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Chapter 1

Introduction: motivating examples
We start with a combinatorial probability problem, which is due to Polyá, in a paper
in 1923.

1.1 Random walks on lattices

Suppose people are walking on an infinite grid Z2 where the origin is S0 = 0 and
Sn+1 is a neighbor of Sn; where each neighbor is equally likely. The question is
whether (Sn, n ≥ 1) is transient or recurrent.
Definition 1.1 (Transient, recurrent)

Transient: P (Sn = 0 for some n ≥ 1) < 1

Recurrent: P (Sn = 0for some n ≥ 1) = 1.

It turns out that
Theorem 1.2 (Polyá)
The random walk (Sn, n ≥ 1) is recurrent in Zd for d ≤ 2 and transient for d ≥ 3.
Remark
The lattice here is an infinite system. The dichotomy between the two behaviors is
for infinite space. To go back to Polyá question about the two-dimensional random
walk for two individuals, we can consider the distance between two individuals as
being a vector, and reduce this question to that of the single random walk on the
lattice.

In dimension 1 (d = 1), we have S0 = 0 and

Sn+1 =

Sn 1 with prob. 1
2

Sn − 1 with prob. 1
2

we could extend this to having arbitrary probabilities p, 1 − p. In this case, one
would not expect the process to be recurrent, since we tend to favor one direction,
say left. Only in the symmetric case is the event recurrent.
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Proposition 1.3
A random walk (RW) is recurrent in d = 1.

Proof Let zn = P (Sn = 0) and fn = P (Si 6= 0, i ∈ {1, 2, . . . , n− 1}, Sn = 0). Then,
let

P (s) =
∞∑
i=0

zns
n F (s) =

∞∑
n=0

fns
n

The radius of convergence is definitively one since the series are dominated by a
geometric series. We can also view them as a power series, and hope to extract
information about the coefficients for the Taylor series.
Claim

P (s) = 1 + P (s)F (s)

Proof Observe

zn =
n∑
k=1

fkzn−k;

that is the first return at time k, then you need to displacement zero in n = k steps
remaining. This is a conditional probability, that is

P (Sn = 0 | Sk = 0, Si 6= 0, Si 6= 0 for i ∈ {1, 2, . . . , k − 1})

that can be obtained using Bayes theorem, to write the product of the independent
events. �

Exercise 1.1
Write a 356 proof of this observation.

Then multiply both sides of the equality by sn as to get

zns
n =

n∑
k=1

(zn−ksn−k)(fksk)
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Figure 1: Random walk in space and time
if you hit zero, either the axis was traversed before or it is the first occurence

and sum from n = 0 to infinity. For n = 0, the left hand side is zero.

P (s) = 1 +
∞∑
n=1

n∑
k=1

(zn−ksn−k)(fksk)

= 1 + P (s)F (s)

Observe that the relationship above does not depend on p, but the coefficients of zn
will.
Observation
We can write

zn =

0 if n is odd( n
n/2
)
p
n
2 (1− p)

n
2 if n is even
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so that

P (s) = 1√
1− 4p(1− p)s2

and knowledge of P (s) allows us to obtain using the linear recurrence an expression
for F (s)

F (s) = 1−
√

1− 4p(1− p)s2.

In particular, if p = 1
2 , we get

P (s) = 1√
1− s2

F (s) = 1−
√

1− s2

For the remainder of the proof, the probability

P (Sn = 0 for some n ≥ 1) = P
( ∞⋃
n=1
{Sn = 0, Si 6= 0 ∀ i ∈ {1, , . . . , , n− 1}}

)

since there must be a first return at time n. Since the events are disjoint, this is
equal to

∞∑
n=1

P (Sn = 0, Si 6= 0 ∀ i ∈ {1, , . . . , , n− 1}) =
∞∑
n=1

fn =
∞∑
n=1

fn1n = F (1) = 1

What we have not shown in this proof is the countable additivity of the Si 6= 0, and
the interchange of the sum and the probability (which is really of limit). We can do
this more generally to integrate a function by integrating a sequence of functions as
lower bound. This is due to the monotone convergence theorem.

The second thing that needs justification is the rigorous sense of sn, which is some-
how an infinite sequence of numbers. The elementary events are equivalent to infinite
sequences taking values in {±1}N. Knowledge of the sequence fully determines the
behavior of the random walk.
Fact 1.4
It is impossible to define a probability “measure” P (in a non-trivial fashion) so
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that every subset of {±1}N has a well-defined probability and the basic axioms are
satisfied . See Appendix 0 of the book. This is know as the Banach-Tarski paradox.
There is a nice paper on this entitled A non-measurable set from coin tosses.

If p 6= 1
2 , the random walk will drift. Recurrent means that the expected number

of returns to zero is infinite, while for transient (fact) the number of return will be
finite. In two-dimension, we can get a similar expression. Using Stirling formula to
approximate the factorial, we would get(

2m
m

)(1
2

)2m
→ c√

m

while in two dimension, c′m and in d, cd
md/2 and if d = 1, 2, the series diverge, but not

otherwise.

This also generalize this to an electrical network on a graph, and whether the re-
sistance is finite or infinite is equivalent to transient or recurrent behavior of the
random walk. �

1.2 Galton-Watson trees

Consider a (family) tree, with children and each subtree has descendants or the line
goes extinct. In general, one could go down in the line, and line of descent of family
names; this is a general model for extinction or survival of the specie. For atoms
bumping into each other in a nuclear reactor, this is a good model (chain reaction).

The model then is as follows: each individual has a random number of children B,
independently of all others. The questions is survival or extinction of the process.
If E (B) < 1, then it is obvious that P (Extinction), say for E (B) = 1

2 , each tree
has an average of 2 individuals per line, and so will go extinct. If E (B) > 1, then
P (Extinction) < 1. If E (B) = 1, then extinction happens with probability 1 again,
unless B isn’t actually random, that is if each line has one child.

If we go back to the symmetric random walk, then with P (B = 2) = 1
2 and P (B = 0) =

1
2 . This turns back to the case of the random walk, either go up by one or not.

The number of children, termed the branch factor, is a random variable B taking
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nonnegative integers as values.

Write Zn for the number of individuals in generation n. What is the probability
that P (Zn = 0 for some n), that is extinction.
Theorem 1.5 (Fundamental theorem of Branching Processes)
The probability of extinction is less than 1 if and only if P (B = 1) = 1 or E (B) =∑
k≥0 kP (B = k) > 1.

Lemma 1.6
E (Zn) = (E (B))n

Proof Using conditional expectations and the law of total probability, write

E (Zn) =
∑
k≥0

P (B1 = k) · E (Zn | B1 = k)

=
∑
k≥0

P (B1 = k) · k · E (Zn−1)

= E (Zn−1) E (B)

using the fact that E (Zn−1) does not depend on k, we can take it outside the sum
and use the statement of the theorem. The proof follows by induction. �

Corollary 1.7
If E (B) < 1, then E (total pop. size) =

∑
n≥0 (E (B))n = 1

1−E(B) <∞. This tells us
that P (survival) = P (total pop. size =∞) = 0.

Define the following:
Definition 1.8
Let F (z) = E

(
Zb
)

=
∑∞
k=0 P (B = k) zk

Proposition 1.9
If P (B = 1) < 1 then

P (extinction) ≡ P

∑
n≥0

Zn <∞

 ≡ P (∃n : Zn = 0)

= P (∃n0 : ∀ n ≥ n0, Zn = 0) = min
x≥0
{F (x) = x}
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If one was to take the derivative inside the sum, then we can evaluate F ′(1); indeed

F ′(z) =
∞∑
k=1

P (B = k) kzk−1

so that F ′(1) = E (B). It will thus be below the curve and reach above; by inter-
mediate value theorem, there must be a point z < 1 where the two curves intersect.

Lemma 1.10
If E (B) > 1, then minx≥0 {F (x) = x} < 1. If E (B) = 1, but P (B = 1) < 1, then
P (extinction) = 1 as minx≥0 {F (x) = x} = 1.

Proof To show the proposition, want to show that this is a solution, and then all
other are bigger. The second part is left as a exercise. Branching processes are the
analog of functional composition.

Let F1 := F and Fn+1 = F ◦ Fn
Claim
P (Zn = 0) = Fn(0)

Proof We have already established the case n = 1. We proceed by induction; using
the law of total probability

P (Zn = 0) =
∑
k≥0

P (B1 = k) P (Zn = 0 | B1 = k)

=
∑
k≥0

P (B1 = k) (P (Zn−1 = 0))k (independence)

= F (P (Zn−1 = 0)) (definition of F (z))

= F (Fn−1(0)) (induction hypothesis)

since each subtree extinction are independent, the probability of all subtree dying
out in stage n (the event is an intersection) is the product of the probabilities of
each subtree.

For the remainder of the proof, note that the event are increasing, as if if Zk = 0,
then Zk+i = 0 for i ∈ N. We can use monotonicity to exchange the probability and
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the limits.

p ≡ P

⋃
n≥0
{Zn = 0}

 = lim
n→∞

P (Zn = 0)

= lim
n→∞

Fn(0) = lim
n→∞

F (Fn(0)) = F
(

lim
n→∞

Fn(0)
)

= F (p)

since lim xn = lim xn+1 if a sequence converge, we use the fact that F is continuous
to again interchange limits. We get thus p = F (p), in other words the extinction
probability is the function of this function . �

�

Some issues that were raised by our calculations above

1. We used an “infinite number of independent copies of B”.
2. If instead of number Zn we cared about weight Wn, the proof breaks 1

3. Limits, convergence, countable closure

1The conditional expectation on the set of weights, depends on the fact that B took integer
values, countable – if the random variable was continuous, we need a new notions of conditional
expectation. We need P (extinction |W1) = P (extinction)Z1 , conditioning on a random variable
that is still random.
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Chapter 2

Measures and σ-algebras
2.1 σ-algebras

We recall some facts about sets. Recall that if Ω is a set, then A ⊂ 2Ω (the power
set of Ω) is a σ-algebra if

1. Ω ∈ A
2. If E ∈ A,⇒ E{ ∈ A
3. If Ei ∈ A, i ≥ 1⇒

⋃
i≥1Ei ∈ A

Exercise 2.1
Can replace the third statement by Ei ∈ A ∀ i ≥ 1, then E1 ⊂ E2 ⊂ · · · , then
limi→∞Ei =

⋃
i≥1Ei := E ∈ A (that is Ei ↑ E ∈ A). Hint: if {Ei, i ≥ 1} are sets,

then with Fi =
⋃i
j=1Ej , then Fi ↑ and limi→∞ Fi =

⋃
i≥1Ei.

Definition 2.1 (Measurable space)
If F is a σ-algebra over Ω, then (Ω,F) is called a measurable space.

Example 2.1
Rolling ten dice: Ω = {1, 2, 3, 4, 5, 6}10, with F = 2Ω.2

Definition 2.2 (σ-algebra generated by a collection)
If S ⊂ 2Ω then the σ-algebra generated by S is denoted σ(S) and defined as

σ(S) :=
⋂
F⊃S:

F is a σ-algebra

F

that is the smallest σ-algebra that contains S. This intersection is non-empty since
2Ω always satisfies the requirements.
Observation
If F is a σ-algebra and F ⊃ S, then F ⊃ σ(S).

Example 2.2
Consider Ω = N, S = {{1}, {2}, {3}, . . .}, then σ(S) = 2N. Indeed, for any set
B ⊂ N, write B = {bi, i ≥ i} and take Ei = {bi} and

⋃
i≥1Ei = B. So if F is a

σ-algebra over N and F contains all singleton sets, then F = 2N.
2Since the set has finite cardinality, there is no distinction between σ-algebras and algebras.
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Example 2.3
Take Ω = R and S = {singleton sets} ; we saw last class that the σ-algebra arising
from sets which are countable or have countable intersections included. In fact,

σ(S) =
{
E ∈ R, E countable or E{ countable

}
.

Example 2.4
Let Ω := M be a metric space and consider S, the open sets inM (a concrete example
of such is when M = Rd, where in this setting opens sets are countable unions of
open balls). σ(S) is denoted B(M), the Borel sets of the metric space M.

Remark
In R, we specify the distribution of a random variable X by its CDF

F (z) = P (X ≤ z) = P (X ∈ (−∞, z]) .

In fact, the σ-algebra generated by closed rays (Borel set of the form (−∞, z]) is
σ({(−∞, z], z ∈ R}) = B(R).3

If we take

(−∞, b) =
⋃
b≥1

(
−∞, b− 1

n

]
(a,∞) = (−∞, a]{

since we are closed under unions and complements. Since we also are closed under
intersections (as A ∩B = (A{ ∪B{){), and so the intervals (a, b) are in B(R).

The earlier example of σ-algebra was not rich enough for our purpose.

2.2 Measures

We can get to probability functions, now that we have the sets to which we want
to assign probabilities, restricting our attention to sets in the σ-algebra. We will
require from them to satisfy the Kolmogorov’s axioms.

3 In French, they are termed borélien.
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Definition 2.3 (Measures)
Given a measurable space (Ω,F), a probability measure on (Ω,F) is a function
µ : F → [0, 1] with

1. µ(Ω) = 1, µ(∅) = 0
2. µ is countably additive. If (Ei, i ≥ 1) are disjoint elements of F , then

µ

⋃
i≥1

Ei

 =
∑
i≥1

µ(Ei)

Remark
µ is a measure if the same holds but with µ : F → [0,∞] . µ is a σ-finite measure
if ∃Ωi ∈ F , i ≥ 1 with µ(Ωi) <∞ ∀ i and such that Ωi ↑ Ω.

In this case, we call (Ω,F , µ) a probability space (or measure space, finite measure
space, σ-finite measure space).

Example 2.5
Ω = S,F = 2S and ζ is the counting measure, where

ζ(E) =

|E| if |E| <∞

∞ otherwise .

It is σ-finite if Ω is countable. For instance, in this instance R is not σ-finite.

Example 2.6
Let Ω = R,F = B(R). For E ∈ F , µ(E) =

∫
E

1√
2πe
−x

2
2 dx. Then µ(R) = 1, since

the Gaussian density integrates to 1. It is not clear from this that µ is countably
additive. If (Ei, i ≥ 1) are disjoint Borel sets then∫

∪i≥1Ei

1√
2π
e−

x2
2 dx =

∑
i≥1

∫
Ei

1√
2π
e−

x2
2 dx

which is a form of linearity; we need to be clear about which sets we have here.
There is a consistency issue here which needs to be resolved.

Example 2.7 (Lebesgue measure)
The last example was giving the measure for any set Ei. Now we again take Ω =
R,F = B(R) and µ([a, b]) = b − a. This is clearly not finite, nor is it a probability
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measure. It is σ-finite since we can take intervals [−n, n] of measure µ([−n, n]) = 2n
and as n→∞, converges to R. This is the one-dimensional Lebesgue measure.

2.3 Extension of measures

The question is: how can we show Lebesgue measure exists and is unique? To
answer this question, we will do a digression to discuss multiplicative functions.
These are used in the proof of Carathéodory extension theorem, which we will skip.

A function φ : N→ R is multiplicative if φ(mn) = φ(m)φ(n) whenever gcd(m,n) =
1.
Theorem 2.4 (Extension theorem for multiplicative functions)
Let P = {prime powers}, let φ0 : P → R with φ0(1) = 1. Then, there exists a
unique multiplicative function φ : N→ R with φ|P = φ0.

We have two main results for measures. The first one is the Carathéodory extension
theorem. Before this, a few necessary definitions:
Definition 2.5 (Pre-measure)
If F0 is an algebra over Ω, then µ0 is a pre-measure on F0 if

(i) µ0(∅) = 0
(ii) if A,B ∈ F0 with A ∩B = ∅, then µ0 = (A ∪B) = µ0(A) + µ0(B).
(iii) If Ei ∈ F0, i ≥ 1 are disjoint and

⋃
i≥1Ei ∈ F0, then µ0

(⋃
i≥1Ei

)
=
∑
i≥1 µ0(Ei).

Why do we need the last criterion? A problem that arises is that we can break a set
such as (0, 1) into

(
0, 1

2

)
∪
(

1
2 ,

3
4

)
∪
(

3
4 ,

7
8

)
∪ · · · . In such case, we are good, but one

may not be lucky and there could be two ways to express the measure of a set, as a
countable collection or a single element. In such case, we could not extend uniquely.
Exercise 2.2
Define a function that is additive, but not countably additive. Hint: consider N and
take the measure to be µ(E) = 0 if E is finite and µ(E) =∞ if the set is infinite.

2.4 Lebesgue measure

A crucial measure is the Lebesgue measure on R, often denoted λ, where (R,B(R)) =
(Ω,F); we want µ0(a, b) = b−a. We need to check countable, but since (0, 1)∪(2, 3)
is not an interval, we run into some problems.

16



4

F0 = {finite unions (a1, b1] ∪ · · · ∪ (ar, br],−∞ ≤ a1 ≤ b1 ≤ · · · ≤ ar ≤ br ≤ ∞}

and we define the pre-measure µ0 to be equal to
∑r
i=1(bi − ai) for a set above.

Exercise 2.3
Prove (ii) from the definition of pre-measures, and that the definition of µ0 doesn’t
depend on the representation of its argument.

2.5 Carathéodory Extension Theorem

Theorem 2.6 (Carathéodory Extension Theorem)
Let (Ω,F) be a measurable space and F0 ⊂ F an algebra with σ(F0) = F . If
µ0 : F0 → [0,∞] is a pre-measure on F0 then ∃ a measure µ : F → [0,∞] on F that
extends µ0 in the sense that µ|F0

≡ µ0.

Furthermore, if µ0 is σ-finite, then µ is the unique (measure) extension of µ0 to F .

Let us apply Carathéodory Extension Theorem to the Lebesgue measure,
Proposition 2.7
µ0 is a pre-measure on (R,B(R))

Proof µ0 is well-defined. It is finitely additive; indeed, for two sets of the form
A = (a1, b1]∪ · · ·∪ (ar, br] and B = (c1, d1]∪ · · ·∪ (cs, ds] disjoint, their union will be

C = (f1, g1] ∪ (f2, g2] ∪ · · · (fr+s, gr+s]

since we can use the same intervals; each interval appears exactly once in C, so

µ0(A ∪B) = µ0(C)

=
r+s∑
j=1

(gi − fi)

=
r∑
i=1

(bi − ai) +
s∑
j=1

(di − ci)

= µ0(A) + µ0(B)
4the above notation fiddles to say that it is unbounded to the right or the left, but ai, bi ∈ R ∀ i.
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If A ∈ F0 and A =
⋃
n≥1An for An disjoint and An ∈ F0 then µ0(A) =

∑
n≥0 µ0(An).

If A is as previously, then writing An,i = An ∩ (ai, bi], we see it suffices to consider
the case that A is an interval. Replacing each An by its component intervals shows
we may assume each Ai is an interval.
Exercise 2.4
Show that the above is true when A is unbounded (if (−∞, x] =

⋃∞
n=1(an, bn] then∑∞

n=1(bi − ai) =∞).

Now assume A is bounded, say A = (x, y]. We replace A = (x, y] by (0, y − x] and
An = (xn, yn] by (xn − x, yn − x]; thus we can assume that A = (0, y∗] for some y∗.
Since the equality

µ0(A) =
∑
n≥0

µ0(An)

is preserved by dividing by y∗, to replace by (0, 1] and An = (xn, yn] by ((xn −
x)/y∗, (yn − x)/y∗]. It remains to prove that if An, n ≥ 1 are disjoint intervals and⋃
n≥1An = (0, 1] then

∑∞
n=1 µ0(An) = 1. This sum is a limit of a finite sum. We

will replace additivity by monotonicity and take limits of sets.

