrap scheme
Real world: From the unknown probability model

P(x) random sampling−−−−−−−−−−−→ x = (x1, . . . , xn)> original estimator−−−−−−−−−−−→ T̂n = g(x)

and
√
n(Tn − T̂n) d−−−−→

n→∞
N
(
µP, σ

2
P
)

Bootstrap world: From the estimated probability model

P̂(x) random sampling−−−−−−−−−−−→ x∗ = (x∗1, . . . , x∗n)> bootstrap estimator−−−−−−−−−−−−→ T̂ ∗n = g(x∗)

and
√
n(T̂ ∗n − T̂n) d−−−−→

n→∞
N
(
µB(P), σ2

B(P)
)
;

we have convergence to zero. This is the case with Gernander estimators (estimation under
shape constraint).

The boostrap can be used to approximate the CDF of a statisitc Tn. Let Gn(t) = P (Tn ≤ t),
the CDF of Tn. The bootstrap approximation to Gn is

Ĝn(t) = 1
B

B∑
b=1

1T∗
n,b
≤t

Note
We are using plugin estimators, namely if θ = T (F ), then θ̂ = T (F̂n). When B is large,
using B − 1 (adding the original observation to get precisely B samples), or this does not
make much difference.

Parametric bootstrap

Instead of replacing the CDF by the nonparametric MLE, we replace for X1, . . . , Xn ∼ fθ
and use the parametric model and resample from fθ̂. For example, if Xi

iid∼ N (µ, σ2), then
F̂n is N (X̄n,

n−1
n S2) where S2 = 1

n−1
∑n
i=1(Xi − X̄n)2.

Confidence interval for bootstrap

Pivotal quantities. A function of unknown parameters and observables such that the
distribution of the resulting is completely known.

Example 3.1
For example, if Xi

iid∼ Fθ, then for x, T (x,θ) =
∏n
i=1 Fθ(Xi). To see this, take logarithm,
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we have

− log T (X,θ) = −
n∑
i=1

logFθ(Xi)

SinceXi ∼ Fθ for continuous random variablesX’s, then by the probability integral transform,
we have Fθ(Xi) ∼ U(0, 1). Then, if wi = − logFθ(xi) ∼ E(1) and since any measurable
function of independent random variables are also independent,

∑n
i=1Wi ∼ Γ(n, 1).

Sometimes, the distribution of the pivotal quantity is known, but of no use for confidence
interval because the form is complicated.
Example 3.2
If Xi ∼ E(θ), with fX(x; θ) = θe−1x≥0 with Fθ(x) = 1 − e−θx and − log(T (X, θ) =
−
∑n
i=1 log(1−e−θxi). If we work instead with V (X, θ) =

∏n
i=1 sθ(xi), the survival function,

we have sθ(x) = 1 − Fθ(x) and so we have − log(V (X, θ)) ∼ Γ(n, 1) and since we have
Z ∼ U(0, 1) implies 1− Z ∼ U(0, 1), then

− log(V (X, θ)) = −
n∑
i=1

log(e−θxi) = θ

n∑
i=1

Xi

For the confidence interval, P (a < θ
∑n
i=1 xi < b) = 1− α and then confidence interval is(
a∑n
i=1 xi

,
b∑n
i=1 xi

)
We could also resort to asymptotic, where√

nI(θ)(θ̂ − θ) d−→ N (0, 1)

is not useful in applications since I(θ) is dependent on the unknown parameter. However, if
I is continuous, then we have using WLLN and Slutski, we can use√

nI(θ̂)(θ̂ − θ) d−→ N (0, 1)

If we do not have a parametric model, we need to go to GEE and find the limiting variance.
In nonparametric, we can resort for reasonable sample sizes to bootstrap confidence interval.