Let Bn =
⋃n
i=1Ai. Then Bn ↑ (0, 1]; so we want to show that µ0(Bn) ↑ 1. Let

Cn = (0, 1] \ Bn. Then Cn ↓ ∅ and we must show that µ0(Cn) ↓ 0. This suffices
since 1 = µ0((0, 1]) = µ0(Bn) + µ0(Cn) by finite additivity, since each set is in F0.
So µ0(Bn)→ 1⇔ µ0(Cn) ↓ 0.

Note that if Cn was unbounded and of the form (−∞,−n], then
⋂
n≥1Cn = ∅ (the

limit would be the empty set) while any Cn would be such that µ0(Cn) =∞.

We prove the contrapositive: if Cn ↓ and µ0(Cn) > 2ε > 0 ∀ n, then

lim
n→∞

Cn =
⋂
n≥1

Cn 6= ∅.

points the

Th idea is to find a sequence (xn, n ≥ 1) for xn ∈ Cn such that xn → x ∈
⋂
n≥1Cn.

For each n, let Dn ⊂ Cn \ (0, ε] ≡ C ′n with Dn ∈ F0, with Dn ⊂ C ′n and µ0(C ′n \
Dn) ≤ ε

2n+1 .
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Now Dn consisted of open sets, its closure was the union of closed sets, but the
intersection is still compact. Finally, let Kn =

⋂
i≤nDi ⊆

⋂
i≤nC

′
i ⊆ (ε, 1].

Note

µ0

⋂
i≤n

Di

 ≥ µ0(C ′n)− µ0

⋃
i≤n

(
C ′i \Di

)
≥ µ0(C ′n)−

∑
i≤n

µ0(C ′i \Di)

≥ µ0(C ′n)−
∑
i≤n

ε

2n+1

≥ µ0(C ′n)− ε

2
≥ ε

2 .

Then Kn 6= 0 since Kn ⊇
⋂
i≤nDi 6= ∅.

Now pick xn ∈ Kn for each n ∈ N. xn is a bounded sequence on (0, 1]; we let
(ni, i ≥ 1) be such that xni converges as ni →∞. Then, for all i, for all j ≥ i, then
xnj ∈ Knj ⊆ Kni so (xnj , j ≥ i) ⊆ Kni . Since the sequence is in a compact set,
the limit belongs to the set. Let x := limj→∞ xnj ∈ Kni since Kni is compact so
x ∈

⋂
i≥nKni =

⋂
n≥1Kn ⊆

⋂
n≥1Dn ⊆

⋂
i≥1Cn so

⋂
n≥1Cn 6= ∅.

Unraveling the whole procedure, since we have a sequence decreasing to the empty
set, its measure must be zero by our contrapositive. Then, shifting and scaling and
taking some finite unions allows us to deal with general sets. �

Proposition 2.8 (π-system lemma)
If (Ω,F) is a measurable space, P ∈ F is a π-system with σ(P ) = F and µ1, µ2 are
σ-finite measures on (Ω,F) with µ1|P ≡ µ2|P , then µ1 ≡ µ2.

Before pursuing with the proof, we state the necessary definition.

Definition 2.9 (π-system)
P ⊂ 2Ω is a π-system if Ω ∈ P and E,F ∈ P ⇒ E ∩ F ∈ P
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Proof We provide only a sketch. Establish closure properties of the set where µ1

and µ2 agree. If one can show that {E ∈ F : µ1(E) = µ2 = E} is a σ-algebra, then
we are done since the two measures agree on F , since the set is contained in F and
it is smallest. �

Example 2.8
The set of intervals {(−∞, x], x ∈ R} ∪ {R} is a π-system generating B(R).

Exercise 2.5
On the first assignment, you are asked to construct a probability measure on the
space Ω = {0, 1}N where F = σ(cylinder); get an infinite square prism; in R3, you
can get constrained shapes like boxes, but in {0, 1}N, there are many unconstrained
parameter. This is equivalent to F = σ({{ω : ωi = 1}, i ∈ N}. Then, any ω ∈ Ω
where ω = (ωk, k ≥ 1).

Consider (R,B(R), λ) where λ denotes the Lebesgue measure. Let C be the Cantor
set, which can be viewed as

⋂
Ci where Ci is every step of the construction of

the Cantor set. Now λ(C1) = 1, λ(C2) = 2
3 , λ(Ci) =

(
2
3

)i−1
. Thus, λ(C) =

limi→∞ λ(Ci) = 0. It can also be shown that C is uncountable, yet has measure zero.

Now let D be any subset of C. What is λ(D)? If A,B ∈ B(R) and A ⊂ B, then
λ(B) = λ(A) + λ(B \ A) ≥ λ(A). But maybe D /∈ B(R): to fix this if (Ω,F , µ) is a
measure space, let N = {D ⊂ Ω : ∃E ∈ F , µ(E) = 0, D ⊂ E}. Extend µ to F ∪ N

by setting µ(D) = 0 ∀ D ∈ N.5

Exercise 2.6
Show that σ(F ∪ N) = {E ∪D;E ∈ F , D ∈ N}. For such E ∪D, define a measure
on σ(F ∪N) := F∗, termed the completion of F .

We will now restrict our attention to probability spaces and discuss the notion of
events. The latter is an element of the σ-algebra.

There are many examples, for example coin tosses with Ω = {±1}N, F = σ(cylinder)
and returning to the first lecture, the event E = {random walk returns to 0 infinitely

5N stands for null sets
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often}={random walk is recurrent}. Then {Sn = 0} is the same as
∑n
i=1 ωi = 0,

which means that

{Sn = 0} =
{
#{1 ≤ j ≤ n : ωj = 1} = #{1 ≤ j ≤ n : ωj = −1}

}
∈ F

and even in F0. 6

We can thus write the event

{Sn = 0 i.o.} = { ∀ n,∃m ≥ n : Sm = 0} =
⋂
n≥1

⋃
m≥n
{Sn = 0}

and because F is a σ-algebra and is closed under complements and unions. Thus,
what we discussed a while ago is an event, and is measurable. Note that we did not
need to specify a measure beforehand to determine this property.

This event is called lim supn→∞{Sn = 0}.

Definition 2.10 (Limit superior)
If En, n ∈ N are elements of F , then lim supn∈NEn is defined to be

⋂
n≥1

⋃
m≥nEm

and lim inf :=
⋃
n≥1

⋂
m≥nEm (for all, but finitely many).

Exercise 2.7
If (En, n ≥ 1) and (E′n, n ≥ 1) agree on all but finitely many n, then lim supn→∞En =
lim supn→∞E′n and lim infn→∞En = lim infn→∞E′n.

Note
lim infn→∞En ⊆ lim supn→∞En and lim supn→∞E{n ⊆ lim infn→∞E{n.

Example 2.9
With (Ω,F) = ({±1}N,F) and P 1

2
, the strong law of large numbers states that

P 1
2

(
Sn
n → 0

)
= 1. The questions is to whether

{
ω : Sn(ω)

n → 0
}
∈ F . The answer is

yes: for any ε > 0,

let Aε = {Sn > εn i.o.}{ ∈ F and take Bε = {Sn < −εn i.o.}{ ∈ F . The event that{
Sn
n → 0

}
=
⋂
k≥1A 1

k
∩B 1

k
.

6By doing so, we have defined a mapping Sn : Ω→ R.
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2.6 Probability bounds: reverse Fatou and first Borel-Cantelli lemma

Let (Ω,F ,P) be a given probability space. Then

Proposition 2.11 (Reverse Fatou)

P
(

lim sup
n→∞

En

)
≥ lim sup

n→∞
P (En)

Proof Write
⋃
m≥nEm := Gn so that Gn ↓ lim supn→∞En. Then

P
(

lim sup
n→∞

En

)
= P

⋂
n≥1

Gn


= lim

n→∞
P (Gn)

≥ lim
n→∞

sup
m≥n

P (Em)

= lim sup
n→∞

P (En)

�

Lemma 2.12 (Borel-Cantelli 1)
If
∑∞
n=1 P (En) <∞, then P (En i.o.) = 0

Proof We have

P (En i.o.) = lim
n→∞

P (Gn) ≤ lim
n→∞

∑
m≥n

P (Em)

by countable additivity and using facts about convergent sequences (exercise), if the
sum

∑∞
n=1 P (En) <∞, then this in turns imply that

∑∞
m=n P (Em)→ 0 as n→∞.

�

Note that the converse is false in general.
Example 2.10
Take (Ω,F ,P) = ([0, 1],B([0, 1]), λ) and En =

[
0, 1

n

]
. Then

∑∞
n=1 P (En) =

∑∞
n=1

1
n =

∞ and P (En i.o.) = P ({0}) = 0.
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In the previous example, we had Sn((ωi, i ≥ 1)) =
∑n
i=1 ωi with P = P 1

2
. What

if we want to model Zn, n ≥ 1 independent N (0, 1) random variables, with now
Sn :=

∑n
i=1 Zi. Insofar, what we have built are measures ([0, 1],B([0, 1]), λ) and

in the assignment, ({0, 1}N, σ(cyl.),P) the product measure on the given product
space. Neither of these probability space look obviously useful for Gaussian random
variables.

Here is nevertheless an idea to model Z ∼ N (0, 1): first decide whether Z ≥ 0
or Z < 0. Make then

[
0, 1

2

]
corresponds to Z < 0 and

[
1
2 , 1
]
if Z ≥ 0. We

can further break the first interval into
[
0, 1

4

]
with the the 25% quantile of Z, i.e.

t : P (N (0, 1) ≤ t) = 1
4 , and similarly for

[
1
4 ,

1
2

]
with Z ∈ [t, 0],

[
1
2 ,

3
4

]
→ Z ∈ [0,−t]

and finally
[

3
4 , 1
]
→ Z ≥ t.

The above construction is tedious, but could work more generally if we look at
quantiles again, with minor twitches for variables that are not absolutely continuous;
we will thus look for a more general procedure so as to not have to deal with these
details. The philosophy is to assume that (Ω,F ,P) is “rich enough” to model all
needed random variables. One justification is as follows: let Si = {pki : k ≥ 1}, pi is
the ith prime. Then for i 6= j, Si ∩ Sj = ∅, and

⋃
i≥1 Si ⊂ N, so we can view {0, 1}N

as ∏
i≥1
{0, 1}Si

× {0, 1}N\∪i≥1Si

and we can use the countable copies of the original space with same cardinality, and
then we can construct with this any countable collection of random variables.
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Chapter 3

Random variables
The random variable Sn : Ω → R is a mapping, which we define now. If we say
that a random variable is positive, we refer to the sets of ωi such that their image
is greater than zero. We obviously require the sets to be in our σ-algebra and Sn to
be measurable.
Definition 3.1 (Random variable)
A real random variable is a function X : Ω → R where (Ω,F ,P) is a probability
space, and X is a measurable map.

3.1 Measurable maps

Definition 3.2 (Measurable map)
If (S,F) and (T,G) are measurable spaces, a F/G measurable map from S to T
is a function X : S → T such that

∀ G ∈ G, X−1(G) := {s ∈ S : X(s) ∈ G} ∈ F

Remark
The measurability depends on the σ-field. For example, if G = {∅,Ω}, then every
map is measurable. If G = 2T , then for X to be measurable, we need that X−1(A) ∈
F for all A ∈ T . 7

For (real) random variables, the σ-algebra on R is B(R) unless otherwise specified.8

Definition 3.3
An Rd-valued random variable is a measurable map X : Ω→ Rd,F → B(Rd).

Generally, if (M, d) is a metric space, a random element ofM is a map F/B(M, d)
real valued measurable map X : Ω→M where (Ω,F ,P) is a probability space.

7An analogy with observables and experience is to consider what measurements we want to make
with a given sets of tools. The more precise the measurement (e.g. the position of a particle in time
with momentum in some interval as opposed to the simple observation about whether a particle is
in a box or not), the lower the changes that the mapping be measurable: the “experiment” decides
what can be measured).

8We want to pick the smallest σ-algebra, so it makes sense to consider the Borel sets rather than
the Lebesgue sets, since the latter are more complicated and give rise to a larger σ-algebra.
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Theorem 3.4
If (Ω,F), (T,G) are measurable spaces and X : Ω → T and ∃A ⊂ G such that
σ(A) = G such that X−1(E) ∈ F for all E ∈ A, then X is F/G- measurable.

Example 3.1
◦ If (T,G) = (R,B(R)) and A = {(−∞, x], x ∈ R}.
◦ The same construction extends to (T,G) = (Rd,B(Rd)) with

A =
{

d∏
i=1

(−∞, xi], (x1, . . . , xd) ∈ Rd
}

◦ If (T,G) = (M,B(M, d)) with A = {open sets in M}.

Corollary 3.5
If f : Rn → Rm is continuous, then f is measurable.

Definition 3.6
If X : Ω→ T where (T,G) is a measurable space, then the σ-algebra generated by
X is

σ(X) :=
⋂

{F :X is
F/G meas.}

F =
{
X−1(G) : G ∈ G

}

Note
If A,B in the sets G, then A = X−1(G) and B = X−1(H) so A ∪B = X−1(G ∪H)
and if G,H ∈ G, then G ∪ J ∈ G so A ∪B are in here.

Suppose Z is a standard normal random variable. Is Z2 a random variable? What
about Z−1? What about the sums? We next look at compositions.
Proposition 3.7 (Composition of random variables)
If (R,F), (S,G), (T,H) are measurable spaces and X : R → S, Y : S → T measur-
able, then Y ◦X is measurable.

Proof If E ∈ H, then Y −1(E) = F ∈ G so (Y ◦ X)−1(E) = X−1(Y −1(E)) =
X−1(F ) ∈ F .

�
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Corollary 3.8
If X : Ω→ Rn is an Rn-valued random variable and f : Rn → Rm is continuous,

then f(X) is an Rm valued random variable.

Corollary 3.9
If X is a random variable and f : R → R is increasing, then f(X) is a random
variable.

Proof

It suffices to show that increasing functions are measurable. If f is increasing, then
f−1((−∞, x]) is also an interval so measurable. �

Theorem 3.10
If X1, . . . , Xn : Ω → R are random variables and f : Rn → R is measurable, then
f(X1, . . . , Xn) : Ω→ R is a random variable.

Proof We need to show that the map (X1, . . . Xn) : Ω→ Rn, ω 7→ (X1(ω), . . . , Xn(ω))
is measurable. It suffices to show that the sets formed by the rays of the form

{ω ∈ Ω : Xi(ω) ≤ xi for 1 ≤ i ≤ n}

are measurable ∀ (x1, . . . , xn) ∈ Rn . This is just
⋂n
i=1X

−1
i ((−∞, xi]) ∈ F since

we take finite intersection of elements X−1
i ((−∞, xi]) ∈ F since Xi is a random

variable. �

We now tackle the issue of limits.
Theorem 3.11
If (Xn, n ∈ N) random variables Ω → R then infn≥1Xn, supn≥1Xn, lim infn≥1Xn

and lim supn≥1Xn are all random variables.

Proof inf and sup are increasing maps, so measurable (infinite sequence here), but

{inf Xn < a} =
⋃
n∈N
{Xn < a}
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is measurable since it is a countable union. Next, by the definitions of lim inf and
lim sup, we have

lim sup
n→∞

Xn = inf
n≥1

sup
m≥n

Xm

is a random variable using the closure properties. Analogously,

lim inf
n→∞

Xn = sup
n≥1

inf
m≥n

Xm

is also a random variable. �

3.2 Limits

We have seen lim supXn, lim inf Xn were random variables if {Xn} were sequences
of random variables. For the statement about the
Theorem 3.12 (Strong law of large numbers)
If (Xn, n ≥ 1) is a sequence of mutually independent identically distributed random
variables with E (|X1|) <∞, then almost surely, 9

lim
n→∞

(∑n
i=1Xi

n

)
= E (X1)

where almost surely means

P
(

lim
n→∞

(∑n
i=1Xi

n

)
= E (X1)

)
= P

({
ω : lim

n→∞

(∑n
i=1Xi(ω)
n

)
= E (Xi)

})
= 1

Proposition 3.13 (Measurability of limits)
If S̄n =

∑n
i=1Xi/n, since lim supn→∞ S̄n, lim infn→∞ S̄n are random variables, the

event

{ lim
n→∞

S̄n exist} = {lim inf
n→∞

S̄n =∞} ∪ {lim sup
n→∞

S̄n = −∞}∪({
lim sup
n→∞

S̄n − lim inf
n→∞

S̄n = 0
}
∩
{
either lim sup

n→∞
S̄n <∞, or lim inf

n→∞
S̄n > −∞

})
9That is, we have convergence pointwise to a constant function.
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Note that the set

C =
((

lim sup
n→∞

S̄n − lim inf
n→∞

S̄n

)−1
(0)
)

: Ω→ R ∪ {−∞,∞}

In other words, C has the form Z−1(0) for some random variable Z. Since X−1(B)
is measurable for all Borel sets B and all random variables X, it follows that C =
Z−1(0) is measurable.

This fiddling around was solely to point out that we have measurable limits even
with ±∞.
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Chapter 4

Distribution functions and laws

4.1 Distribution functions

Fix a probability space (Ω,F ,P) and X : Ω → R a random variable. Then, the
cumulative distribution function FX is

FX(x) = P (X ≤ x) .

Here are some facts about CDF:
Proposition 4.1
1. FX is non-decreasing
2. limx→−∞ FX(x) = 0, limx→∞ Fx(x) = 1: use unions/intersections of events to
build monotone increasing/decreasing sequences.
3. The CDF is càdlàg: ∀ x, limy↓x F (y) = F (x)

Proof We prove the last statement. Write

P (X ≤ x) = P

⋂
n≥1

X ≤ x+ 1
n


= lim

n→∞
P
(
X ≤ x+ 1

n

)
= lim

n→∞
FX

(
x+ 1

n

)
since the limit exist and the function is decreasing, taking any subsequence yield
the value of the limit.
Exercise 4.1
The limit does not depend on the sequence: ∀ {yn, n ≥ 1} with yn ↓ x, limn→∞ FX(yn) =
limn→∞ FX

(
x+ 1

n

)
.

The limit may not take left-value; if X ≡ 0, FX(x) = 1x≤0. A function that is
right-continuous with left limits is called càdlàg. �

A function satisfying properties 1.-3. is called a CDF.
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Definition 4.2 (Law)
The law of X (or the distribution of X) is the function µX : B(R) → [0, 1] defined
by

µX(B) = P (X ∈ B) = P
(
X−1(B)

)
= P (ω : X(ω) ∈ B)

Proposition 4.3
µX is a probability measure on (R,B(R)).

Proof We need to check countable additivity and non-negativity; definitely µX ≥ 0
and µX(R) = P (X ∈ R) = P (Ω) = 1. For countable additivity, if we have disjoint
collection Bn Borel sets, n ≥ 1, the pre-image En = X−1(Bn) must also be disjoint
elements of F . Thus, it follows

µX

⋃
n≥1

Bn

 = P

X−1

⋃
n≥1

Bn


= P

⋃
n≥1

En


=
∑
n≥1

P (En)

=
∑
n≥1

P
(
X−1(Bn)

)
=
∑
n≥1

µX(Bn).

since P is a measure. �

Now, let Y : R→ R be the identity function, Y (r) = r. Then, for all B ∈ B(R) is

µX(Y ∈ B) = µX({r : Y (r) ∈ B}) = µX(B) = P (X ∈ B)

This is a first example of what is called a change of variable . Note that µX deter-
mines FX since FX(x) = P (X ≤ x) = µX((−∞, x]). Since the half-open intervals
generates a π-system, conversely the preceding equality and the π-system lemma
together imply that µX is uniquely determined by FX .
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4.2 Skorokhod construction

Proposition 4.4 (Skorokhod construction)
Any CDF is the CDF of some random variable.