If Xi
iid∼ F , then Tn ± zα/2ŝeboot where ŝeboot = √vboot is the simplest bootstrap confidence

interval, based on the normal approximation. The approximation follows from

√
n
(
T (F̂n)− T (F )

)
≈ 1√

n

n∑
i=1

ΦTF (Xi)
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IF θ = T (F ), and we use the plugin estimator T (F̂n), if we know θ̂n − θ then we can
easily construct confidence intervals. Let H(r) = PF (Rn ≤ r) and C∗n = (a, b) where
a = θ̂n −H−1(1− α

2 ) and b = θ̂n −H−1(α2 ), then

P (a ≤ θ ≤ b) = P
(
θ̂n − b ≤ Rn ≤ θ̂n − a

)
= H(θ̂n − a)−H(θ̂n − b)

= H
(
H−1

(
1− α

2

))
−H

(
H−1

(α
2

))
= 1− α

2 −
α

2 = 1− α

If we do not have H, we can use Ĥ(r) = 1
B

∑B
b=1 1R∗

n,b
≤r and R∗n,b = θ̂∗n, − θ̂n where θ̂n is

calculated from the original data. This yields

â = θ̂n − Ĥ−1
(

1− α

2

)
b̂ = θ̂n − Ĥ−1

(α
2

)
and Cn = (â, b̂). We have the following theorem
Theorem 3.10
If T (F ) is Hadamard differentiable, then

PF (T (F ) ∈ Cn)→ 1− α.

A third approach to confidence interval is to consider zn = Tn−θ
ŝeboot

and z∗n,b = T∗n,b−Tn
ŝe∗b

where
ŝe∗b is an estimate of the standard errors of T ∗n,b (not Tn).

Using Edgeworth expansions, we can show that this estimate, which used double bootstrap,
is more effective, but more costly. We end with two theorems, without proof, regarding the
use of the bootstrap.
Theorem 3.11
Suppose that E

(
X2
i

)
< ∞. Let Tn = g(X̄n) where g is continuously differentiable at

µ = E (Xi) and g′(µ) 6= 0. Then

sup
u

∣∣∣P
F̂n

(√
n
[
T (F̂ ∗n)− T (F̂n)

]
≤ u

)
− PF

(√
n
[
T (F̂n)− T (F )

]
≤ u

)∣∣∣ a.s.−−→ 0 as n→∞

(3.26)

The proof rely on Mallow’s metric or Berry-Esséen theorem. See Wasserman for the proof.

Theorem 3.12
Suppsoe that T (F ) is Hadamard differentiable with respect to d(F,G) = supx |F (x)−G(x)|
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and 0 <
∫
L2
F (x) dF (x) <∞. Then (3.26) holds in probability.

Section 4
Hypothesis test

4.1 Generalized Likelihood Ratio tests

In Neyman-Pearson, we need a device to look at how far the observations are from the
hypothesis. Let X1, . . . , Xn ∼ fθ for θ ∈ Θ. Fisher, on the other hand, would not specify an
“alternative” hypothesis; the null should be the status quo (we thus want to control the Type
1 error.27 The general idea of testing is to look at the distance between the hypothesised
and the observed. We have

H0 : θ ∈ Θ0 HA : θ ∈ Θ \Θ0

We thus want that PH0 (()Rejecting H0) = P (Type I error) < α.

True
H0 H1

Accepted H0 Correct Type II error
H1 Type I error Correct

Table 1: Decision table for hypothesis test errors

Let ϕ : Xn 7→ [0, 1]. Then, for each x = (X1, . . . , Xn), we have ϕ(x) a value in [0, 1] with
which we reject H0. Then

Eθ (ϕ(X)) = βϕ(θ)

If θ ∈ Θ0, then βϕ(θ) = Pθ (rejecting H0). and

sup
θ∈Θ0

β[ϕ](θ) < α

where βϕ(θ) is called power function

◦ If θ ∈ Θ, then βϕ(θ) represents rejecting H0 when H0 is correct.

◦ If θ ∈ ΘA, then βϕ(θ) represents rejecting H0 when H0 is false.