Proof We use the space ([0, 1],B([0, 1]), λ). We want a function Z : [0, 1]→ R with
CDF F . The idea is that if F (x) = ω, then set Z(ω) = x (we are in a sense flipping
the graph and interchanging the domain and the range). Then

P (Z ≤ z) = P ({ω : Z(ω ≤ z}) = P ([0, F (z)]) = λ([0, F (z)]) = F (z).

this boils down to F−1((−∞, z]) = [0, F (z)]]. The latter holds if F−1 exists and is
continuous. We could have flat sections: to deal with this, take rationals in these
parts (using density of Q in [0, 1]) – since we map the flats to rationals, there are
at most countably many. Because rationals have measure zero, both have measure
zero under corresponding measures.

There is a problem with the above: maybe F is not invertible, i.e. not strictly
increasing. The solution is to let

X−1(ω) = sup{x : F (x) < ω}

X+(ω) = sup{x : F (x) ≤ ω}.

Exercise 4.2
P
(
X+ 6= X−

)
= λ

(
{ω : X+(ω) 6= X−1(ω)}

)
= 0. Finally, for all z,P (X ≤ z) =

λ([0, F (z)]) for all z, while

P
(
X+ ≤ x

)
= λ([0, F (z)])1F increasing at z + λ([0, F (z)))1F (z+ε)=F (z), ε>0.

Thus, X+ and X− both have law F

Exercise 4.3
If X,Y : Ω → R are random variables, P (X ≤ Y ) = 1 and X,Y have the same
CDF, then X a.s.= Y , i.e. P (X = Y ) = 1.

�

Last class, we show that for any CDF F , there is a random variable X with FX ≡ F.
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Another way to see this is to take (Ω,F) = (R,B(R)), we can take a simple function
such as the identity X : R → R and instead work what the measure should be.
Reverse-engineering the measure as to have (set) P0 (X ≤ x) = P0 ((−∞, x]) = F (x);
this determines for us what the probability should be on a π-system. We can extend
this uniquely to a probability measure on (R,B(R)); then X has CDF FX . This
involves checking that P0 was extended to an additive function and show the latter
is a pre-measure, the same argument as in the assignment or as when we constructed
the Lebesgue measure.

We will now tackle the monotone class theorem, termed sometimes the standard
machine.

4.3 Monotone class theorem

Theorem 4.5 (Monotone class theorem)
Let Ω be a set, S a π-system on Ω andH a real vector space of functions f : Ω→ R.10

If

i) 1A ∈ H for all A ∈ S ∪ {Ω}, where 1A(ω) = 1 if ω ∈ A, and 0 otherwise.
ii) If fn ∈ H, n ≥ 1 and fn ↑ f pointwise, and f bounded, then f ∈ H.

Then H contains all σ(S)− B(R) measurable bounded functions.

We start with a
Definition 4.6
A collection D of subsets of Ω is a d-system (Dynkin or difference) if

i) Ω ∈ D

ii) if A,B ∈ D and A ⊂ B, then B \A ∈ D

iii) if An ∈ D, n ≥ 1 are increasing, then
⋃
n≥1An ∈ D.

Fact 4.7
◦ A σ-algebra is both a π-system and a d-system.
◦ If D is a π-system and a d-system, then it is a σ-algebra.
10We will show that all bounded measurable functions are in some set, measurable with respect

to σ(S). We assume closure in the preamble, that is multiplication by constant and addition of
functions. Starting from indicator function, we can create step functions, then simple functions
and construct any continuous function by approximations from below. The hard part of the proof
is showing that 1A ∈ S implies that 1A for all A ∈ σ(S)
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◦ If S is a π-system, D ⊃ S and D is a difference system, then

D ⊃ d(S) :=
⋂

G, d-system
containing S

G.

Theorem 4.8
If S is a π-system over Ω, then d(S) = σ(S).

Proof First, we show d(S) ⊆ σ(S): since σ(S) is a d-system, we have by definition
the first part. To show that σ(S) ⊆ d(S), let

D1 = {B ∈ d(S) : A ∩B ∈ d(S) ∀ A ∈ S}.

Note that D1 ⊂ d(S) by definition. If D1 is a d-system, then D1 = d(S). To check
that D1 is a d-system, we need to check

i) Ω ∈ D1 is obvious
iii) If Bn ∈ D1, n ≥ 1 and Bn ↑ B, then ∀ A ∈ S, A ∩ Bn ∈ d(S). Since d(S) is a
d-system, A ∩B = limn→∞A ∩Bn ∈ d(S) so B ∈ D1.
ii) If B,C ∈ D1, B ⊆ C, then for all A ∈ S, A ∩ B ∈ d(S) and A ∩ C ∈ d(S).
Since d(S) is closed under differences, (A∩C) \ (A∩B) = (A∩ (C \B)) ∈ d(S), so
C \B ∈ d(S) and therefore C \B ∈ D1.

Now, let D2 = {C ∈ d(S) : A ∩ C ∈ d(S) for all A ∈ d(S)}. Since D1 = d(S),
we have S ⊂ D2. Thus, if D2 is a d-system, then d(S) ⊆ D2 so d(S) = D2 so
that d(S) is closed under intersection, so d(S) is a π-system, hence a σ-algebra and
d(S) ⊃ σ(S).

�

Exercise 4.4
Mimic the proof that D1 is a d-system to show that D2 is a d-system.

Example 4.1
A set Ω and A,B ∈ Ω such that A ∩ B 6= ∅. Then D = {A,B,Ω, ∅, A{, B{}. This
however is not closed under intersection: you can’t get A ∩B.
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Proof The first part is as follows: let D = {E ∈ Ω : 1E ∈ H}. Then S ⊂ D by i)
and D is a d-system (Ω ∈ H by i), H closed under increasing limits by ii) and for
closure under differences, because if A ⊂ B, then 1B\A = 1B−1A and H is a vector
space).

Thus, σ(S) = d(S) ⊂ D. So H contains 1E for all E ∈ σ(S). Since H is a vector
space, it follows that H contains all simple σ(S)− B(R) measurable functions.

Finally, for any bounded σ(S)/B(R) measurable function, f is an increasing limit of
simple functions, so f ∈ H. �

How to write f as an increasing limit of simple functions? The Lebesgue approxima-
tion is to take 0 ·1f∈[0,2−n], slicing horizontally. Similarly, we continue the procedure
with 2−n1f∈[2−n,2·2−n).

Suppose f is nonnegative and bounded. Let

fn =
n2n−1∑
i=0

i

2n1f∈[ i
2n ,

i+1
2n ).

Each approximation is such that fn → f . Either add a constant to make f nonneg-
ative if it is bounded, but not nonnegative. Or, we can break f = f+ − f− where
f+ = max{f, 0} and f−1 = −min{f, 0} and then f+, f− ∈ H and so f+− f− ∈ H.

Read section 3.13 in Chapter 3.
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Chapter 5

Independence

5.1 Independence

Definition 5.1 (Independence for events)
A heuristic definition is to say that events A, are independent if P (A ∩B) =
P (A) P (B). 11 The independence property depends on the measure.

Example 5.1
If Ω = {0, 1}N and F = σ(cylinders). If A = {ω1 = 1}, B = {ω2 = 1} then A,B

are independent under P 1
2

: indeed P 1
2

(A ∩B) = 1
4 = 1

2 ·
1
2 = P 1

2
(A) P 1

2
(B) . But

if Q is a probability measure with Q({1}) = 1
2 = Q({0}), then A and B are not

Q-independent because

Q(A ∩B) = Q({1}) = 1
2 , Q(A) = 1

2 = Q(B).

Example 5.2
Suppose U d= U [0, 1], whose law is the Lebesgue measure on [0, 1]. Let A ={exactly
5 zeros before first one in binary expansion of U} and let B = {2 ones before second
stretch of zeros}.

Then P (A) = 1
64 , since the number must lie between 1

32 and 1
64 . We have for

B sequences that are either 0.110 . . . , or 0.0110 . . ., which are intervals of length
1
8 ,

1
16 ,

1
32 , since the first one is guaranteed to happen. Thus, adding the terms gives

altogether P (B) = 1
4 . We have P (A ∩B) = 1

256 ,

since we specify 8 bits, that is our binary expansion is of the form 0.00000110 . . ..
Since “5” and “2” may be replaced with any two natural numbers and the same
conclusion holds.

Let X = #{zeros before the first one}, Y = #{ones before second stretch of ze-
ros}. There are numbers in [0, 1] that do not have a unique expansion are dyadic
expansions of the form k/2n. Set arbitrarily for such numbers and

11This is linked to product spaces, and we will come back to this with Fubini later in the course.
We will from now on often be implicit about (Ω,F ,P)

35



Exercise 5.1
Show that X and Y defined above are measurable.

We saw that P (X = 5, Y = 2) = P (X = 5) P (Y = 2) and this holds with 5 and 2
replaced by any natural numbers.

Definition 5.2 (Independence)
We say random variables X,Y : Ω→ R are independent if ∀ E,F ∈ B(R),

P (X ∈ E, Y ∈ F ) = P (X ∈ E) P (Y ∈ F ) .

Then X,Y , as define before, are indeed independent.

Remark
Events A,B are independent if and only if 1A,1B are independent, and similarly
A{, B are independent.

Exercise 5.2
Prove the above remark.

Example 5.3
Let X ∼ B

(
1
2

)
, Y ∼ B

(
1
2

)
Bernoulli random variable, where ∼ is defined as d=.

Here X,Y are independent and we let Z = (X +Y ) mod 2. Thus Z = 0 if the sum
is even, and Z = 1 if the sum is odd. Then X,Y are independent,

X,Z are independent and Y,Z are independent. But P (X = 1, Y = 1, Z = 1) = 0 6=
P (Z = 1) P (X = 1) P (Y = 1) = 1

8 . Thus, X,Y, Z are not mutually independent.

Definition 5.3 (Mutual independence)
If (Xi, i ∈ I) are random variables where Xi : Ω → R. We say (Xi, i ∈ I) are
mutually independent if ∀ {i1, . . . , in} ⊆ I and all B1, . . . , Bn ∈ B(R), 12

P
(

n⋂
k=1
{Xik}

)
=

n∏
k=1

P (Xik ∈ Bk)

12From which we can get get any pairs, or smaller for finite number of variables, since we can
take Bi = R so that {Xik ∈ R} = Ω, and multiply by 1 on the right.

36



Definition 5.4 (Independence (σ-algebra))
Given G,H sub σ-algebra of F , say G,H are independent if ∀ A ∈ G, ∀ B ∈
H, A and B are independent. We define mutual independence for σ-algebras
accordingly.

Example 5.4
A,B are independent if and only if {∅, A,A{,Ω} = σ(1A) and {∅, B,B{,Ω} = σ(1B)
are independent.

Recall that if X : Ω→ R is a random variable, then

σ(X) =
⋂

F :X is F−B(R)
measurable

F

is the σ-algebra generated by X. More generally, σ((Xi, i ∈ I)) is the smallest
σ-algebra that makes all of the Xi measurable.

For a single event, we have σ(X) = {X−1(B), B ∈ B(R)}, 13 and

σ((Xi, i ∈ I)) = σ

(⋃
i∈I

{
X−1(B) : B ∈ B(R)

})
.

Exercise 5.3
Check this statement and find σ-algebras (Fn, n ≥ 1) such that their union

⋃
n≥1Fn

is not a σ-algebra.

Proposition 5.5
(Xi, i ∈ I) are independent if and only if (σ(Xi), i ∈ I) are independent.

Proof (⇒) Fix {i1, . . . , in} ⊂ I and events E1, . . . , En with Ek ∈ σ(Xik). Then,
for 1 ≤ k ≤ n, there is Bk ∈ B(R) such that Ek = X−1

ik
(Bk) so

P
(

n⋂
k=1

Ek

)
= P

(
n⋂
k=1

X−1
ik

(Bk)
)

= P
(

n⋂
k=1
{Xik ∈ Bk}

)
13While intersections of σ-algebras are themselves σ-algebra, the same may not hold for unions
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=
n∏
k=1

P (Xik = Bk) (independence)

=
n∏
k=1

P (Ek)

so (σ(Xi), i ∈ I) are independent. The other direction (⇐) is similar. �

Lemma 5.6 (π-system)
If G,H are sub σ-algebras of F , I, J are π-systems where I ∈ G and J ∈ H such that
σ(I) = G, σ(J) = H then if I, J are independent, then G,H are independent. Here
I, J are independent, means that ∀ A ∈ I, B ∈ J, we have P (A ∩B) = P (A) P (B).

Proof Fix some A ⊂ I and define measures µA, νA on (Ω,H) by setting µA(B) =
P (A ∩B) and νA(B) = P (A) P (B). These are measures, yet not probability mea-
sure.
Exercise 5.4
The above defined µA, νA are measures, but are not probability measures.

Note
µA, νA have the same total measure, i.e. νA(B) = µA(B) ∀ B ∈ J, so νA ≡ µA on
J, so µA = νA on σ(J) = H, so P (A ∩B) = P (A) P (B) for all A ∈ I, B ∈ H.

Now fix B ∈ H, let µ̂B = P (A ∩B), ν̂B(A) = P (A) P (B) for A ∈ G. Again, these
are measures and agree on I and therefore on σ(I) = G, so P (A ∩B) = P (A) P (B)
for all A ∈ G, B ∈ H. This is analogous to the monotone class theorem. This is
precisely what it means for G,H to be independent.

�

Exercise 5.5
Show that for integer-valued random variables X : Ω→ R, Y : Ω→ R,

if P (X = k, Y = l) = P (X = k) P (Y = l) for all k, l ∈ Z, then X,Y are indepen-
dent.
Exercise 5.6
If X,Y : Ω→ R are random variables, then X,Y are independent (denoted X ⊥⊥ Y )
if and only if {{X ≤ x}, x ∈ R} ⊥⊥ {{Y ≤ x}, x ∈ R}. Hint: use π-system lemma.
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Exercise 5.7
If {Xij}1≤i≤n,1≤j≤m mutually independent and fi : Rm → R are Borel functions,
then each (fi(Xi1, . . . Xi,m), 1 ≤ i ≤ n) are mutually independent.

The latter could be used for high-dimensional data with dimension reduction, for
use in testing independence, say.

Exercise 5.8
If Fi, and Gi, i ≥ 1 are σ-algebras over Ω and each Fi are independent of σ

(⋃
j≥1 Gj

)
.

Then

σ

( ⋃
j≥1
Fj
)
⊥⊥ σ

( ⋃
j≥1
Gj
)
.

You may think of the above as closure properties.

Exercise 5.9
If X1 is independent of σ({X2, . . . , Xn}), then X1 ⊥⊥ X2 ·X3 · · ·Xn.

Remark
For any sequence (Fi, i ≥ 1) of CDFs, there exists a probability space (Ω,F ,P)
and random variables (Xi, i ≥ 1) on this space such that (Xi, i ≥ 1) are mutually
independent and Fi is the CDF ofXi. If Fi ∼ U(0, 1) CDF for all i, this is from earlier
in the term (Ω,F ,P) = ([0, 1],B([0, 1]), λ) and let X1(ω) = 0.ω2ω22ω23ω24 . . ., taking
the unique binary expansion. The bits are independent B(1

2) and so X1(ω) ∼ U [0, 1].
For other variables Xi, using powers of a different powers of the ith prime pi, that
is 0.ωpiωp2

i
ωp3

i
. . ..

Exercise 5.10
Let Bi : Ω → [0, 1], Bi(ω) = ωi. Then (Bi, i ≥ 1) are independent Bernoulli B(1

2).
Show from this that the (Xi, i ≥ 1) are mutually independent U [0, 1].

Let Yi = F−1
i (Xi) , which is a composition of measurable map; then (Yi, i ≥ 1) are

independent and Yi has CDF Fi. This is the Skorokhod construction.

Recall the branching process example from the second lecture. We defined Zi as the
number of individuals in the ith generation. Each individual has a random number
of children with CDF F, independently of others. To formally define Z, let (Bi, j)

39



be independently defined with CDF F . Let Z0 = 1 and Zn+1 =
∑Zi
k=1Bn+1,k =∑∞

k=1Bn+1,k1k≤Zn . By induction, one can see that Zn+1 is a random variable, since
Z0 is a deterministic map, measurable with respect to any σ-algebra. Since all
random variables are positive, and we have closure under increasing sequence and
limits, Zn+1 is also a random variable. Another construction is to take Zn+1 =
g(Zn, Un+1) for suitable g, (Ui, i ≥ 1) independent uniforms U [0, 1]. For each given
step, the next generation is just a finite computation and assign a portion of the
interval for this. All probabilities sum to one and then drawing a uniform gives the
size of the next generation. It has the advantage of having less information than the
previous one. This is the general construction of a Markov chain (discrete Markov
chain of a countable state space).

5.2 Second Borel-Cantelli lemma

Recall the first Borel-Cantelli lemma, that stated
∑∞
n=1 P (Bi) < ∞, then we had

P (lim supn→∞Bi) = 0. We give the second lemma
Lemma 5.7 (Borel-Cantelli II)
Let (En, n ≥ 1) be mutually independent events. If

∑
n≥1 P (En) = ∞, then

P (En i.o.) = 1.

Proof Compute the bound P
(
(En i.o.){

)
. This is

P (∃n, ∀ m ≥ n,Em does not occur)

= P

⋃
n≥1

⋂
m≥n

E{m


≤
∑
n≥1

P

 ⋂
m≥n

E{m

 (subadditivity)

and

P

 ⋂
m≥n

E{m

 = lim
M→∞

P

 ⋂
n≤m≤M

E{m

 (monotonicity)

= lim
M→∞

M∏
m=n

P
(
E{m

)
=
∞∏
m=n

P
(
E{m

)
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=
∞∏
m=n

(1− P (Em))

≤
∞∏
m=n

e−P(Em) ( since 1− x ≤ e−x)

= exp
(
−
∞∑
m=n

P (Em)
)

= e−∞ = 0.

Thus P
(
(En i.o.){

)
= 0; it remains to take complements. �

Sometimes, we wont have mutual independence. We can still get a similar result if
we have a statement of the form

P (En+1 | σ(E1, . . . , En)) ≥ cn

for some universal lower bound.
Example 5.5
Let (Xi, i ≥ 1) ∼ E(1), that is P (Xi ≥ x) = e−x, x ≥ 0. Look atMn = (maxXi, 1 ≤ i ≤ n).

Proposition 5.8

lim sup
n→∞

Mn

log(n)
a.s.= 1.

Proof To get to apply Borel-Cantelli 2, we need Mn
log(n) ≥ 1 and Mn

log(n) ≥ 1 + ε at
most finitely often.
Lemma 5.9

lim sup
n→∞

Xn

log(n)
a.s.= 1.

Proof Let En =
{

Xn
log(n) ≥ 1

}
. The En are independent and

P (En) = P (Xn ≥ log(n)) = 1
n
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so
∑∞
n=1 P (En) = ∞ and P (En i.o.) = 1. So lim supn→∞ Xn

log(n) ≥ 1 almost surely.
�

Next, fix ε > 0 and let Fn = {Xn ≥ (1 + ε) log(n)}. Then P (Fn) = 1
n1+ε so∑

n≥1 P (Fn) < ∞. So lim supn→∞Xn/ log(n) ≤ 1 + ε almost surely using Borel-
Cantelli 1. Since ε > 0 is arbitrary, we can conclude that lim supn→∞Xn/ log(n) ≤ 1
almost surely.

Many properties depend on the underlying properties of the space. In our example,
we care about properties of sequences.

Lemma 5.10
If {an, n ≥ 1} is any sequence of real numbers and f : N→ R, f(n) ↑ ∞ as n→∞.
Then an ≥ f(n) for infinitely many n if and only if

max
1≤i≤n

ai ≥ f(n) for infinitely many n.

Proof The first part is obvious. For the second, consider the graph above.

Fix a sequence nk, k ≥ 1 such that max1≤i≤nk ai ≥ f(nk) and also f(nk+1) >

max1≤i≤nk ai. Then, for each k ≥ 1, there is ik ∈ (nk, nk+1) such that aik is at
least f(nk+1). Thus aik ≥ f(nk+1) ≥ f(ik). We have a sequence ik with the desired
property and so an ≥ f(n) infinitely often. �

By the previous lemma, we have an/f(n) ≥ 1 if and only if max an/f(n) ≥ 1. Both
limsup must thus be the same, for any sequence. For all ω, we evaluate the function

lim sup
n→∞

Mn(ω)
log(n) = lim sup

n→∞

Xn(ω)
log(n)

so {
lim sup
n→∞

Mn(ω)
log(n) = 1

}
=
{

lim sup
n→∞

Xn(ω)
log(n)

}

and by the first lemma, P (lim supn→∞Mn/ log(n) = 1) = 1 and the result is true
almost surely. �
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Note
One can show (in almost the same way) that

lim sup
n→∞

Mn − log(n)− log(log(n)) =∞.

Since the sum of
∑∞
n=1

1
n log(n) = ∞, by Borel-Cantelli 2, we get a divergent series

which implies that the event happens infinitely often with probability one. On the
other hand

lim sup
n→∞

Mn − log(n)− (1 + ε) log(log(n)) = −∞

as
∞∑
n=0

1
n log(n)1+ε <∞.

We do two last example with Borel-Cantelli lemma 2.

Example 5.6 (St-Petersburg Paradox)
Let

Zi := 2#heads before the first tail in a sequence of Bernoulli trials

where (Bi,j , j ≥ 1), Bi,j
d= B

(
1
2

)
are independently and identically distributed (iid).

The question is: what is a fair entry fee for a game in which you double your stack
every time a head happens, and lose everything at the first tail, starting with 1.

To answer the question, we compute the expected profit:

E (Z1) =
∑
k≥0

2kP (k heads before first tail)

=
∑
k≥0

2k 1
2k+1

=
∑
k≥0

1
2 =∞.

Thus finite random variables can have infinite expectations and yet paradoxically

P (Zi ≥ i log(i) i.o.) = 1
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since (Zi, i ≥ 1) are mutually independent and

∑
i≥1

P (Zi ≥ i log(i)) =
∑
i≥1

1
2k(i)

where k(i) = dlog2(i log(i))e

≥ 1
2
∑
i≤1

1
2log2(i log(i))

= 1
2
∑
i≥1

1
i log(i) =∞.

Exercise 5.11
Prove this if it is not obvious to you (use independence).

Example 5.7
Let Xi, i ≥ 1 be independent such that P (Xi = k) = 3

π2
1
k2 , for k ∈ Z \ {0}. The

expectation of Xi does not exist; the sum of the positive terms goes to infinity and
the sum of the negative terms to −∞, as

∑
k≥1 kP (Xi = k) = 3

π2
∑
k≥1

1
k =∞. 14

Let Sn =
∑n
i=1Xi. Then

P
(

lim
n→∞

Sn
n

exists and is finite
)

= 0

Proof P (|Xn| ≥ n i.o.) = 1 by Borel-Cantelli 2. This is since

∑
n≥1

P (|Xn| ≥ n) =
∑
n≥1

∑
m≥n

6
π2

1
m2


≥
∑
n≥1

6
π2

1
n+ 1 =∞

using a lower bound derived from the integral test
∫∞
n

dx
(x+1)2 = (n + 1)−1. But for

all c ∈ R for n sufficiently large and ε > 0 sufficiently small, if |Sn/n− c| < ε and
14In such case, when E

(
X+)− E

(
X−
)

=∞, we say that the expectation is not defined, in the
same way a function is not integrable if it is not absolutely integrable.
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|Xn+1| ≥ n+ 1, then ∣∣∣∣ Sn+1
n+ 1 − c

∣∣∣∣ ≥ 1
4 .

As we can write Sn+1/n = Sn/n+Xn+1/n and Sn+1/(n+ 1) = Sn+1/n · n
n+1 and if∣∣∣Sn+1

n − c
∣∣∣ > 1

2 and n sufficiently large then |Sn+1/(n+ 1)− c| > 1
4 . More formally,

prove that

{
∃ lim
n→∞

Sn
n
<∞

}
⊆
{ |Xn|

n
≥ 1 i.o.

}{
.

This is an exercise in real analysis; fix ω and look at the corresponding sequence. �

5.3 Kolmogorov’s 0-1 law

Definition 5.11 (Tail σ-algebra)
Let (Xn, n ≥ 1) be random variables on (Ω,F ,P) where Xn : Ω → R. Let Tn =
σ(Xn, Xn+1, . . .) = σ

(⋃
m≥n σ(Xn)

)
and let T =

⋂
n≥1 Tn. T is called the tail

σ-algebra.

Exercise 5.12
Give an example where T = T1 (so X1 is T − B(R) measurable). Hint: take the
first coordinate map of {0, 1}N. All the information regarding the first coin toss is
contained in the first event. Formalize this example.

Note
σ(Xn) ⊂ F for all n, so

⋃
m≥n σ(Xm) ⊂ F for all m and so Tn ⊂ F for all n and

T ⊂ F and F ⊃ T1 ⊃ T2 ⊃ · · · ⊃ T .

Exercise 5.13
The following events are all in T :

1. limk→∞Xk exists
2.
∑
kXk converges, i.e. limk

(∑k
j=1Xj

)
exists.

3. limk→∞(X1 +X2 + · · ·+Xk)/k exists

Start with sequences, and translate these into probability statements; since there
are functions,
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there is an additional step.

Theorem 5.12 (Kolmogorov’s 0-1 law)
If (Xn, n ≥ 1) are independent (and T is their tail σ-algebra), then for all E ∈ T ,
either P (E) = 0 or P (E) = 1.

Corollary 5.13
If the limits in the exercise exists, they are almost surely constant.

Proof [of corollary] We prove (iii) only. For all c ∈ R, Ec =
{

limn→∞Xn exists,≤ cn
}
.

Then, Ec ∈ T , so P (Ec) ∈ {0, 1} ∀ c ∈ R. These events are increasing (like a CDF):
let c∗ = sup{c : P (Ec) = 0}. Then ∀ c > c∗,P (Ec) = 1. So

P
(

lim
n→∞

Xn exists and is not equal to c∗
)

= 0.

�

Proof We now tackle the proof of Kolmogorov’s 0-1 law. The aim is to show that
∀ E ∈ T ,

E is independent of E, so that P (E ∩ E) = P (E) P (E) so that P (E) = P (E)2

which forces P (E) ∈ {0, 1}

Let Fn = σ(X1, . . . , Xn−1), then (exercise) Fn, Tn are independent for all n. Let
P =

⋃
nFn; then P is a π-system: if A,B ∈ P, then A,B ∈ Fn for some n, so the

intersection A∩B ∈ Fn and A∩B ∈
⋃
m≥1Fm = P since the sequence of σ-algebra

is nested in one another.

Furthermore, P, T are independent (as Fn ⊥⊥ T ∀ n). If E ∈ P and F ∈ T , then
E ∈ Fn for some n and F ∈ Tn, F ∈ T ⊂ Tn.

Thus, σ(P) and T are independent. But

σ(P) = σ

⋃
n≥1

σ(X1, . . . , Xn−1)


⊇ σ

⋃
n≥1

σ(Xn−1)


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= σ(Xn, n ≥ 1).

and Fn ⊆ σ(Xn, n ≥ 1) so P =
⋃
n≥1Fn ⊂ σ(Xn, n ≥ 1) and thus σ(P) ⊆ σ(Xn, n ≥

1). So σ(P) = σ(Xn, n ≥ 1) and σ(Xn, n ≥ 1) and T are independent. But
Tn ⊆ σ(Xn, n ≥ 1) for all n and T =

⋂
n≥1 Tn ⊂ σ(Xn, n ≥ 1). So T is independent

of T , i.e. for all E,F ∈ T , P (E ∩ F ) = P (E) P (F ) . Now take E = F. �
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Chapter 6

Integration and expectation

6.1 Defining integrals

We consider a function f on [0, 1] and its area under the curve, that is
∫ 1

0 f(x) dx,

which corresponds to E (height of a random point under the curve). The region un-
der the curve is the set {(x, y) : 0 ≤ y ≤ f(x)}. 15 We define integrals in four steps,
starting with

1. indicator functions
2. simple functions: f =

∑m
i=1 ci1Ei

3. nonnegative functions (as increasing limits of simple functions)
4. general functions f (by decomposing f = f+ − f−).

For the rest of the development, fix a measure space (Ω,F , µ) which we will assume
is σ-finite (that is Ωn ↑ Ω,Ωn ∈ F , µ(Ωn) <∞).

Step 1: If f = 1E for E ∈ F , let
∫
f dµ = µ(E).16 One can check easily the linearity

of expectation for simple functions.

Step 2: If f is simple, f =
∑m
i=1 ci1Ei , let

∫
f dµ =

∑m
i=1 ciµ(Ei).

Proposition 6.1
The integral of simple functions is well-defined.

Proof Let f be simple and list the distinct values of f as a1, . . . , al. Let Ai =
f−1({ai}) and suppose

f =
m∑
i=1

ci1Ei =
l∑

j=1
aj1Aj .

and then split E1, . . . Em into smaller sets Gi,j , 1 ≤ j ≤ l where Gi,j = Ei ∩ Aj .
15Not a point on the line of f , rather a point under the curve.
16The book sometimes use µf instead as opposed to f dµ.
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a3

a1

a2

a4

A1 A2 A3 A4

Then, we must have

m∑
i=1

ci1Ei =
m∑
i=1

ci

 l∑
j=1

1Gi,j


So

µ(Ei) =
∫

1Ei dµ

=
l∑

j=1

∫
1Gi,j dµ

=
l∑

j=1
µ(Gi,j)

and thus
m∑
i=1

ciµ(Ei) =
m∑
i=1

ci

 l∑
j=1

µ(Gi,j)


=

l∑
j=1

(
m∑
i=1

ciµ(Gi,j)
)

where i is varying and j is fixed. �

Proposition 6.2 (Basic properties of integrals for simple functions)
(i) If f, g are simple, then

∫
(cf + g) dµ = c

∫
f dµ+

∫
g dµ.

(ii) If f, g are simple and f ≤ g, then
∫
f dµ ≤

∫
g dµ.

(iii) If f, g are simple, then f∨g (the maximum) and f∧g (the minimum) are simple.
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(iv) If f, g are simple and if µ({f 6= g}) = 0, then
∫
f dµ =

∫
g dµ. We say f = g

almost everywhere (a.e.).

Example 6.1
More generally, for extended real-valued functions, if f(x) = 1√

2πe
−x

2
2 and g(x) =

f(x)1x∈R\Q +∞1x∈Q, then
∫
A f(x) dx =

∫
A g(x) dx for all Borel A and so g is “a”

density for the standard normal distribution. We use the convention ∞ · 0 = 0.

Proof

(ii) g − f is nonnegative and simple, so g − f =
∑n
i=1 di1Fi and thus using (i),

∫
g dµ =

∫
f dµ+

∫
(g − f) dµ =

∫
f dµ+

n∑
i=1

diµ(Fi) ≥
∫
f dµ+ 0.

(iv) write f = g −
∑n
i=1 vi1{f=g−vi}. Then∫

f dµ =
∫
g dµ−

n∑
i=1

viµ({f = g − vi})

=
∫
g µ−

n∑
i=1

vi0

=
∫
g dµ.

since simple functions take only finitely many values (as they are piecewise linear).

�

Example 6.2
In the St-Petersburg paradox (Example 5.6), we had Zi = 2k with probability 2−k−1

for all k ≥ 0. We could stop playing eventually (this corresponds to a truncation of
the process) as to have Z(N)

i = Zi1Zi≤2N + 2N1Zi>2N . Since this now only takes
finitely many values, we can define

∫
Z

(N)
I dP =

N∑
k=0

2kP
(
{Zi = 2k}

)
= E

(
Z

(N)
i

)
= N + 1

2 .
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Note
Z

(N)
i ≤ Z(N+1)

i ≤ · · · ≤ Zi. So by Proposition 6.2 (ii),

∫
Z

(N)
i dP ≤

∫
Z

(N+1)
i dP

and in fact

E
(
Z

(N)
i

)
↑ ∞ as n→∞

so we should have E (Zi) =∞.17

Step 3: For f measurable nonnegative function, define∫
f dµ := sup

{∫
g dµ : g simple, g ≤ f

}
.

Exercise 6.1
If f itself is simple, then this makes sense and agrees with the previous definition.

6.2 Monotone convergence theorem

Theorem 6.3 (Monotone Convergence Theorem)
If fn, n ≥ 1 are non-negative measurable functions and fn ↑ f , then

∫
fn ↑

∫
f .18

Since limn→∞ fn = f pointwise, then∫
f dµ =

∫
lim
n→∞

fn dµ = lim
n→∞

∫
fn dµ.

Lemma 6.4
If f ≥ 0,

∫
f dµ = 0, then f = 0 a.e.

Proof Let En = {f ≥ 1/n}. Then En ↑ {f > 0} so∫
1En dµ ↑

∫
1{f≥0} dµ

17The book has µ(Fn) ↑ µ(f) if fn ↑ f .
18Note this is a theorem about interchange of limits and integral.
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but
∫

1En dµ = µ(En) and∫
1En dµ = n

∫ 1
n

1En dµ ≤ n
∫
f dµ

as 1
n1En ≤ f . Thus if µ(E) > 0, then ∃n such that µ(En) > 0, so

0 ≤ µ(En) =
∫

1En dµ ≤ n
∫
f dµ

so
∫
f dµ > 0. �

Note that countable additivity is equivalent to this limiting closure property. Recall
that we defined for f : Ω → R non-negative measurable functions, we defined∫
f dµ = sup{

∫
g dµ : g simple, g ≤ f}. We will check this consistency property.

Definition 6.5
For k ≥ 1, let α(k) : [0,∞)→ [0,∞) be given by

α(k)(x) =


0 if x = 0
i

2k if x ∈
(
i

2k ,
i+1
2k
]
, 0 ≤ i ≤ k2k

k if x > k

so for example α(1) and α(2) look like

α(1)

α(2)

For any measurable f : Ω → [0,∞), α(k)(f) is simple, if fn ↑ f , then α(k)(fn) ↑
α(k)(f) and furthermore, for any g : Ω→ [0,∞), then α(k) ↑ g as k →∞.

The strategy for proving the MCT: take a double limit as k, n→∞, show that the
limit doesn’t depend on the order of those limits.
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Lemma 6.6
If (y(k)

n ), n, k ≥ 1 is increasing in n and k, then

lim
n→∞

lim
k→∞

y(k)
n = lim

k→∞
lim
n→∞

y(k)
n

y
(1)
1 y

(1)
2 y

(1)
3 · · · y

(1)
∞

y
(2)
1 y

(2)
2 y

(2)
3

. . . y
(2)
∞

... . . . . . . . . . . . .
y

(∞)
1 y

(∞)
2 · · · · · · y

(∞)
∞

Lemma 6.7 (fn simple, f indicator)
If fn is simple and fn ↑ 1E , then

∫
fn dµ ↑

∫
1E dµ.

Proof We prove the upper bound first, if fn,1E is simple, then fn ≤ 1E so∫
fn dµ ≤

∫
1E dµ and thus limn→∞

∫
fn dµ ≤

∫
1E dµ. For the lower bound, fix

ε > 0 and let

Fn = {fn ≥ (1− ε)1E} = {ω ∈ Ω : fn(ω) ≥ (1− ε)1E(ω)}.

Then, since fn ↑ 1E , Fn ↑ E so∫
1E dµ = µ(E) = lim

n→∞
µ(Fn)

= lim
n→∞

∫
1Fn dµ

= lim
n→∞

1
1− ε

∫
(1− ε)1Fn dµ ≤ 1

1− ε lim
n→∞

∫
fn dµ

using the fact that on E, (1−ε)1Fn ≤ fn. The bound follows since ε was arbitrary. �

Lemma 6.8 (fn simple, f simple)
If 0 ≤ fn ↑ f and fn, f simple, then

∫
fn dµ ↑

∫
f dµ.

Proof Write f =
∑m
i=1 ci1Ei , E1, . . . Em using the canonical decomposition. Since
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fn ↑ f, we have fn1Ei ↑ f1Ei = ci1Ei so∫
fn1Ei dµ = ci

∫ 1
ci
fn1Ei dµ ↑ ci

∫
1Ei dµ =

∫
ci

∫
Ei

Let Em+1 = Ω \ (
⊔m
i=1Ei), cm+1 = 0. Then,

∫
f dµ =

m+1∑
i=1

ci

∫
1Ei dµ

= lim
n→∞

m+1∑
i=1

∫
fn1Ei dµ

= lim
n→∞

∫
fn

(
m+1∑
i=1

1Ei dµ
)

= lim
n→∞

∫
fn dµ

�

Lemma 6.9 (Consistency for simple sequences)
If fn, gn ≥ 0 are simple, fn ↑ f, gn ↑ f then limn→∞

∫
fn dµ = limk→∞

∫
gk dµ.

Proof Let h(k)
n = min{fn, gk}; then (h(k)

n ) are simple and (h(k)
n )n,k≥1 is increasing

in n, k. Then

lim
n→∞

∫
fn dµ = lim

n→∞
lim
k→∞

∫
h(k)
n dµ

By definition, we have
∫
fn dµ = limk→∞

∫
h

(k)
n dµ, since for all ω ∈ Ω, h(k)

n (ω) =
min{fn(ω), gk(ω)} ↑ fn(ω) as k ↗. Thus, the claimed convergence follows from
Lemma 6.8. Likewise, by Lemma 6.8,

lim
k→∞

∫
gk dµ = lim

k→∞
lim
n→∞

∫
h(k)
n dµ.

Since h(k)
n (ω) is an array of number, by Lemma 6.6,

lim
n→∞

lim
k→∞

∫
h(k)
n dµ = lim

k→∞
lim
n→∞

∫
h(k)
n dµ.
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Lemma 6.10 (MCT for simple approximant)
If 0 ≤ fn ↑ f and fn is simple then limn→∞

∫
fn dµ =

∫
f dµ. 19

Proof (≤) We can appeal to monotonicity of
∫
for non-negative functions or more

simply use fn as a simple lower bound for f in the definition, so
∫
fn dµ appears in

the supremum that defines
∫
f dµ.