27Send no innocent to gaz chamber
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Definition 4.1 (Most powerful test)
A test ϕ is called most powerful at level α for testing H0 : θ ∈ Θ0 versus HA : θ1 ∈ ΘA if

sup
θ∈Θ0

βϕ(θ) ≤ α

and

βϕ(θ1) ≥ βϕ∗(θ1)

for any size α, ϕ∗ that is

sup
β∈Θ0

βϕ∗(β) ≤ α

This 1 is one point in the alternative. Now, if

βϕ(θ) ≥ βϕ∗(θ), ∀ θ ∈ ΘA, ∀ ϕ∗

such that supβ∈Θ0 βϕ∗(β) ≤ α, we say that ϕ is UMP test for testing H0 : θ ∈ Θ0, versus
HA : θ ∈ ΘA. If H0 : θ = θ0 and HA : θ = θ1, then

ϕ(x) =


1 if fθ1 (x)

fθ0 (x) > k

γ if fθ1 (x)
fθ0 (x) = k

0 if fθ1 (x)
fθ0 (x) < k

is MP for testing H0 : θ = θ0 against the alternative HA : θ = θ1 at its level, i.e. at
Eθ0 (ϕ(X))

We need this k as we do not treat the null and the alternative equally. The bigger the k, the
smaller the rejection set (region); it indicates that we assign more weight to the null and not
give up. This is for classification.

In most applications, α, the probability of Type 1 error, is given. Now

α = E[θ0]ϕ(X) = P
({
X : fθ1(X)

fθ0(X) > k

}
+ γ

{
X : fθ1(X)

fθ0(X) = k

})
This is for one parameter; we need a particular form for the function, an alternative.
Otherwise, its a headaque.

Fisher had a different philosophy; He did not have an alternative, and proposed instead to
look at the ratio, with this time the ratio with the null on top. Choosing a criterion that
measures the “distance” between the facts and the hypothesis; using the MLE, he introduced
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the so-called generalized likelihood ratio test where

λ(x) =
supθ∈Θ0 fθ(x)
supθ∈Θ fθ(x)

Now if H : θ ∈ Θ0, large values are good for the hypothesis. We expect that as n→∞, we
get the ratio to be 1. Now we have

{x : λ(x) < c}

The small values of c are not good for the null hypothesis. Fisher used this successfully in
few cases, as the following:

Example 4.1
Let Xi

iid∼ N (µ, σ2) and suppose that we wish to testH0 µ = µ0

H1 µ 6= µ0
;

where

Θ0 = {θ = (µ0, σ
2) : σ2 ∈ R+}

Θ = {(µ, σ2) : µ ∈ R, σ2 ∈ R+}

and notice that both are composite hypothesis (since σ2 is unspecified). Here, Θ0 = {θ =
(µ0, σ

2) : σ2 ∈ R+

We present the calculations step by step for finding the ratio of MLE.

Step 1: Calculate the likelihood function:

L(θ = (µ, σ2),x) =
n∏
i=1

1√
2πσ

exp
{
− (xi − µ)2

2σ2

}

= 1(√
2πσ

)n exp
{
− 1

2σ2

n∑
i=1

(xi − µ)2

}

Step 2: Find the supremum on Θ:

sup
θ∈Θ
L(θ,x) = L((x̄, σ̂2ML),x)

where

σ̂2ML = 1
n

n∑
i=1

(xi − x̄)2 = (
√

2πσ̂)−ne−n2 .
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and µ̂ = X̄n

Step 3: Find the supremum on Θ0:

sup
θ∈Θ0

L(θ,x) = L((µ, σ̂2∗),x)

where

σ̂2∗ = 1
n

n∑
i=1

(xi − µ)2.

Step 4: We are now set to calculate λ(x):

λ(x) =
supθ∈Θ0 L(θ,x)
supθ∈Θ L(θ,x)

= L((µ, σ̂2
∗),x)

L((µ, σ̂2
ML,x)

=

(√
2πσ̂∗

)−n exp
{
− 1

2σ̂2
∗

∑n
1 (xi − µ0)2

}
(√

2πσ̂ML
)−n exp

{
− 1

2σ̂2
ML

∑n
1 (xi − x̄0)2

}

and noticing that σ̂2∗
∑n
i=1(xi − µ0)2 = n and similarly for the denominator, we have

λ(x) =
(
σ̂ML

σ̂∗

)n exp
(
−n2
)

exp
(
−n2
)

=
(
σ̂ML

σ̂∗

)n
=
(
σ̂2

ML
σ̂2
∗

)n
2

=
( ∑n

i=1(xi − x̄)2∑n
i=1(xi − µ0)2

)n
2

=
( ∑n

i=1(xi − x̄)2∑n
i=1(xi − x̄)2 + n(x̄− µ)2

)n
2

=

1 +
(

1
n− 1

)
n(x̄− µ0)2(

1
n− 1

)∑n
i=1(xi − x̄)2


−n2
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which is like a t distribution. Let

F = n(x̄− µ0)2(
1

n− 1

)∑n
i=1(xi − x̄)2

is a ratio of χ2(1)/χ2(n− 1). The above then reduces to

λ(x) =
(

1
1 + F

n−1

)−n2
Note that λ(x) is a decreasing function of F . Moreover,

{λ(x) ≤ c} ⇔ {F (1, n− 1) ≥ k}

and so this is similar to the Fisher-Neyman UMP test formulation.

For a given α, we find k such that α = P (F(1, n− 1) ≥ k). You mind want to refresh
your memory here about the derivation of the F statistic. If Xi

iid∼ N (µ0, σ
2) under

H0, then X̄n ∼ N (µ0, σ
2/n)

X − µ0

σ/
√
n
∼ N (0, 1),⇒ n(X − µ0)2

σ2 ∼ χ2(1).

and also
1

n− 1

n∑
i=1

(xi − X̄n)2/σ2 = (n− 1)S2

(n− 1)σ2 = χ2(n− 1)
n− 1 ;

since X̄n ⊥⊥ {Xi − X̄n} is partially ancillary for µ; this can also be derived through
MGF argument.

Heuristic from this come from the part that Xi = µ+ εi where εi ∼ N (0, σ2), we can
express Xi ≡ X̄n + (Xi − X̄n) and as n→∞, the second term goes to µ.

Thus the ratio is F (m,n) = V/m
W/n provided V ⊥⊥W, and that V ∼ χ2(m),W ∼ χ2(n).

In our specific case, the distribution is 1/(n− 1)F(1, n− 1) and we can choose k such
that PH0 (V (X) > k) = α.

Indeed, we have We begin with

Theorem 4.2
Let X1, . . . , Xn be iid rv N (µ, σ2) rv’s, then X and (X1 −X, . . . ,Xn −X) are independent.
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Proof We use the joint MGF Mζ(t, t1, . . . , tn) for ζ ≡ {X,X1 −X, . . . ,Xn −X}.

Mζ(t, t1, . . . , tn) = E
[

exp
{
tX +

n∑
i=1

ti(Xi −X)
}]

= E
[

exp
{

n∑
i=1

tiXi −

(
n∑
i=1

ti − t

)
X

}]

= E
[

exp
{

n∑
i=1

Xi

(
ti −

t1 + . . .+ tn − t
n

)}]

Let

t = 1
n

n∑
i=1

ti

Continuing from above, we have

Mζ(t, t1, . . . , tn) = E
[
n∏
i=1

exp
{
Xi(nti − nt+ t)

n

}]

=
n∏
i=1

E
[

exp
{
Xi

[
t+ n(ti − t)

]
n

}]

where the last step follows from independence. Using the fact that Xi ∼ N (µ, σ2), and
adopting the convention

t∗ = t+ n(ti − t)
n

,

we obtain
n∏
i=1

exp
{
µt∗ + σ2

2 t∗
2
}

= exp
{
µ

n

[
nt+ n

n∑
i=1

(ti − t)
]

+ σ2

2n2

n∑
i=1

[t+ n(ti − t)]2
}

= exp
{
µt+ σ2

2nt
2
}
· exp

{
σ2

2

n∑
i=1

(ti − t)2

}
= MX(t) ·MX1−X,...,Xn−X(t1, . . . , tn)

which in turn implies that X and (X1 −X, . . . ,Xn −X) are independent. �

It follows, since for two vectors of independent variables, any measurable functions of those
vectors are independent. Thus, X and S2 are independent.
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Corollary 4.3
The ratio of the sample variance statistic with the true variance given by

(n− 1)S2

σ2 ∼ χ2(n− 1)

follows a Chi-square distribution with n− 1 degrees of freedom.