(≥) Since
∫
f dµ = sup {

∫
g dµ, g simple, g ≤ f}. We can find a sequence gk with k ≥

1 of simple lower bounds for f such that
∫
gk dµ ↑

∫
f dµ. Let hn = max(f1, . . . fn, g1, . . . gn)

is simple. Then hn ↑ f , so by Lemma 6.9, we know

lim
n→∞

∫
fn dµ = lim

n→∞

∫
hn dµ ≥ lim

n→∞

∫
gn dµ =

∫
f dµ

by monotonicity for simple functions, as hn ≥ gn. �

Proof [of MCT] Suppose 0 ≤ fn ↑ f . Then α(k)(fn) ↑ α(k)(f) as n → ∞ and
α(k)(fn) ↑ fn as k → ∞ because α(k) increases to the identity. The first is simple,
but the second one isn’t. Then, by Lemma 6.10

lim
n→∞

∫
fn dµ = lim

n→∞
lim
k→∞

∫
α(k)(fn) dµ (Lemma 6.6)

= lim
k→∞

lim
n→∞

∫
α(k)(fn) dµ (Lemma 6.8, 6.10)

= lim
k→∞

∫
α(k)(f) dµ

=
∫
f dµ. (Lemma 6.10)

since we can interchange limits by Lemma 6.6 and by 6.10, α(k) is a simple approx-
imation of f . �

Exercise 6.2
If 0 ≤ f ≤ g and

∫
f dµ ≤

∫
g dµ, then

19Note that we need positivity, otherwise we could take − 1
n
on R. The integral is −∞, but the

limit is the zero function which has integral 0.
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◦ linearity of integration for non-negative functions.
◦ If f ≤ g and

∫
f dµ =

∫
g dµ , then µ({ωf(ω) 6= g(ω)}) = 0

◦ If f a.e.= g, then
∫
f dµ =

∫
g dµ.

The last step is to get this for negative functions as well.

6.3 Expectation

Let f : Ω → [0,∞), then
∫
f dµ is defined. If f : Ω → R is measurable, say

f ∈ L1(Ω,F ,P) if
∫
f+ dµ < ∞,

∫
f− dµ < ∞, that is if

∫
|f | dµ < ∞. For f ∈

L1(Ω,F , µ), let
∫
f dµ =

∫
f+ dµ−

∫
f− dµ.20

Exercise 6.3
Check basic properties (e.g. linearity)

Now let (Ω,F ,P) be a probability space. In this case, for X : Ω → R measurable,
X ≥ 0 or X ∈ L1(Ω,F ,P), and define

E (X) =
∫
X dP,

to be the expectation of X

Exercise 6.4
If X is discrete, (∃ countable S such that P (X = S) = 1), then

E (X) =
∑
x∈S

xP (X = x) .

Proof Monotone convergence theorem for use with the simple function approxi-
mation. �

20where as before f+ := max(f, 0) and f− = min(−f, 0).
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6.4 Change of variables

Definition 6.11 (Change of variable)
Given a measurable function h :→ R, h ≥ 0, define a measure on (Ω,F) by

µh(A) =
∫
h1A dP = E (h1A) .

Proposition 6.12
µh defined above is a measure.

Proof µh(A) ≥ 0 ∀ A ∈ F . Since h,1A both are measurable, so is their product.
We need thus to check that if Ai, i ≥ 1 are disjoint, then

µh

⋃
i≥1

Ai

 = E
(
h1∪i≥1Ai

)

= E

h∑
i≥1

1Ai


=
∑
i≥1

E (h1Ai) (linearity)

=
∑
i≥1

µH(Ai)

as

E

h∑
i≥1

1Ai

 = E

∑
i≥1

h1Ai


= E

(
lim
n→∞

n∑
i=1

h1Ai

)

= lim
n→∞

E
(

n∑
i=1

h1Ai

)
(MCT)

= lim
n→∞

n∑
i=1

E (h1Ai)

=
∞∑
i=1

E (h1A)
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One has to be careful about linearity since it holds for finite, not necessarily count-
able. �

Theorem 6.13
If f : Ω→ R measurable and f ≥ 0 or f ∈ L1(Ω,F , µh), then

∫
f dµh =

∫
fhdP = E (fh) .

Note
Change of variables works starting from any σ-finite measurable space, not just a
probability space.

Proof We use the standard machine

1. Let f = 1E , E ∈ F . Then∫
f dµh = µh(E) = E (h1E) = E (hf)

2. If f is simple, and f =
∑n
i=1 ci1Ei , then by linearity

∫
f dµh =

∫ n∑
i=1

ci1Ei dµh

=
n∑
i=1

ci

∫
1Ei dµh

=
n∑
i=1

ciE (h1Ei)

= E
(

n∑
i=1

cih1Ei

)
= E (hf) .

3. Let f ≥ 0; we use MCT twice and (2) in the middle. Then let fn simple and
0 ≤ fn ↑ f . Then∫

f dµh = lim
n→∞

∫
fn dµh (MCT)

= lim
n→∞

E (hfn) (2)
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= E (hf) (hfn ↑ hf,MCT)

= E (hf)

4. Let f ∈ L1(Ω,F , µh) and write f = f+ − f− and use linearity (3).

�

Definition 6.14 (Density)
A random variable X has a density f : R→ [0,∞) if ∀ B ∈ B(R),

P (X ∈ B) =
∫
f1B dλ =

∫
B
f(x) dx

where λ is the Lebesgue measure.

Recall we had ν law of X if

ν(B) = P (X ∈ B) =
∫

1B dν.

Saying that X has a density is saying that the law of X may be obtained from
Lebesgue measure by a change of variables.

Proposition 6.15
If X has density f and law ν, then for all h : R → R, h(X) ∈ L1(Ω,F ,P) if and
only if h ∈ L1(R,B(R), ν)⇔ hf ∈ L1(R,B(R), λ). In this case,

E (h(X)) =
∫
h dν =

∫
hf dλ =

∫
h(x)f(x) dx

In particular,

Example 6.3
If X ∼ N (0, 1), then E (h(X)) =

∫
R

1√
2πe
−x2/2h(x) dx. If X ∼ P(λ),E (h(X)) =∑∞

i=0
λie−λ

i! h(i). The Poisson does not have a density, we can still use the change of
variable formula to it.
Note
Densities are not unique, since if f a.e.λ= g, then

∫
f1B dλ =

∫
g1B dλ and λ({f 6=

g}) = 0, but the functions f, g are arbitrary on the null set.
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6.5 Restriction of measures

Definition 6.16 (Restriction of measures)
Let (Ω,F ,P) be a probability space. If A ∈ F , write P (·;A) for the function from
Ω : [0, 1] with P (B;A) = P (B ∩A) and E (·;A) for the function with E (X;A) =
E (X1A).

Fact 6.17
P (·;A) is a measure called the restriction of P to A. For a general measure space,
the restriction is denoted µA.

Proposition 6.18
If (Ω,F , µ) is a measurable space and f : Ω → R with f ≥ 0 or f ∈ L1, then
∀ A ∈ F , ∫

A
f dµ :=

∫
f1A dµ =

∫
f dµA.

The proof of this fact follows from the standard machine. Fix A, and build up the
collection of functions for which this hold.

Differentiation under the integral sign is a useful concept, but will be left as reading.

Example 6.4
Let

Xn =

+1 with probability 1
2

−1 with probability 1
2

Show that P (Sn ≥ 0 i.o.) = 1.

Proof First, suppose that we have the tail event {Sn ≥ 0 i.o.} ∈ {0, 1} (which is
not true). It thus suffices to show that P (Sn ≥ 0 i.o.) ≥ 0. Either {Sn ≥ 0 i.o.}
or {Sn ≤ 0 i.o.} or both so Ω = {Sn ≥ 0 i.o.} ∪ {Sn ≤ 0 i.o.} so P (Sn ≥ 0 i.o.) +
P (Sn ≤ 0 i.o.) ≥ 1. But these probabilities are equal by symmetry so each is ≥ 1

2 .

Remark
{Sn ≥ 0 i.o.} is not a tail event. Replace the latter by {lim supn→∞ Sn =∞}. But
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now

Ω 6= {lim sup
n→∞

Sn =∞} ∪ {lim sup
n→∞

(−Sn) =∞} ∪ {∃M : |Sn| < M ∀ n}

Showing that {∃M : |Sn| ≤ M ∀ n} is a zero event does the job. For a simple
symmetric random walk, look at the 2M steps in the same direction guarantees the
walk drifts and leaves the interval. Let

Ei = {X(i−1)2M+1 = X(i−1)2M+2 = Xi2M = 1}.

Then

{|Sn| < M ∀ n} ⊆
⋂
i≥1

Ei.

Thus

P (|Sn| ≤M ∀ n) ≤ P

⋂
i≥1

E{i

 =
(

1− 1
22m

)∞
= 0.

By subadditivity,

P (∃M ∈ N : |Sn| < M ∀ n) = P

 ⋃
M≥1
{|Sn| ≤M ∀ n}


≤
∑
M≥1

P ({|Sn| ≤M ∀ n}) = 0

�

6.6 Integral Inequalities

Let fn, n ≥ 1 be a sequence of measurable function. We state without proof the
following results:
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Lemma 6.19 (Fatou)
If fn ≥ 0, then

∫
lim inf
n→∞

fn dµ ≤ lim inf
n→∞

∫
fn dµ

Lemma 6.20 (Reverse Fatou)
If 0 ≤ fn ≤ g for all n, then

∫
lim sup
n→∞

fn dµ ≥ lim sup
n→∞

∫
fn dµ

Proof Apply Fatou to the sequence hn = g − fn. �

Exercise 6.5
Check necessity of the conditions for both lemmas.

Theorem 6.21 (Dominated convergence)
If fn

a.e.−−→ f and |fn| ≤ g a.e. with
∫
g dµ <∞. Then

∫
f dµ = lim

n→∞
fn dµ = lim

n→∞

∫
fn dµ.

The proof follows from Fatou’s lemma.

Corollary 6.22 (Bounded convergence)
In a probability space, if Xn

a.s.−−→ X and |Xn| ≤M ∀ n with M ≥ 0 fixed, then

E (X) = lim
n→∞

E (Xn)

Proof E (M) = M <∞ since unlike general abstract space, the integral of constant
functions is bounded and not infinite. �

Note
Boundedness is not sufficient if the space has infinite total measure.

Example 6.5
Take fn = 1

n1|x|≤n. Then fn → 0 pointwise and |fn| ≤ 1, but
∫
fn dλ = 2 6= 0 =∫

0 dλ.
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6.7 Convergence, Lp spaces and Lp convergence

Lp(Ω,F , µ) is the space of measurable functions f : Ω→ R with
∫
|f |p dµ <∞. We

say fn
Lp−→ f if fn ∈ Lp ∀ n, f ∈ Lp and∫

|fn − f |p dµ→ 0.

Why not require that the difference between the integral goes to zero? In fact,
since the latter would be asking that they both have same expectation, which tells
nothing about the functions being close together. One could consider a Gaussian
random variable with mean 1, an Exponential random variable or even a Poisson;
these have little in common.
Note
One can view Lp as a vector space. Indeed,

∫
|cf |p dµ = |c|p

∫
|f |p dµ

and ∫
|f + g|p dµ ≤

∫
(2 max(|f |, |g|))p dµ.

= 2p
∫

max(|f |, |g|)p dµ

= 2p
∫

max(|f |p, |g|p) dµ

≤ 2p
∫

(|f |p + |g|p) dµ

= 2p
(∫
|f |p dµ+

∫
|g|p

)

Thus Lp(Ω,F , µ) is a real vector space. In fact, it has a norm:

‖f‖p =
(∫
|f |p dµ

) 1
p

which follows from Minkowski inequality: thus ‖ · ‖p satisfies the triangle inequality.
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Lp convergence and other types of convergence

Note
If fn

Lp−→ f then for any ε > 0,

∫
|fn − f |p dµ ≥

∫
|fn − f |p 1|fn−f |>ε dµ ≥

∫
εp1|fn−f |>ε dµ = εpµ({|fn − f | ≥ ε})

but the leftmost term converges to zero, so µ({|fn − f | ≥ ε})→ 0 as well. In other
words, Lp convergence implies convergence in measure.

Definition 6.23 (Convergence in measure)
fn

µ−→ f (in measure) if ∀ ε > 0, µ(|fn − f | ≥ ε) → 0. For random variables,
P (|Xn −X| ≥ ε)→ 0.

Example 6.6
IfMn is the maximum win in the first n St-Petersburg games, thenMn/(2n log(n)) p−→
0 because P (|Mn/(n log(log(n)))| > ε)→ 0 but lim supn→∞Mn/(n log(log(n))) a.s.−−→
∞.

This means that convergence in probability is stronger than convergence in measure.

Note
Lp convergence does not implies a.e. convergence, neither is it implied by.

Example 6.7 (Moving bumps)
Consider a function indexed by integers: for n ≥ 1, 0 ≤ k ≤ 2n, write

f2n+k = n1|x|∈[ k2n , k+1
2n ]

Then fn : [0, 1]→ R, fn
Lp−→ 0 ∀ p as∫

|fn − 0|p dλ =
(
n

2n
)p
→ 0

It is in fact true that fn(x) not converging pointwise at any point x.

Example 6.8
To show that a.e. convergence does not imply Lp-convergence, take a box n1|x|<n
which is a box of area 2 ∀ n while it converges a.e. to the zero function.
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Proposition 6.24
For 1 ≤ p < q < ∞, if fn

Lq−→ f , then fn
Lp−→ f . This is subtle, using Jensen’s

inequality.
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Chapter 7

Tightness and inequalities

7.1 Tightness

This is an extract from Louigi’s blog.

When teaching a first rigorous course on probability, I think it is valuable to empha-
size that real-valued random variables should be thought of as random real numbers.
What I mean by this is that one should investigate the properties of random variables
by analogy with the behaviour of real numbers. In this post, I take this approach,
and ask: what is the probabilistic analogue of the Bolzano-Weirstrass theorem?
Theorem 7.1 (Bolzano-Weierstrass theorem)
Any bounded sequence of real numbers has a convergent subsequence.

Proof Fix a bounded sequence (xn, n ≥ 1) of real numbers; for convenience as-
sume that xn ∈ [0, 1] for all n. Then either infinitely many of the xn are at least
1/2, or infinitely many are at most 1/2 (or both), so we may find an increas-
ing sequence (n(1)

i , i ≥ 1) such that the subsequence (x
n

(1)
i

, i ≥ 1) of (xn, n ≥ 1)
lies either in [0, 1/2] or in [1/2, 1]. Repeating this argument, we may find a sub-
subsequence (x

n
(2)
i

, i ≥ 1) that lies in an interval of width 1/4, and a further subse-
quence (x

n
(3)
i

, i ≥ 1) lying in an interval of width 1/8, and so on.

Then use a diagonal argument; in other words, consider the subsequence x =
(x
n

(i)
i

, i ≥ 1), by construction, for all k ≥ 1, (x
n

(i)
i

, i ≥ k) lies in an interval of width
2−k. Thus x is Cauchy; since R is complete, it follows that x is convergent. �

Note the essential use of completeness in the above argument. The argument gen-
eralizes to compact subsets of complete metric spaces, by choosing appropriate re-
placements for the “dyadic covers” of the previous proof.
Exercise 7.1
Show that if (M, d) is a complete metric space andK ⊂M is compact, and (xn, n ≥ 1)
is a sequence of points in K, then (xn, n ≥ 1) has a convergent subsequence.

What is the analogous result for sequences of random variables? To start, consider a
sequence (Xn, n ≥ 1) of real random variables. How might one show that (Xn, n ≥ 1)
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has a convergent subsequence? It is tempting to argue as in the Bolzano-Weierstrass
theorem and begin by saying that either infinitely many of the Xn take their value in
[1/2, 1] or in [0, 1/2]. This doesn’t work, however; theXn are functions, not numbers.
We could, however, consider the sequence (xn, n ≥ 1) with xn = P (Xn ≤ 0). This is
a bounded sequence – each xn is between 0 and 1 – so has a convergent subsequence
(x
n

(1)
i

, i ≥ 1).

We then have at least some information about the sequence (X
n

(1)
i

, i ≥ 1), which is
that P

(
X
n

(1)
i

≤ 0
)
converges as n→∞. But we may then repeat this argument to

obtain a subsubsequence along which P
(
X
n

(2)
i

≤ 10
)
, say, converges. Enumerate the

rationals as (qi, i ≥ 1) and apply this argument at each rational, then diagonalize as
in Bolzano-Weierstrass; the result is a sequence (X

n
(i)
i

, i ≥ 1) along which P
(
X
n

(i)
i

≤
q
)
converges to some number fq ∈ [0, 1] for every rational number q.

Does this mean the sequence (X
n

(i)
i

, i ≥ 1) converges? Not necessarily: perhaps
fq = 0 for every q (so X

n
(i)
i

“tends to infinity”), or instead is 1 for every q. To
rule this out in the case of real numbers, we insisted the initial sequence should
be bounded. In this case, we require the random variables to be stochastically
bounded (or tight). This means that we may uniformly control the probability that
the random variables take large values. More precisely, say that (Xn, n ≥ 1) is tight
if for all ε > 0, there is K(ε) such that P (|Xn| ≥ K) < ε for all n. Writing µn for
the law of Xn, we equivalently have that (Xn, n ≥ 1) is tight if and only if

lim
N→∞

sup
n∈N

µn(R \ [−N,N ]) = 0.

The latter condition defines tightness for a family of measures on R, and more
generally applicable as it does not require the measures to be probability measures.

If (Xn, n ≥ 1) is indeed tight then f−K(ε) < ε and fK(ε) > 1− ε. Thus, the sequence
(fq, q ∈ Q) satisfies fq → 0 as q → −∞ and fq → 1 as q →∞. It is easily verified
that fq is non-decreasing in q. In order to define a cumulative distribution function,
let

F (r) = inf
q>r,q∈Q

fq = lim
q↓r,q∈Q

fq.
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Exercise 7.2
Suppose that the random variables (Xn, n ≥ 1) form a tight family. Show that in this
case the function F defined above is a cumulative distribution function (cdf). Let
X be a random variable with cdf F . Show that X

n
(i)
i

converges to X in distribution
as i→∞, i.e., that P

(
X
n

(i)
i

≤ x
)
→ P (X ≤ x) for all x points of continuity of F .

Exercise 7.3
More generally, if (Xn, n ≥ 1) are random variables taking value in a metric space
(M, d), we say that (Xn, n ≥ 1) is tight if for all ε > 0 there is a compact K ⊂M
such that P (Xn 6∈ K) < ε for all n. Show that in this case (Xn, n ≥ 1) has a sub-
sequence (X

n
(i)
i

, i ≥ 1) such that for all bounded, continuous functions g : M→ R,
g(X

n
(i)
i

) converges in distribution. (Hint: first prove this for a countable collection
of indicator functions, then use a monotone class argument.)

Exercise 7.4 (Portmanteau theorem for real random variables)
Let (Xn, n ≥ 1) be a tight sequence of real random variables. Show that Xn con-
verges in distribution if and only if for all bounded continuous functions g : R→ R,
E (g(Xn)) converges.

We conclude with a word on uniform integrability. Say that the random variables
(Xn, n ≥ 1) are uniformly integrable if

lim
N→∞

sup
n∈N

E (|Xn|; |Xn| ≥ N) = 0.

Let µn be the law of Xn, and let µ̂n be the linear tilt of µn, obtained by setting

µ̂n(A) = E (Xn;A) .

Exercise 7.5 (Uniform integrability and tightness)
Show that (Xn, n ≥ 1) are uniformly integrable if and only if the family of measures
(µ̂n, n ≥ 1) are tight.
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7.2 Inequalities

Theorem 7.2 (Jensen inequality)
Let X be a random variable, f : R→ R convex and X, f(X) ∈ L1, then

f(E (X)) ≤ E (f(X))

Proof The idea is to look at the graph. Another proof is as follow: let |supp(X) = 2.
Then ∃{a, b} : P (X ∈ (a, b)) = 1. Prove for finite support by induction, then
approximate by simple functions. �

Corollary 7.3
The ‖ · ‖p norms are increasing, that is ‖X‖p ≤ ‖X‖r whenever 1 ≤ p ≤ r. Recall
that

‖X‖p = E (|X|p)
1
p

Proof |X|r = (|X|p)
r
p so take f(x) = |x|

r
p , a convex function. Then, by Jensen,

E (|X|r) = E
(
(|X|p)

r
p

)
= E (f (|x|p))

≥ f (E (|X|p))

= (E (Xp
n))

r
p

and now take rth roots. But we didn’t check that |X|p or f(|X|p) are in L1.

The solution is to use monotone convergence theorem, with

E (|X|p) = lim
n→∞

E (min(|X|, n)p)

E (|X|r) = lim
n→∞

E (min(|X|, n)r)

and as r →∞, (E (|X|r))
1
r → esssup(X) if ‖X‖∞ <∞ and where

esssup(X) = sup{x : P (X > x) > 0}
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�

Lemma 7.4 (Scheffé)
Fix p ≥ 1 and suppose that Xn

a.s.−−→ X. Then

E (|Xn|p)→ E (|X|p) <∞ ⇔ E (|Xn −X|p)→ 0

Proof We start with sufficiency (⇐). If E (|Xn −X|p)→ 0 , then ‖Xn−X‖p → 0.
Next,

‖Xn‖p = ‖X + (Xn −X)‖p
≤ ‖X‖p + ‖Xn −X‖p

using the triangle inequality, so

lim sup
n→∞

‖Xn‖p ≤ lim sup
n→∞

(‖X‖p + ‖Xn −X‖p) = ‖X‖p

To conclude, replace Xn, X by −Xn, X and repeat.

For necessity (⇒), Let Y = −X; then

|Xn −X|p = |Xn + Y |p

< 2p (|Xn|p + |Y |p)

= 2p (|Xn|p + |X|p)

Now, if we let Zn = 2p (|Xn|p + |X|p)− |Xn −X|p ≥ 0 so by Fatou’s lemma,

E
(
lim inf
n→∞

Zn
)
≤ lim inf

n→∞
E (Zn)

but the left hand side is 2p+1E (|X|p) using the fact that Xn
a.s.−−→ X and the right

hand side is by linearity (provided that the random variables are in L1, which they
are if the limit is finite)

lim inf
n→∞

E (Zn) =2pE (|X|p) + lim inf
n→∞

2pE (|Xn|p)− lim inf
n→∞

E (|Xn −X|p)
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=2pE (|X|p) + lim inf
n→∞

2pE (|X|p)− lim inf
n→∞

E (|Xn −X|p)

Taking differences, we get

0 ≤ − lim inf
n→∞

E (|Xn −X|p)

so the latter implies lim supn→∞ E (|Xn −X|p) = 0. It is always true that conver-
gence in Lp implies convergence in norms. �

We now give the proof of Hölder inequality. One may view it as a concentration
inequality. For X,Y centered random variable, with E (X) = 0,E (Y ) = 0, we
say X,Y are negatively correlated. For X,Y,XY ∈ L1, X,Y are negatively
correlated if

E ((X − E (X))(Y − E (Y ))) ≤ 0

or in other words

E (XY ) ≤ E (X) E (Y ) .

Theorem 7.5 (Hölder inequality)
For p, q ≥ conjugate exponents, i.e. 1

p + 1
q = 1, if X ∈ Lp, Y ∈ Lq, then XY ∈ L1

and

E (|XY |) ≤ E (|X|p)
1
p E (|Y |q)

1
q

‖XY ‖1 ≤ ‖X‖p‖Y ‖q

This can be used to optimize. A particular case is when X,Y ∈ L2, with p =
q = 1

2 . We get then E (|XY |) ≤
√

E (X2) E (Y 2), the so-called Cauchy-Schwartz
inequality.

Note
We can make the proof and our lives easier by rescaling, without affecting the
inequality. In fact, we may look at the equivalent statement

E

 |X|
E (|X|p)

1
p

|Y |
E (|Y |q)

1
q

 ≤ E
( |X|p

E (|X|p)

) 1
p

E
( |Y |q

E (|Y |q)

) 1
q

= 1
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or

E
(
|X|
‖X‖p

|Y |
‖Y ‖q

)
≤ (E (|X|p))

1
p

‖X‖p
(E (|Y |q))

1
q

‖Y ‖q
= 1

If we relabel |X|

E(|X|p)
1
p

= X ′ and similarly for Y ′, we get ‖X ′‖p = ‖Y ′‖q = 1.

So it suffices to show that if X,Y are nonnegative and ‖X‖p = ‖Y ‖q = 1, then
E (XY ) ≤ 1.

The proof will follow easily from

Lemma 7.6 (Young’s inequality)
For all a, b > 0,

ab ≤ ap

p
+ bq

q

Proof Take logarithms, then

log(ab) = log(a) + log(b)

= 1
p

log(ap) + 1
q

log(bq)

≤ log
(1
p
ap + 1

q
bq
)
.

since logarithms are concave, so the weighted average is below the value of the value
at the weighted average. (Recall that for concave functions f , f(θα + (1 − θ)β) ≥
θf(α) + (1− θ)f(β) �

Proof We just learned pointwise that

XY ≤ Xp

p
+ Y q

q

Taking expectations, the statement still holds true

E (XY ) ≤ 1
p

E (|X|)p + 1
q

E (|Y |q)
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= 1
p
‖X‖pp + 1

q
‖Y ‖qq

= 1
p

+ 1
q

= 1.

Remark that we could get a bound that is less sharp than Hölder inequality, if p, q
were not conjugate exponents. �

Theorem 7.7 (Markov’s inequality)
If X ≥ 0 and f : R→ [0,∞) increasing, then for all t ≥ 0

P (X ≥ t) ≤ E (f(X))
f(t)

Proof

E (f(X)) ≥ E (f(X)1X≥t) ≥ E (f(t)1X≥t) = f(t)E (1X≥t) = f(t)P (X ≥ t) .

�

Some important cases are when

◦ f(x) = |x|,P (|X| ≥ t) ≤ E (|X|)/t for t > 0
◦ f(x) = x2,P (|X| ≥ t) ≤ E

(
X2) /t2

◦ If X ∈ L1, then for Y = X − E (X),

P (|X − E (X) | ≥ t) ≤ E
(
Y 2)
t2

= Var (X)
t2

◦ Chebyshev’s inequality

Var (X) = E
(
(X − E (X))2

)
which is equal to E

(
X2)− (E (X))2 if X ∈ L1, using linearity of expectation.

◦ Chebyshev inequality for sums: if S =
∑k
i=1Xi and X1, . . . , Xk are pairwise

independent, then Var (S) =
∑k
i=1 Var (Xi). We prove for the mean zero case.
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Proof Wlog, say E (Xi) = 0, we then have

E
(
S2
)

= E

( k∑
i=1

Xi

)2
= E

 k∑
i=1

X2
i + 2

∑
1≤i<j≤k

XiXj


=

k∑
i=1

E
(
X2
i

)
+ 2

∑
1≤i<j≤k

E (XiXj)

=
k∑
i=1

Var (Xi)

where we use the fact (which will prove shortly) that forX,Y independent, E (XY ) =
E (X) E (Y ) so the cross term vanish. �

Thus

P (|S − E (S) | > t) ≤
∑k
i=1 Var (Xi)

t2
.

Note that this bound is useful when t2 > k sup1≤i≤k Var (Xi).
Proposition 7.8 (Chernoff bound)
If (Xi, 1 ≤ i ≤ k) are iid with mean 0, then with f(x) = ecx, using Markov inequality,
we have for S =

∑k
i=1Xi for all c > 0,

P (S ≥ t) ≤
E
(
ecS
)

ect
(Markov)

= e−ctE
(

k∏
i=1

ecXi

)

e−ct
k∏
i=1

E
(
ecXi

)
(independence)

= e−ct
(
E
(
ecXi

))k
(identically distributed)

noting that S ≥ t⇔ ecS ≥ ect. Write t = αk, then write

E
(
ecX1

)
= exp

(
log

(
E
(
ecX1

)))
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to obtain

P (S ≥ αk) ≤ e−cαk exp
(
k log

(
E
(
ecX1

)))
= exp

(
k log

(
E
(
ecX1

)
− αc

))
If the expectation is finite and we do not run into paradoxs such as the St-Petersburg’s
one, Chernoff bound is useful. For given α, we can optimize for c and the bound is
very good, even in comparison with Sterling formula, exponentially small is

√
(n)

error, which is not so bad. The “fonction Legendre” is what appear in the exponent,
describing entropy or energy trade-off by choosing c.

We will now use Chebyshev inequality to prove a weak law of large number. We
then prove Weirstrass approximation theorem, to show polynomials are dense in the
bounded functions. We will start strengthening the weak law, with only finite mean,
or existing variance. The book assumes finite fourth moment for the proof.

Proposition 7.9 (Independence means multiply)
If X,Y ∈ L1(Ω,F ,P) for X ⊥⊥ Y , then XY ∈ L1 and E (XY ) = E (X) E (Y ).

We did not needed to use the former fact since the variance were finite and thus the
statement could be deduced from Hölder.

Proof We use the standard machine. For indicators, if 1A ⊥⊥ 1B ⇔ A ⊥⊥ B, then

E (1A1B) = E (1A∩B) = P (A ∩B) = P (A) P (B) = E (1A) E (1B)

and the rest follows, we only need to prove for non-negative functions since checking
that the functions are in L1 is equivalent to this. . �

If X1, . . . , Xk ∈ L1 are mutually independent, then
∏k
i=1Xi ∈ L1,

E
(

k∏
i=1

Xi

)
=

k∏
i=1

E (Xi)
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Chapter 8

Laws of large numbers
Theorem 8.1 (Weak law of large numbers)
If (Xi, i ≥ 1) are pairwise independent with mean zero and supi≥1 Var (Xi) < ∞,
then setting Sn =

∑n
i=1Xi, we have Sn/n

d−→ 0, that is ∀ ε > 0,

P
(∣∣∣∣Snn

∣∣∣∣ > ε

)
→ 0 as n→∞

Proof Using Chebyshev. Write K = supi≥1 Var (Xi), then

P
(∣∣∣∣Snn

∣∣∣∣ > ε

)
= P (|Sn| > εn)

≤
∑n
i=1 Var (Xi)
ε2n2 ≤ nK

ε2n2 = K

ε2 ·
1
n
.

�

Remark
If we had a bound that was stronger than 1/n and did converge, we could use
Borel-Cantelli lemma to prove the strong law of large numbers. Assuming fourwise
independence and using the fourth moment (assuming supi≥1 E

(
X4
i

)
<∞), we get

a tighter bound replacing Chebyshev inequality with Markov for f(x) = x4. This is
what is done in the book.
Remark
We can replace pairwise independence with pairwise uncorrelatedness21. We can also
weaken the rate of convergence of the variance relative to n. The variancegrowing
sublinearly, say log(n), is a sufficient condition. Changing the mean zero by some
stabilization also works, since we are bounding deviations from the mean of the sum.

Proposition 8.2 (Weak law of large numbers in L1)
If (Xi, i ≥ 1) are identically distributed, pairwise independent with mean zero, and
measure µ, then Sn/n

L−→ 0
21Complete relaxation would not work, if for example we take a coin toss as X1 and all other

random variables replication of this experiment. Then Sn/n is 1 ∀ n
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Remark
If a ≤ X ≤ b, then |X − E (X) | ≤ b− a so that Var (X) ≤ (b− a)2.

Exercise 8.1
The worst case scenario happens when P (X = b) = 1/2 and P (X = a) = 1/2.
Improve this bound to (b− a)2/4.

Proof For i ≥ 1, N ≥ 0, write X≤Ni = Xi1|Xi|≤N and X>N
i = Xi − X≤Ni =

Xi1|Xi|>N . The first elements have finite variance, so we can readily apply WLLN.
The second have small mean, so do not contribute much.

Note
|X≤Ni | ↑ |Xi| so by the monotone convergence theorem,

E
(∣∣∣X≤NI ∣∣∣) ↑ E (|Xi|)

Only one of these is only non-zero, both are different one can apply the triangle
inequality. Indeed, X≤Ni +X<N

i = Xi, which is also true in absolute value,

so E
(
|X>N

I

)
↓ 0.

Fix ε > 0 and let N = N(ε) large enough that

E
(∣∣∣X>N

1

∣∣∣) ≤ ε2

8 .

Then, writing

S≤Nn =
n∑
i=1

X≤Ni

and so the probability for X≤Ni can be bounded as

P
(∣∣∣∣∣S≤Nnn − E

(
X≤N1

)∣∣∣∣∣ > ε

2

)
≤

Var
(
X≤Ni

)
ε/22n

≤ 4N2

ε2
1
n
<
ε

2
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for n large. Second,

P
(∣∣∣∣∣S>Nnn − E

(
X>N

1

)∣∣∣∣∣ > ε

2

)

≤ 2
ε

E
(∣∣∣∣∣S>Nnn − E

(
X>N

1

)∣∣∣∣∣
)

= 2
nε

E
(∣∣∣∣∣

n∑
i=1

X>N
i − E

(
X>N

1

)∣∣∣∣∣
)

≤ 2
nε
nE
(∣∣∣X>N

i − E
(
X>N

1

)∣∣∣) (4ineq.)

≤ 2
ε

(
E
(∣∣∣X>N

1

∣∣∣)+
∣∣∣E (X>N

1

)∣∣∣) (4ineq.)

≤ 4
ε

2E
(∣∣∣X>N

1

∣∣∣) (|E (·) | ≤ E (| · |))

≤ 4
ε

ε2

8 ≤
ε

2 .

Combining these bounds with the 4 inequality yields

P (|Sn/n| > ε) ≤ ε

2 + ε

2 = ε

for n large enough. This is enough to yield convergence in probability. �

Exercise 8.2
Draw the picture of the different events. Convince yourself that when ε decreases,
the bound gets better and we get convergence in probability.

8.1 Strong law of large numbers

We now target the strong law of large numbers, proving a weaker statement and
building up to a general result.

Theorem 8.3 (Strong law of large numbers)
Let (Xn, n ≥ 1) be iid and Xi ∈ L1. If Sn =

∑n
i=1Xi, then Sn/n

a.s.−−→ E (Xi), that
is

P
(

lim
n→∞

Sn
n

exists, lim
n→∞

Sn
n

= E (Xi)
)

= 1
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Exercise 8.3
Prove the WLLN from the SLLN

We need first a definition:
Definition 8.4 (Lacunary)
A sequence (ni, i ≥ 1) is lacunary if ∃c > 1 such that for all i sufficiently large,
ni+1/ni > c.

Theorem 8.5 (Nonnegative lacunary strong law of large numbers)
In the setup of SLLN, if Xi

a.s.
≥ 0, then for any lacunary sequences (nk)k≥1, then

P
(

lim
k→∞

Snk
nk

exists, lim
k→∞

Snk
nk

)
= E (Xi)

Notation
We will write S̄n for Sn/n. We write S≥Nn =

∑n
i=1X

≥N
i /n

Proof It suffices to show that ∀ ε > 0,

∞∑
k=1

P
(∣∣∣S̄nk − E (Xi)

∣∣∣ > ε
)
< ε (8.1)

Since then

P
((

lim
k→∞

Snk
nk

= E (Xi)
){)

= P

 ⋃
m≥1

{∣∣∣S̄nk − E (Xi)
∣∣∣ > 1

m
for ∞ many k

}
≤
∑
m≥1

P
(∣∣∣S̄nk − E (Xi)

∣∣∣ > 1
m

for ∞ many k
)

= 0

using subadditivity, (8.1) and the first Borel-Cantelli lemma 1.

So for ε > 0, let i0 be such that E
(
X≤ni0

)
≥ E (Xi)− ε as E

(
X

(>ni0
i

)
< ε.22 Then

S̄nk = S̄≤nknk
+ S̄>nknk

. So for k ≥ i0, 23

22For convergence, only the tail of the sequence matters, so we can only look at values past i0
23Taking A = {

∣∣S̄nk − E (Xi)
∣∣ > 2ε}, B = {

∣∣S̄≤nk
nk − E

(
X
≤nk
i

)∣∣ > ε} and C = {S̄>nk
nk 6= 0} and

breaking A into B ∩ C tB ∩ C{ ⊂ B ∩ C{ t C.
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P
(∣∣∣S̄nk − E (Xi)

∣∣∣ > 2ε
)

= P
(
S̄>nknk

6= 0
)

+ P
(∣∣∣S̄≤nknk

− E (Xi)
∣∣∣ > 2ε

)
≤ P

(
S̄>nknk

6= 0
)

+ P
(∣∣∣S̄≤nknk

− E
(
X≤nki

)∣∣∣ > ε
)

Next

P
(
S̄>nknk

6= 0
)

= P
(
nk∑
i=1

X>nk
i 6= 0

)

= P
(
nk⋃
i=1
{X>nk

i 6= 0}
)

(non-negativity)

≤
nk∑
i=1

P
(
{X>nk

i 6= 0}
)

(subadditivity)

= nkP
(
{X>nk

i 6= 0}
)

(iid)

and

P
(∣∣∣S̄≤nknk

− E
(
X≤nki

)∣∣∣ > ε
)
≤

Var
(
X≤nki

)
ε2nk

≤
E
((
X≤nki

)2
)

ε2nk

?
≤ ∞

using Chebyshev inequality.

Let J = min{k : nk ≥ Xi}. Then∑
k≥i0

nkP
(
X>nk
i 6= 0

)
=
∑
k≥i0

E (nk1Xi>nk)

= E

 ∞∑
k=i0

nk1Xi>nk


= E

J−1∑
k=i0

nk1Xi>nk

 (8.2)
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because 1Xi>nk is zero for k ≥ J. Because nk is lacunary, nJ−1 < Xi, nJ−2 <
nJ−1
/ c < Xi/c, nJ−3 ≤ Xi/c

2. So

J−1∑
k=i0

nk1Xi>nk <
J−1∑
k=i0

Xi

cJ−1−k ≤ Xi

∑
i≥0

c−i = Xi

c− 1

So (8.2) ≤ E (X1/(c− 1)) <∞. Likewise,

∞∑
k=i0

(
X<nk
i

)2
nk

=
∞∑

k=max(J,i0)

(
X<nk
i

)2
nk

≤
∞∑

k=max(J,i0)

XinJ
nk

≤
∞∑

k=max(J,i0)

1
ck−J

Xi

≤ Xi

c− 1

using the bounds Xi = X≤nki ad Xi < nJ and lacunary in the subsequent step. So

E

 ∞∑
k=i0

(
X<nk
i

)2
nk

 ≤ E
(
Xi

c− 1

)
<∞.