Proof Xi ∼ N (µ, σ2) thus Xi−µ
σ ∼ N (0, 1) hence

(
Xi − µ
σ

)2
∼ χ2(1).

The Xi are independent so
n∑
i=1

(
Xi − µ
σ

)2
∼ χ2(n)

Now, adding and subtracting X:

n∑
i=1

(
Xi − µ
σ

)2
=

n∑
i=1

(
Xi −X

σ

)2

+ n
(X − µ)2

σ2

= (n− 1)S2

σ2

V

+
(
X − µ
σ/
√
n

)2

W

since the cross terms vanishes (that is
∑

(Xi −X) = 0).

MU (t) = MV (t) ·MW (t)

(1− 2t)−n2 = MV (t) · (1− 2t)− 1
2

⇒ MV (t) = (1− 2t)−
n−1

2 , t <
1
2

Therefore V ∼ χ2(n− 1). Why does this hold? Note here that if

X ∼ N
(
µ,
σ2

n

)
,
X − µ
σ/
√
n
∼ N (0, 1)

as

E[et1v+t2w] = E[et1vet2w]

= E[et1v]E[et2w]

since V ⊥⊥W . �
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Corollary 4.4
The scaled difference between the arithmetic mean and the unknown µ given by

X − µ
S/
√
n
∼ t(n− 1)

follows a Student’s t distribution.

Proof Given
√
n
X − µ
S

∼ N (0, 1)

and
(n− 1)S2

σ2 ∼ χ2(n− 1)

recall that X is independent from S2, thus

X − µ
S/
√
n

=
(X − µ)/ σ√

n√
(n− 1)S2/σ2

n− 1

= N (0, 1)√
χ2(n− 1)
n− 1

∼ t(n− 1)

�

Corollary 4.5
If Xi are iid and Xi ∼ N (µ1, σ

2
1) and Yj are iid with Yj ∼ N (µ2, σ

2
2) and Xi ⊥⊥ Yj , then

S2
1/σ

2
1

S2
2/σ

2
2
∼ F(m− 1, n− 1).

Proof
S2

1/σ
2
1

S2
2/σ

2
2

=

[
(m− 1)S2

1/σ
2
1

]
/(m− 1)[

(n− 1)S2
2/σ

2
2

]
/(n− 1)

∼
χ2(m−1)
m−1

χ2(n−1)
n−1

∼ F(m− 1, n− 1).

�

This was the good side of the story, we may not always be that lucky. Under regularity
conditions, we can show

−2 log(λ(X)) d−→ χ2
dim(θ)−dim(β0)

as n → ∞. If a UMP test exists, in many cases, this will boil to this test. To show this

103



result, see Vaan der Vaart.

Consider the case with H0 : µ ∈ (a, b) where X̄n ∼ N (µ, σ2). To define the linear dimensions
appropriately for this type of problem. One can resort to simulation if the problem is hard
to compute.

Next time, we discuss Neyman-Pearson and goodness-of-fit test.

4.2 Neyman-Pearson lemma

Theorem 4.6 (Neyman-Pearson fundamental lemma)
Let (Θ0,Θ1, α) denote the class of all size α tests for testing H0 : θ ∈ Θ0 versus HA : θ ∈ Θ,
where supθ∈Θ0 Eθ (ϕ(X)) ≤ α. The simplest possible scenario, Θ0 = {θ0} versus Θ1 = {θ1}.
This comes up often in classification and clustering (in learning).

1. Any test ϕ of the form

ϕ(x) =


1 if f1(x)

f0(x) > k

γ(x) if f1(x)
f0(x) = k

0 if f1(x)
f0(x) < k

(4.27)

for some k ≥ 0 and 0 ≤ γ(x) ≤ 1 is the most powerful of its size for testing H0 : θ = θ0

versus H1 : θ = θ1.