We used Borel-Cantelli to get a finite bound rather than prove the terms went to
zero. We used subadditivity and took gaps to bound the sum using the lacunary
assumption to replace the sum by summable terms. The variance of the truncated
term is finite, so we used Chebychev to replace (ε2 was a constant). The bounds
behave like numbers, we proved statements pointwise for every fixed ω. �

Proposition 8.6 (Nonnegative strong law of large numbers)
In the setup of the SLLN, if X − i

a.s.
≥ 0, then S̄n

a.s.−−→ E (Xi)

Proof Assume for simplicity that E (X1) = 1. A plot of the expected value of the
sum E (Sn) (the target) against Sn = n is the line y = x. Say Sk > (1 + ε)E (Sk) for
some k, an upper bound for some interval. At x = k(1 + ε

2), for every l ∈ [k, k(1 +
ε/2). If we take a lacunary sequence c = 1 + ε/3. Fix ε > 0, let nk = d(1 + ε)ke. By
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Sn

E (Sn)k

Sk > (1 + ε)E (Sk)

Sk < (1− ε)E (Sk)

the nonnegative lacunary SLLN, S̄nk
a.s.−−→ 1 as k →∞. We show if |S̄n − 1| > 2ε for

infinitely many n, then
∣∣S̄nk − 1

∣∣ > ε
3 for infinitely many k.

Assuming this, the theorem follows easily. To see this, fix n large and let k be
minimal such that nk ≥ n. If S̄n ≥ 1 + 2ε, then Sn ≥ n(1 + 2ε) so

Snk ≥ n(1 + 2ε) ≥ nk − 1
1 + ε

(1 + 2ε) ≥ nk
(

1 + ε

3

)
for n large enough and ε small. �

Exercise 8.4
Prove the corresponding lower bound.

For an increasing series macroscopic fluctuations are witnessed by geometric subse-
quences.

Proof For the strong law, we can use X = X+ − X− where S+
n =

∑n
i=1X

+
i

and S−n =
∑n
i=1X

−
n ; then Sn = S+

n − S−n and by the nonnegative SLLN, S̄n+ a.s.−−→
E
(
X+
i

)
,

S̄n
− a.s.−−→ E

(
X−i

)
< 0 and Sn

a.s.−−→ E
(
X+
i

)
− E

(
X−i

)
= E

(
X+
i −X

−
i

)
= E (Xi)

using decomposition into positive and negative functions. We have linearity of
expectation. �
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Exercise 8.5
Read and understand the Weierstrass approximation theorem.

8.2 Weirstrass approximation

Theorem 8.7 (Weirstrass approximation)
If f is a continuous function on [0, 1] and ε > 0, then there exists a polynomial B
such that sup[0,1] |B(x)− f(x)| ≤ ε.

Proof Let Xi be iid binary random variables with expectation p and define Sn =∑n
i=1Xi. Then, since Xi are Bernoulli random variates, it follow that Sn is a

Binomial random variable with parameters (n, p) and hence

Bn(p) := E
(
fn−1Sn

)
=

n∑
k=0

f(n−1k)
(
n

k

)
pk(1− p)n−k

B refers to the Bernstein polynomials. f is bounded on the interval [0, 1] and thus
attains a maximum value so |f(y)| ≤ K ∀ y ∈ [0, 1]. It is also uniformly continuous,
which means |x− y| ≤ δ implies |f(x)− f(y)| < 1

2ε. Let p ∈ [0, 1], then

|Bn(p)− f(p)| =
∣∣∣E (f(n−1Sn)

)
− f(p)

∣∣∣ .
Write Yn := |f(n−1Sn) − f(p)| and Zn := |n−1Sn − p|. Then Zn < δ implies that
Yn <

1
2ε and thus

|Bn(p)− f(p)| ≤ E (Yn)

= E (Yn;Zn ≤ δ) + E (Yn;Zn > δ)

≤ 1
2εP (Zn ≤ δ) + 2KP (Zn > δ)

≤ 1
2ε+ 2K

4nδ2

since from Chebyshev’s inequality

P
(
|n−1Sn − p| > δ

)
≤ 1

4nδ2

Choosing n such that K/(2nδ2) < 1
2ε gives us |Bn(p)− f(p)| < ε for all p ∈ [0, 1]. �
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Chapter 9

Product spaces, multiple integrals and Fubini theorem

9.1 Product space

We will work in this section in finite measurable spaces, but everything goes through
to σ-finite spaces.
Definition 9.1 (Product space)
If (Ω1,F1) and (Ω2,F2) are measurable spaces, we define the product space (Ω1 ×
Ω2,F1 ×F2) by

Ω1 × Ω2 = {(ω1, ω2) : ω1 ∈ Ω1, ω2 ∈ Ω2}

F1 ×F2 = σ({E1 × E2 : E1 ∈ F1, E2 ∈ F2})

and {E1 × E2 : E1 ∈ F1, E2 ∈ F2} is a π-system.24

We have seen an example of product space before when working with random walks
with step ±1. Rather than working with rectangles, we were using the cylinder
map. In general, for uncountable products, we want to work with the latter. This
motivates the following
Note

F1 ×F2 = σ(cylinders) = σ({E1 × Ω2 : E1 ∈ F1} ∪ {Ω1 × E2 : E2 ∈ F2})

More generally, for {(Ωi,Fi), i ∈ I}, where Fi are σ-algebras, define the product
σ-algebra by

∏
i∈I
Fi = σ

⋃
i∈I


{
ω ∈

∏
j∈I

Ωj : ωi ∈ Ei

}
, Ei ∈ Fi




and denote by Ω :=
∏
j∈I Ωj . For I countable, this is the smallest σ-algebra such

that given functions fi : Ωi → R, if each fi is Fi − B(R) measurable, then the
24 F1 × F2 is not in general a σ-algebra, so we mean by this the closure of this set. This abuse

of notation is common.
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function f : Ω→ R, f((ωj , j ∈ I)) = fi(ωi) is measurable for all i ∈ I.
Example 9.1
Consider Rn with B(Rn) = σ(open sets in Rn) versus Bn(R) = B(R)×B(R)× · · · ×
B(R) which is equal to σ(rectangles in Rn). For any open set A ⊂ Rn, write

A =
⋃

q∈Qn∩A

⋃
r∈Q,r>0
Bq(r)∈A

Bq(r)

using separability of Rn (it has a countable dense subset, namely Qn is dense in Rn)
so B(Rn) ⊂ B(R)n.
Exercise 9.1
Show that B(R)n ⊂ B(Rn). More generally, this works on finite products of separable
metric spaces. In L∞ metric, the circle is a square; we can use the fact that all Lp

distances give rise to the same topology, so this is clear from that point of view.
Proposition 9.2
If f : Ω1×Ω2 → R, f is F1×F2 measurable, then for all ω1 ∈ Ω1, f(ω1, •) : Ω2 → R
is F2-measurable and for all ω2 ∈ Ω2, then f(•, ω2) : Ω1 → R is F1-measurable. If
f satisfies this property, say f is “good”.

To prove the above, we will use the Monotone class theorem.

Suppose (Ω,F) is a measure space and let H be a collection of functions f : Ω→ F
and P is a π-system with σ(P) ∈ F . If

◦ 1f ∈ H for all f ∈ P
◦ H is a real vector space, f, g ∈ H implies f + g ∈ H
◦ H closed under bounded monotone limits, then

∀ bounded f ∈ Ω→ R, f is F-measurable, f ∈ H

Proof Let H = {f : Ω1 × Ω2 → R : f“good”}. Let

P = {E1 × E2 : E1 ∈ F1, E2 ∈ F2}.

Then for f = 1E1×E2 and ω1 ∈ Ω1. There are two cases for f(ω)1, •) = 1(ω1,•)∈E1×E2 .
If ω1 ∈ E1, then f = 1E2 , while if ω1 /∈ E1, then f ≡ 0. Applying a sym-
metric argument to f(•, ωw) shows f is “good”. So 1E ∈ H for all E ∈ P.
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Next, H is a vector space because if h = cf + g, for f, g : Ω1 × Ω2 → R, then
h(ω1, •) = cf(ω1, •) + g(ω1, •), linearity combinations are also measurable in the
one-dimensional setting using closure properties established before, so f(ω1, •) and
g(ω1, •) are F2-measurable implies that h(ω1, •) is as well and any slice will be. For
any slice, if the surface is increasing, then the picture is clear: this step is left to the
reader.
Exercise 9.2
Show “goodness” is preserved under bounded monotone limits.

By the monotone class theorem, it follows that all bounded F1 × F2-measurable
functions f : Ω1 × Ω2 → R are “good”.

For f ≥ 0, write f = limn→∞min(f, n) and redo the monotonicity argument. For
the general case, write f = f+ − f− and use vector space property (linearity). �

9.2 Multiple integrals

Let (Ω1,F1, µ1) and (Ω2,F2, µ2) be measurable spaces, write Ω,F) = (Ω1×Ω2,F1×
F2) and let f : Ω→ R be a bounded F-measurable function.

We want to define ∫∫
f dµ1 dµ2

we need to decide which to fix one coordinate and integrate over the second. We need
to know that

∫
f(x, ω2) dµ1(x) is F2-measurable. Similarly, if we define

∫∫
f dµ2 dµ1,

we want
∫
f(ω1, y) dµ2(y) is F1-measurable. Call a function satisfying both of these

“satisfying”.

Proposition 9.3
Bounded F-measurable functions are “satisfying”.

Proof We use again the monotone class theorem. If f = 1E1×E2 , then

f2(µ2) =
∫

1E1×E2(x, ω2) dµ1(x) = µ1(E1)1E2(ω2)
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which is F2-measurable. Likewise, the function

f1(ω1) =
∫

1E1×E2(ω1, y) dµ2(y)

is F1-measurable. Next, if h = cf + g and f, g are “satisfying”, then∫
h(x, ω)2 dµ1(x) =

∫
[cf(x, ω2) + g(x, ω2)] dµ1(x)

= c

∫
f(x, ω2) dµ1(x) +

∫
g(x, ω2) dµ1(x)

Since f, g are “satisfying”, this is a linear combination of measurable functions so
measurable. A symmetric argument shows

∫
h(ω1, y) dµ2(y) is F2-measurable, so h

is satisfying. Finally, if hn ↑ h bounded, and hn are “satisfying”, we can assume hn
is positive by adding the lower bound. Then by the MCT in the first coordinate
pointwise for ω2 ∫

h(x, ω2) dµ1(x) = lim
n→∞

∫
hn(x, ω2) dµ1(x)

for all ω2 ∈ Ω2. So the LHS is an increasing limit of F2 measurable functions so is
itself F2-measurable. The proposition follows. �

Insofar, we have constructed (Ω1×Ω2,F1×F2), saw that Bn(R) = B(Rn) and defined
iterated integrals

∫ ∫
f dµ1 dµ2 for f : Ω1 × Ω2 bounded and F1 ×F2 measurable.

Definition 9.4 (Product measure)
Given measurable spaces (Ω1,F1, µ1) and (Ω2,F2, µ2), define the product measure
µ = µ1 × µ2 as follows: for a rectangle E = E1 × E2 ∈ F1 × F2, the σ(rectangle),
let µ(E) = µ1(E1) · µ2(E2).

Claim
µ is a pre-measure on the algebra of finite disjoint unions of rectangles. If this holds,
then µ extends uniquely to a measure on F1 × F2 (we still assume µ1, µ2 are finite
measures).
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Note

µ

(
n⋃
i=1

Ei,1 × Ei,2

)
=

n∑
i=1

µ (Ei,1 × Ei,2)

Proof By monotonicity,

E =
n⋃
i=1

Ei,1 × Ei,2 ⊂
m⋃
j=1

Fj,1 × Fj,2 = F

One way to prove this uses the fact that
⋃m
j=1 Fj,1 × Fj,2 \

(⋃n
i=1Ei,1 × Ei,2

)
is a

finite disjoint union of rectangles. We proceed however with integrals.

Using monotonicity, then 1E ≤ 1F and 1E ,1F are F1 ×F2 measurable, so∫ (∫
1E dµ1

)
dµ2 ≤

∫ (∫
1F dµ1

)
dµ2

since 1E < 1F for all ω2, thus
∫

1E(•, ω2) dµ1 and now integrate over Ω2.

but 1E =
∑n
i=1 1Ei,1×Ei,2 so for every ω2 ∈ Ω2,

∫
1E(•, ω2) dµ1 =

∫ n∑
i=1

1Ei,1×Ei,2(•, ω2) dµ1

=
n∑
i=1

∫
1Ei,1×Ei,2(•, ω2) dµ1

Now integrate with respect to ω2 :

∫∫
1E dµ1 dµ2 =

∫ ( n∑
i=1

∫
1Ei,1×Ei,2(•, ω2) dµ1

)
dµ2

=
n∑
i=1

(∫
1Ei,1×Ei,2(•, ω2) dµ1

)
dµ2

=
n∑
i=1

∫
µ1(Ei,1)1Ei,2 dµ2

=
n∑
i=1

µ1(Ei,1) · µ2(Ei,2)
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= µ(E)

using linearity and additivity proven last class.

The same logic shows
∫∫

1F dµ1 dµ2 = µ(F ) so µ(E) ≤ µ(F ). �

We thus have the following:

◦ finite additivity: exercise (apply the definition)
◦ countable consistency: if E is a (finite union) of rectangle(s) and also E =⋃
i≥1Ai × Bi then µ(E) =

∑
i≥1 µ(Ai × Bi) disjoint. To prove this, note that

µ(E) =
∫∫

1E dµ1 dµ2 and also, for each n,

µ

(
n⋃
i=1

Ai ×Bi

)
=
∫∫

1⋃n

i=1 Ai×Bi
dµ1 dµ2.

But 1⋃n

i=1 Ai×Bi
↑ 1E as n → ∞. So by the monotone convergence theorem, we

have pointwise convergence for each ω2∫
1⋃n

i=1 Ai×Bi
(•, ω2) dµ1 ↑

∫
1E(•, ω2) dµ1

Now, applying MCT a second time gives

lim
n→∞

∫∫
1⋃n

i=1 Ai×Bi
dµ1 dµ2 =

∫∫
1E dµ1 dµ2

so

µ(E) =
n∑
i=1

lim
n→∞

∫∫
1⋃n

i=1 Ai×Bi
dµ1 dµ2

= lim
n→∞

n∑
i=1

lim
n→∞

∫∫
1Ai×Bi dµ1 dµ2

= lim
n→∞

n∑
i=1

µ(Ai ×Bi)

=
∑
i≥1

µ(Ai ×Bi).

Thus µ is a pre-measure, so extends uniquely to a measure on (Ω1 × Ω2,F1 × F2)
since F1 ×F2 is generated by finite disjoint unions of rectangles.
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This is the unique measure on F1 × F2 for which the integral
∫

1A×B dµ = µ1(A) ·
µ2(B) =

∫∫
1A×B dµ1 dµ2. This agrees with our rectangle area of base times height

if A × B is a rectangle. We have also checked iterated integrals for indicators, the
first step in Fubini’s theorem which we tackle next.

Theorem 9.5 (Fubini)
Let (Ω1,F1, µ1) and (Ω2,F2, µ2) be σ-finite measure spaces,

and f : Ω1 × Ω2 → R are F1 × F2 measurable functions. If f ∈ L1(Ω1 × Ω2,F1 ×
F2, µ1 × µ2) or f ≥ 0, then∫∫

f dµ2 dµ1 =
∫
f dµ =

∫∫
f dµ1 dµ2.

Proof Assume µ1, µ2 are finite.25 Apply the monotone class theorem to

H =
{
f bounded, product measurable,

∫∫
f dµ1 dµ2 =

∫
f dµ =

∫∫
f dµ2 dµ1

}
Then

◦ 1A×B ∈ H proven already.
◦ f, g ∈ H ⇒ cf + g ∈ H by linearity of integration.
◦ if fn ≥ 0, fn ∈ H, fn ↑ f bounded, then∫
f dµ = lim

n→∞

∫
fn dµ = lim

n→∞

∫∫
fn dµ1 dµ2 =

∫∫
lim
n→∞

fn dµ1 dµ2 =
∫∫

f dµ1 dµ2

using monotone convergence theorem three times. Likewise,
∫
f dµ =

∫∫
f dµ2 dµ1

Thus, H contains all bounded measurable functions, f : Ω1 × Ω2 → R.

This is not general enough. For Tonelli’s theorem, if f ≥ 0, then we use MCT
three more times. If f ≥ 0, then f = limn→∞ fn where fn = min(f, n) so

∫
f dµ =

limn→∞
∫
fn dµ = limn→∞

∫∫
fn dµ1 dµ2 since fn ∈ H. Apply MCT twice more to

write this as
∫∫
f dµ1 dµ2 and likewise,

∫
f dµ =

∫∫
f dµ2 dµ1.

For f ∈ L1, then
∫
f+ dµ,

∫
f− dµ <∞ and so∫

f dµ =
∫
f+ dµ−

∫
f− dµ

25For linearity, say with
∫

(f − 1) dµ =
∫
f dµ−

∫
dµ and we could have to subtract ∞ from ∞.
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=
∫∫

f+ dµ1 dµ2 −
∫∫

f− dµ1 dµ2

=
∫∫

f dµ1 dµ2

with two applications of linearity, to recombine the inner integral. �

Corollary 9.6
For a non-negative random variable X,

E (X) =
∫ ∞

0
P (X > x) dx

A special case: if X is an integer valued random variable, then

E (X) =
∞∑
i=0

P (X > i)

=
∑
i≥0

∑
j>i

P (X = j)

=
∑
k≥0

kP (X = k)

Proof The idea is that

P (X > x) = E (1X>x) =
∫

1X∈(x,∞) dP

=
∫

1(x,∞) dµX

By Fubini, ∫∫
1(x,∞)(y) dµX(y) dx =

∫∫ ∞
0

1(x,∞)(y) dx dµX

=
∫
y dµX(y) =

∫
X dP = E (X) .

Recall change of variables, we had

E (f(Z)) =
∫
f(z) dP (=)

∫
f(u) dµZ(u)

where in our case f(u) = u. To justify this, we use the product space [0,∞)× [0,∞),
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B(R)× B(R), λ× µX . �

Corollary 9.7
If
∫∫
|f |dµ1 dµ2 <∞, then f ∈ L1 and so Fubini holds.

Proof The function |f | ≥ 0 so by Fubini,
∫
|f | dµ =

∫∫
|f |dµ1 dµ2 <∞, so f ∈ L1.

�

Some warnings regarding the use of Fubini’s theorem:

Example 9.2
Consider the spaces (Ω1,F1, µ1) = ([0, 1],B([0, 1]), λ) where λ is the Lebegues mea-
sure and (Ω2,F2, µ2) = ([0, 1],B([0, 1]), ζ); the latter measure ζ(S) = # elements in
S (the counting measure, which is not σ-finite). Let D = {(x, x) : x ∈ [0, 1]} and
let f = 1D ≥ 0. We compute the iterated integral:∫∫

f dµ1 dµ2 =
∫ (∫

1D(•, y) dλ(x)
)

dζ(y) =
∫

0 dζ(y) = 0.

while ∫∫
f dµ2 dµ1 =

∫ (∫
1D(x, •) dζ(y)

)
dλ(x) =

∫
1 dλ(y) = 1.

Example 9.3
Let (Ω1,F1, µ1) = (Ω2,F2, µ2) = (N, 2N, ζ) and let

fm, n) =


1 if n = m

−1 if n = m+ 1

0 otherwise

This can be represented by a matrix. First note that

∫∫
|f | dµ1 dµ2 =

∞∑
m=1

∞∑
n=1
|f(m,n)| =∞

so f /∈ L1. If we compute the iterated integrals, we obtain summing over columns,
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...
...

...
...

...
...

0 0 0 0 1 −1 · · ·
0 0 0 1 −1 0 · · ·
0 0 1 −1 0 0 · · ·
0 1 −1 0 0 0 · · ·

then rows ∫∫
f dµ1 dµ2 =

∞∑
m=1

∞∑
n=1

f(m,n)

= 1 +
∞∑
m=2

∞∑
n=1

f(m,n)

= 1

while if we sum first over row, then over columns

∫∫
f dµ2 dµ1 =

∞∑
n=1

∞∑
m=1

f(m,n)

= 0

9.3 Joint laws and joint densities

Definition 9.8 (Joint law)
Let (Ω,F ,P) be a probability space and X : Ω→ R and Y : Ω→ R be random vari-
ables. The joint law of X,Y , denoted µX,Y is a probability measure on (R2,B(R2))
with

µX,Y (E) = P ((X,Y ) ∈ E)

Example 9.4
Let X = Y ∼ N (0, 1). Then µX,Y (E) = µN (0,1)(π1(E ∩D)), since

P ((X,Y ) ∈ E) = P ((X,Y ) ∈ E ∩D) = P (X ∈ {x : (x, x) ∈ E ∩D})

where π stands for projection.
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Example 9.5
LetX,Y be independentN (0, 1) random variables. Then what is µX,Y (E)? Suppose
first that E = A×B is a rectangle. Then

µX,Y (E) = P ((X,Y ) ∈ A×B)

= P (X ∈ A, Y ∈ B)

= P (X ∈ A) P (Y ∈ B) (independence)

= µX(A)µY (B)

= (µX × µY )(A×B).

So µX,Y is a probability measure agreeing with µX ×µY on rectangles, so by the π-
system lemma, µX,Y = µX×µY so for E ∈ B(R2), then µX,Y (E) =

∫∫
1E(x, y) dµ1 dµ2.

Since X has a density, we can write as

µX,Y (E) =
∫∫

1E(x, y)e
−x2/2
√

2π
dx dµY

=
∫ (∫

1E(x, y)e
−x2/2
√

2π
dx
)
e−y

2/2
√

2π
dy

=
∫∫

E

e−(x2+y2)/2

2π dx dy

This works in more generality if the two random variables with a given law.

Proposition 9.9
Let (Ω,F ,P) and X,Y : Ω→ R. Then µX,Y = µX × µY ⇔ X ⊥⊥ Y .

Proof The direction (⇐) is the same as in the example. For the other case, (⇒),
if µX,Y = (µX × µY ), then for any Borel A,B ∈ B(R), then

P (X ∈ A, Y ∈ B) = P ((X,Y ) ∈ A×B) = µX,Y (A×B)

= (µX × µY )(A×B) = µX(A) · µY (B) = P (X ∈ A) P (Y ∈ B) .

�

Definition 9.10
A non-negative measurable function f : R2 → [0,∞) is a joint density for (X,Y )
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if for all E ∈ B(R2), we have

P ((X,Y ) ∈ E) =
∫∫

E
f(x, y) dx dy.

Proposition 9.11
If X ⊥⊥ Y are independent random variables with densities fX , fY , then f(x, y) =
fX(x)fY (y) is the joint density for X,Y . Conversely, if fX,Y (x, y) = fX(x)fY (y) is
a joint density for (X,Y ), then X and Y are independent.

Exercise 9.3
If fX,Y is a joint density for (X,Y ), then setting

fX(x) =
∫
fX,Y (x, y) dy, fY (y) =

∫
fX,Y (x, y) dx

then fX and fY are densities for X,Y . Integrate B × R

9.4 n-fold and ∞ products

If (Ωi,Fi, µi), i ≥ 1 are probability spaces, then we can define
∏n
i=1(Ωi,F,µi) either

by setting µ(A1 × · · · × An) =
∏n
i=1 µi(Ai) or by repeatedly forming 2-dimensional

product spaces; the result is the same.

Again, if X1, . . . , Xn are random variables, their joint law µX1,...,Xn = µ1×µ2×· · ·×
µXn if and only if X1, . . . , Xn are mutually independent and Fubini holds under the
same conditions and any of the n! iterated integrals are equal.

To construct the infinite product space, measure, we let Ω
∏
i≥1 Ωi, F = σ(cylinders),

these are sets of the form A1 × · · · ×An × Ωn+1 × · · · for n ≥ 1 and Ai ∈ Fi. Here,
µ is determined by the rule

µ(A1 × · · · ×An × Ωn+1 × · · · ) =
n∏
i=1

µi(Ai)

You need to check that µ is a premeasure on Ω with the algebra A given by finite
unions of cylinders.26

26To prove these technicalities, you need the property that product of compact spaces are com-
pact, but Tychonoff requires the axiom of choice. Here, we need something weaker.
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A key fact is that if (Ωi,Fi) = (R,B(R)) for all i, then setting Xi(ω) = ωi to be the
ith coordinate map, this gives us an infinite sequence of random variables (Xi, i ≥ 1)
which are independent with laws (µi, i ≥ 1) since for any n ≥ 1 and any Borel set
A1, . . . , An ∈ B(R), the product measure

µ(X1 ∈ A1, . . . , Xn ∈ An) = µ({ω1 ∈ A1}, · · · , {ωn ∈ An})

= µ(A1 × · · ·An × R× · · · )

=
n∏
i=1

µi(Ai)

=
n∏
i=1

µ(Xi ∈ Ai).

If we have (RN,B(RN)), 27 this space is generated by

⋃
n≥1
{A1 × · · · ×An × R× R× · · · , where A1, . . . An ∈ B(R)};

In summary, if (R,B(R), µi) are probability spaces, (Ω,F ,P) =
∏
i≥1(R,B(R), µi)

and Xi(ωi) = ωi, then the Xi are independent with laws µi

For next week material, Chapter 4 from Durrett, Probability theory and examples.

27For general R∞,one would need to define a topology for R∞. It is not clear how to do this,
since defining open sets in an infinite product spaces.

97



Chapter 10

Random walks
Let {Xn;n ≥ 1} are iid real valued random variables and consider Sn =

∑n
i=1Xi.

One may ask what are P (Sn ∈ B i.o.) equal to for some B ∈ B(R) and what is
P (lim supn→∞ Sn/cn ≥ 1) equal to for cn sequence of constants. We start with a for-
mal construction of the underlying probability space (Ω,F ,P) =

⊗∞
n=1(R,B(R), µ)

where µ denotes the aw of Xi. Under this construction, Xn(ω) = ωn for some
ω = (ω1, ω2, . . .) ∈ Ω.

Definition 10.1 (Exchangeable)
An event A ∈ F = σ(Xn;n ≥ 1) is exchangeable if for all finite permutation π

[(X1, X2, . . .) ∈ B] = [Xπ1 , Xπ2 , . . .) ∈ B]

for A = [(X1, X2, . . .) ∈ B], B ∈ B(RN).

Remark
[Sn ∈ B i.o.] and lim supn→∞ Sn/cn ≥ 1] are exchangeable. This is because, for
example,

Sn = X1 +X2 + · · ·+Xn = X2 +X1 + · · ·+Xn.

Exercise 10.1
Verify that E = {A ∈ F ;A is exchangeable} is a σ-algebra.

Theorem 10.2 (Hewitt-Savage 0-1 law)
For all A ∈ E , P (A) ∈ {0, 1}.

We begin with a heuristic argument. Suppose we have an event A ∈ E and assume
without loss of generality that this event depends on only finitely many coordinates,
that is

A = [(X1, . . . , Xn) ∈ Bn] for some n ∈ B(Rn). (10.3)
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We consider the permutation

π(j) =


j + n if 1 ≤ j ≤ n

j − n if n+ 1 ≤ k ≤ 2n

j if j ≥ 2n+ 1.

So using exchangeability,

A = [Xπ1 , Xπ2 , . . .) ∈ B] = [Xn+1, Xn+2, . . .) ∈ B] (10.4)

So we have

A = [(X1, . . . , Xn) ∈ Bn] = [Xn+1, Xn+2, . . .) ∈ B]

by (10.3) and (10.4), we have P (A) ∈ {0, 1} by independence. The only possibility
for such A is A = Ω, by exchangeability . . .We will replace the exact equality
A = [(X1, . . . , Xn) ∈ Bn] by an approximating equality. The key step for this
approximation is the following

Lemma 10.3 (Approximation)
Suppose that G ∈ F is an algebra and that σ(G) = F . Then

F = {A ∈ F ; ∀ ε > 0,∃B ∈ G such that P (A4B) < ε}

Proof Take H = {A ∈ F ;A is “good”}, where “good” means the approximation is
valid. It suffices to check that H is a σ-algebra because G ⊂ H ⊂ F , which entail
F = σ(G) ⊆ H ⊆ F and so therefore H = F .

i) Ω ∈ H: therefore Ω ∈ G.
ii) A ∈ H ⇒ A{ ∈ H: by definition, since A is “good”, ∀ ε > 0, ∃B ∈ G,P (A4B) <
ε. But

A4B = (A \B) t (B \A)

= (A ∩B{) t (B ∩A{)

= A{4B{
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and thus P
(
A{ ∩B{

)
< ε. Also, since G is an algebra, B{ ∈ G, B{ is an approxi-

mation of A{ and A{ is “good” as well.
iii) If An ∈ H, then

⋃
nAn ∈ H: ∀ ε > 0, pick an ε/2n approximation Bn ∈ G of

An : that is P (An4Bn) ≤ ε/2n. So for A =
⋃
nAn, we take B =

⋃N
n=1Bn for N

to be determined. Note that B ∈ G. We have

P (A4B) = P
( ∞⋃
n=1

An4
N⋃
n=1

Bn

)

=≤ P
(

N⋃
n=1

An4
N⋃
n=1

Bn

)
+ P

 ∞⋃
n=N+1

An


wrong: assume G is a σ-algebra instead

≤P
( ∞⋃
n=1

(An4Bn)
)

≤
∞∑
n=1

P (An4Bn)

≤
∞∑
n=1

ε

2n = ε

�

Proof If A ∈ E , then P (A) = 0 or P (A) = 1. We use the approximation:
∀ ε > 0,∃n ≥ 1 and B ∈ B(Rn) such that

P (A4[(X1, . . . , Xn) ∈ B]) < ε.

This means that A ' [(X1, . . . , Xn) ∈ B]. If A = [(X1, X2, . . .) ∈ C] for C ∈ B(Rn),
then A = [(Xπ(1), Xπ(2), . . . , ) ∈ C] for any finite permutation π. On the other hand,
we apply a finite permutation π to

A ∩ [(X1, . . . , Xn) ∈ B] = [(X1, . . . , Xn) ∈ C] ∩ [(X1, . . . , Xn) ∈ B]

This gives

[(Xπ(1), Xπ(2), . . . , ) ∈ C] ∩ [(Xπ(1), Xπ(2), . . . , ) ∈ B]
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An

A′n

A

for the particular permutation π(j) where

π(j) =


j + n if 1 ≤ j ≤ n

j − n if n+ 1 ≤ k ≤ 2n

j if j ≥ 2n+ 1.

This implies

P
(
[(Xπ(1), Xπ(2), . . . , ) ∈ C] ∩ [(Xπ(1), . . . , Xπ(n), . . . , ) ∈ B]

)
= P ([(X1, X2, . . . , ) ∈ C] ∩ [(X1, . . . , Xn) ∈ B]) < ε

Denote (Xπ(1), . . . , Xπ(n)) = A′n and (X1, . . . , Xn) = An. This meansA ' [(Xπ(1), . . . Xπ(n)) ∈
B] too. On the other hand, A ' [(X1, . . . , Xn) ∈ B] so

[(X1, . . . Xn) ∈ B] ' [(Xπ(1), . . . Xπ(n)) ∈ B]

Finally, we consider

P
(
An4A′n

)
≤ P

(
(An4A) ∪ (A′n4A)

)
≤ P (An4A) + P

(
A′n4A

)
≤ 2ε
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If we pick ε = 1/k for k ∈ N and write An(k), A
′
n(k), then P

(
An(k)4A′n(k)

)
→ 0

which implies

P (A)2 = lim
k→∞

P
(
An(k)

)
P
(
A′n(k)

)
= lim

k→∞
P
(
An(k) ∩A′n(k)

)
= P (A)

�

Back to Sn =
∑n
j=1Xj . We have the following corollary:

Corollary 10.4
For a random walk on R, there are only four possibilities, one of which has probability
1.

1. Sn = 0 ∀ n
2. limn→∞ Sn =∞
3. limn→∞ Sn = −∞
4. −∞ = lim infn→∞ Sn < lim supn→∞ Sn =∞.

Proof lim supn→∞ Sn is a constant c ∈ [−∞,∞] almost surely. If c ∈ (−∞,∞),
then we consider S′n = Sn+1 −X1 =

∑n+1
j=2 Xj , which implies c = lim supn→∞ S′n =

lim inf Sn+1 − X1 = c − X1 and so X=0 a.s. Otherwise, limn→∞ Sn ∈ {−∞,∞}
almost surely and similarly lim infn→∞ Sn ∈ {−∞,∞}. So we can only have one of
the above cases. �

Corollary 10.5
If (Xi; i ≥ 1) are iid random variables with mean zero and Xi

d= −Xi but nonde-
generate (i.e., P (Xi = 0) < 1), then we have

−∞ = lim inf
n→∞

Sn < lim sup
n→∞

Sn =∞.

Proof If limn→∞ Sn =∞, then limn→∞−Sn =∞ almost surely since Sn and −Sn
have the same law. Contradiction. �
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Let (Ω,F ,P) be a probability space and G and algebra with G ⊆ F and σ(G) = F ,
then ∀ A ∈ F , ∀ ε > 0, ∃B ∈ G such that P (A4B) < ε

Proof Let H = {A ∈ F ;A satisfies the approximation} we want to show for (An) ∈
H, then

⋃
nAn ∈ H. For all ε > 0, choose Bn ∈ G such that P (An4Bn) < ε

2n . Let
B ∈ G, B =

⋃N
n=1Bn for N ∈ N large enough. Then by the triangle inequality

P (A4B) = E (|1A − 1B|)

≤ E
(∣∣∣∣1A − 1⋃N

n=1 An

∣∣∣∣)+ E
(∣∣∣∣1⋃N

n=1 An
− 1B

∣∣∣∣)

≤ P

 ∞⋃
n=N+1

An

+ P
(

N⋃
n=1

An4Bn

)

As an exercise, verify that
⋃N
n=1An4B =

⋃N
n=1An4

⋃N
n=1Bn ⊆

⋃N
n=1(An4Bn)

≤ P

 ∞⋃
n=N+1

An

+
N∑
n=1

P (An4Bn)

= P

 ∞⋃
n=N+1

An

+ ε ≤ 2ε

if N is large enough. �

10.1 Stopping time of random walk

The question here in a simplify setting concerns (Xn) iid real-valued random vari-
ables with E (|Xi|) < ∞. Clearly, ∀ n ∈ N, E (Sn) = nE (Xi); we can generalize
this by E (SN ) = E (N) E (Xi) for a “suitable random variable N taking values in
N ∪ {∞}. For any n, Cfn = σ(S1, . . . , Sn) captures the information of the random
walk up to time n. (Fn)n≥1 captures the “information flow” of the random walk
and is termed a filtration .
Definition 10.6 (Stopping time)
A random variableN taking values inN∪{∞} is called a stopping time if ∀ n ∈ N,
the event [T ≤ n] ∈ Fn
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Exercise 10.2
N is a stopping time if and only if [N ≤ n] ∈ Fn, ∀ n ∈ N. So informally, N
captures the information of the sequence (S1, . . . , SN ).

Hitting times for n = 80 for a binary random walk
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Example 10.1 (Hitting time)
We have NA = inf{n;Sn ∈ A} with the convention that inf{∅} =∞. Check

[NA = n] = S1 /∈ A, . . . Sn−1 /∈ A,Sn ∈ A] ∈ Fn

In general, we can define the nth hitting times of A inductively by N (1)
A = NA and

N
(n+1
A ) = inf{n < N

(n)
A ;Sn ∈ A}.

Exercise 10.3
Each N (n)

A is a stopping time.
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In general, if N is random, we have FN = σ(SN∧n, n ≥ 1). This is not a universally
used definition.
Definition 10.7 (σ-algebra for stopping times)
For any stopping time N ,

FN = {A ∈ F , A ∩ [T ≤ n] ∈ Fn, ∀ n ∈ N}

Exercise 10.4
Show that statement generates the same σ-algebra

FN = {A ∈ F , A ∩ [T = n] ∈ Fn, ∀ n ∈ N}

Exercise 10.5
If S and T are stopping time and S ≤ T , then FS ⊆ FT .

Exercise 10.6
If M and N are stopping time, N ≤M and A ∈ F , then

T =

N on A

M on A{

is again a stopping time.

Lemma 10.8
If N is a stopping time and Sn 6= Sn+1, ∀ n, then FN = σ(SN∧n;n ≥ 1).

Proof Starting with inclusion ⊇, write SN = (SN∧1, SN∧2, . . .). An event is of the
form [SN ∈ B] for some B ∈ B(RN). We check that [SN ∈] ∩ [N = n] ∈ Fn for all
n ∈ N, then

[SN ∈ B] ∩ [N = n] = [(S1, . . . , Sn, Sn . . .) ∈ B] ∩ [N = n]

and both events are in Fn so [SN ∈ B] ∈ FN .

As for the inclusion ⊆, take A ∈ FN (we want A = [SN ∈ B]): by definition, A ∩
[N = n ∈ Fn implies A∩ [N = n] = [(X1, . . . , Xn) ∈ Bn] for some Bn ∈ B(Rn), with
the additional property that ∀ (x1, . . . xn) ∈ Bn, xj 6= xj+1 ∀ j, (Sj 6= Sj+1 ∀ j). So
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we take

B =
∞⋃
n=1

(Bn × RN)

It suffices to show ∀ n ∈ N ∪ {∞}, A ∩ [N = n] = [SN ∈ B] ∩ [N = n]. Now

[SN ∈ B] ∩ [N = n] =
∞⋃
m=1

[SN ∈ Bm × RN] ∩ [N = n]

?= [SN ∈ Bm × RN] ∩ [N = n]

= (S1, . . . , Sn, Sn, . . .) ∈ Bm × RN] ∩ [N = n]

= [(S1, . . . , Sn) ∈ Bm] ∩ [N = n]

= [(S1, . . . , Sn) ∈ Bm] = A ∩ [N = n]

To check the claim on the second line, write for m < n,

[SN ∈ BM × RN] ∩ [N = n] = [(S1, . . . Sn, Sn, . . .) ∈ Bm × RN ∩ [N = n]

= [(S1, . . . Sm) ∈ Bm × RN ∩ [N = n] ⊆ [N = m] ∩ [N = n] = ∅

while for m > n

[SN ∈ BM × RN] ∩ [N = n] = [(S1, . . . Sn, Sn, . . .) ∈ Bm × RN ∩ [N = n]

= ∅ ∩ [N = n] = ∅

�

Theorem 10.9 (Wald’s identity)
Let (Xn) be iid real valued with E (|Xi|) <∞. If N is a stopping time, then E (SN ) =
E (N) E (Xi).

Proof

E (SN ) =
∞∑
n=1

E (