2. For any given α ∈ [0, 1], there exists a test of form (4.27) which is MP size α.

Proof We first begin with part a. Let ϕ : X → [0, 1] be a Neyman-Pearson test. Let ϕ∗ be
any test in (Θ0,ΘA, α) where α = Eθ0 (ϕ∗(X)). Thus, Eθ0 (ϕ∗(X)) ≤ Eθ0 (ϕ(X)). 28 Recall
that ϕ(x) = 1 if f1(x)/f0(x) > k is the probability of rejection.

We have

I =
∫
x

[ϕ(x)− ϕ∗(x)][f1(x)− kf0(x)] dx

=
(∫

:
¯
f1(x)>kf0(x)

+
∫
x:f1(x)<kf0(x)

)
[ϕ(x)− ϕ∗(x)][f1(x)− kf0(x)] dx

For any x ∈ {x : f1(x) > kf0(x)}, ϕ(x) − ϕ∗(x) = 1 − ϕ(x) ≥ 0 so that the integrand I
is non-negative. For x ∈ {x : f1(x) < kf0(x)}, ϕ(x) − ϕ∗(x) = −ϕ(x) ≤ 0 so that the

28If the distributions are absolutely continuous, the set where equality holds has Lebesgue measure zero,
so we can ignore the middle term of (4.27)
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integrand is again ≥ 0. It follows that

I = Eθ1 (ϕ(X))− Eθ1 (ϕ∗(X))− k (Eθ0 (ϕ(X))− Eθ0 (ϕ∗(X))) ≥ 0

which in turns implies that Eθ1 (ϕ(X))−Eθ1 (ϕ∗(X)) ≥ kEθ0 (ϕ(X))−Eθ0 (ϕ∗(X)) ≥ 0 and
therefore ϕ(x) is more powerful as Eθ1 (ϕ(X)) ≥ Eθ1 (ϕ∗(X)), i.e. βϕ(θ1) ≥ βϕ∗(θ1) ∀

If k =∞, any test ϕ∗ of size 0 must vanish on the set {x : f0(x) > 0}. We have

Eθ1 (ϕ(X))− Eθ1 (ϕ∗(X)) =
∫
x:f0(x)=0

[1− ϕ∗(x)]f1(x) dx ≥ 0

�

Remark
We look at tests of the same size (that is, they are optimal over tests of same size) as ϕ. If
k =∞, the size of Eθ0(ϕ) = 0 so the term vanishes. Think of it and write the definition of
Eθ0 (ϕ∗(X)) =

∫
x
ϕ∗(x)f0(x) dx = 0 since ϕ∗(x) ≥ 0, f0(x) ≥ 0 almost surely under Pθ0 .

We can easily extend this result to more than two categories (finite number). See Thomas
Ferguson (1967), Mathematical Statistics: a decision theoretic approach in the exercises.

We now prove the second part of the Neyman-Pearson lemma.

Proof We confine ourselves to the case 0 < α ≤ 1. Let γ(x) = γ. The size of a test of form
(1) is

Eθ0 [ϕ(X)] = Pθ0 (f1(X) > kf0(X)) + γPθ0 (f1(X) = kf0(X))

= 1− Pθ0 (f1(X) ≤ kf0(X)) + γPθ0 (f1(X) = kf0(X))

In the computation of size, this distinction (ratio as opposed to f1(X) = kf0(X); indeed, 29

Pθ0 (X : f0(X) = 0) = 0 =
∫
x:f0(x)=0

f0(x) dx = 0

29This is true since for A = {x : f0(x) = 0}, then Pθ0 (A) =
∫
A
f0(x) dx = 0.
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We need to find k and γ such that

Pθ0 (X : f1(X) > kf0(X)) + γPθ0 (X : f1(X) = kf0(X)) = α

⇔ Pθ0

(
X : f1(X)

f0(X) > k

)
+ γPθ0 (X : f1(X) = kf0(X)) = α

⇔ Pθ0

(
X : f1(X)

f0(X) ≤ k
)
− γPθ0 (X : f1(X) = kf0(X)) = 1− α (4.28)

If there exists a kα such that

Pθ0

(
X : f1(X)

f0(X) ≤ kα
)

= 1− α

Then, we choose k = kα and γ = 0. Otherwise, there exists a kα ( there is a jump at kα)

Pθ0

(
X : f1(X)

f0(X) < kα

)
< 1− α < Pθ0

(
X : f1(X)

f0(X) ≤ kα
)

Then choose k = kα and choose γ solving (4.28) for γ, and

γ =
Pθ0

(
X : f1(X)

f0(X) ≤ k
)
− (1− α)

Pθ0

(
X : f1(X)

f0(X) = kα

) .

�

4.3 Goodness of fit tests

In the context of regression, we have the hypothesis H0 : X1, . . . , Xn ∼ N (0, 1) and
εi ∼ N (0, σ2). We may rely on the nonparametric MLE, looking at the Kolmogorov
distance given by

sup
x

∣∣∣F̂n(x)− Φ(x)
∣∣∣

where

λ = ‖F̂n − F0‖∞
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and we have H0 : Xi
iid∼ F0 completely known. We can show the so-called Kolmogorov-

Smirnov test with

√
n(F̂n(x)− F (x)) d−→ B(F )

where B(F ) is a Brownian bridge. One could use other metric here; using the L2 for
example leads to the Cramer Von-Mise test. For censored data, we need a large number of
observations.

We could adopt another approach for a sample X1, . . . , Xn ∼ F completely known by
categorizing the observations.

A1 A2 A3 A4 A5 A6 A7 AK

We then look at Oj := # of Xi’s in Aj and εj the expected number of observations in Aj ,
equal to nPH0 (Aj) and

εj = nPH0 (Aj) = n

∫
Aj

dF (x)

which is a Binomial test, which can also be extended to multinomial case. Looking at the
quantity

K∑
j=1

(Oj − εj)2

εj

d−→ χ2
K−1

as n→∞. This result is based on the Central Limit theorem and the Poisson approximation,
using independence.

The number of bins and the size of the bins was discussed by Mann and Wald (1948), in On
the choice of the number of class intervals in the application of the chi-square in AMS.

If H0 : Xi
iid∼ Fθ,θ = (θ1, . . . , θr), and the size is large (with n > r), we can approximate

the expected value by MLE. Lehmann and Chernoff in 195, in the Annals of Mathematical
Statistics, The Use of Maximum Likelihood Estimates in χ2 Tests for Goodness of Fit
remarked that the likelihood

L =
n∏
i=1

fθ(xi)

where fθ is the pdf of Fθ is not the correct likelihood. The correct likelihood is the
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multinomial likelihood, that is

L2 =
K∏
j=1

pj(θ)Oj

where pj(θ) =
∫
Aj

dFθ(x) and

k∑
j=1

(
Oj − ε̂j√

ε̂j

)2
d−→ χ2

K−r−1

as n→∞ where ε̂j = nP
θ̂

(Aj).
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accept-reject algorithm, 17
almost everywhere, 6
ancillary statistic, 35

first-order, 35

Basu theorem, 36
bootstrap, 92
Borel functions, 4
Borel-Cantelli lemma, 10

Chain rule, 8
change of variable theorem, 40
χ2 random variable, 47
complete statistic, 33
completeness, 32
continuous mapping theorem, 12
Convergence

almost surely, 9
in distribution, 8
in probability, 9
in rth moment, 9

convex, 42
Cramer lemma, see Slutsky theorem
Cramer-Wold device, 12

δ-method, 13
second order, 14

Dominated convergence theorem, 6

entropy, 29
entropy distance, 44
equicontinuity, 58
equivalent, 8
exponential family, 28, 38

canonical form, 39
complete-sufficient statistic, 38

natural parameter, 39
natural parameter space, 39

Fatou’s lemma, 6
Fisher-Neyman Factorization criterion, 26
Fouler’s principle of detailed balance, 20
Fréchet-Cramer-Rao inequality, 67
Fubini’s theorem, 7

generalized estimating equations, 57
Gibbs sampler, 22
gradient, 14

Hessian matrix, 14
hypothesis test, 96
Hypothesis tests

Decision table, 96

identifiability, 62
importance sampling, 21
inadmissible estimator, 41

Jensen’s inequality, 42

Kolmogorov-Smirnov test, 107
Kullback-Leibler information, 44

Lehmann-Scheffé, 45
Lévy-Cramer continuity theorem, 12
longitudinal data, 61
loss function, 41

M-estimator, 55
M-functional, 55
Markov Chain Monte Carlo, 19
maximum likelihood estimate, 54
Maximum likelihood estimates

Asymptotic normality, 75
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Consistency, 63, 64
Invariance property, 79
Zehna’s theorem, 80

minimal sufficient statistic, 31
Monotone convergence theorem, 6

Newton-Raphson algorithm, 82
Neyman-Pearson lemma, 104

O and o notation, 11

positive definitiveness, 62
power function, 96
probability integral transform, 16
projection, 49

Radon-Nikodym derivative, 8
random sample generation, 16
risk, 41

Score function, 76
σ-additive measure, 5
σ-field, 5
σ-finite function, 7
simple functions, 4
Skorohod’s theorem, 10
Slutsky theorem, 13
smoothness, 62
stationary process, 21
Stein’s paradox, 42
Stochastic process, 20

fields, 20
Markov property, 20
process, 20

sufficient statistic, 25
exponential family, 29
Normal (µ, 1), 25
Normal (µ, σ2), 27
Poisson, 25

Taylor expansion, 15

Tighness, 12
type 1 error, 96
type 2 error, 96

U estimable, 45
UMVUE, 45
uniformly integrable, 10
uniformly most powerful test, 97

110



License

Creative Commons Attribution-Non Commercial-ShareAlike 3.0 Unported

You are free:

to Share - to copy, distribute and transmit the work
to Remix - to adapt the work

Under the following conditions:

Attribution - You must attribute the work in the manner specified by the author or licensor (but not in any
way that suggests that they endorse you or your use of the work).

Noncommercial - You may not use this work for commercial purposes.

Share Alike - If you alter, transform, or build upon this work, you may distribute the resulting work only
under the same or similar license to this one.

With the understanding that:

Waiver - Any of the above conditions can be waived if you get permission from the copyright holder.

Public Domain - Where the work or any of its elements is in the public domain under applicable law, that

status is in no way affected by the license.

Other Rights - In no way are any of the following rights affected by the license:

Your fair dealing or fair use rights, or other applicable copyright exceptions and limitations;

The author’s moral rights;

Rights other persons may have either in the work itself or in how the work is used, such as publicity or

privacy rights.

CC© Course notes for MATH 557: Mathematical Statistics II
BY:© Léo Raymond-Belzile
Full text of the Legal code of the license is available at the following URL.

111

http://creativecommons.org/licenses/by-nc-sa/3.0/

	Preliminaries
	Integration
	Interchanging integral and differential operators
	Fubini's theorem
	Radon-Nikodym derivative
	Asymptotic theory and modes of convergence
	Weak convergence
	Convergence of transformations
	Generation of a random sample
	Markov-Chain Monte Carlo (MCMC)

	Data reduction principle
	Sufficiency
	Fisher-Neyman factorization theorem
	Completeness
	Ancillarity and Basu's theorem
	Complete-sufficient statistic in an exponential family
	MLE, M-estimators and Generalized Estimating Equations
	Maximum likelihood
	Consistency of the MLE
	Cramer-Fréchet-Rao lower bound
	Invariance property of MLE

	Computational statistics
	Newton-Raphson algorithm
	Expectation-Maximization (EM) algorithm
	Presentation on non-parametric MLE
	Jackknife and bootstrap
	Bootstrap

	Hypothesis test
	Generalized Likelihood Ratio tests
	Neyman-Pearson lemma
	Goodness of fit tests


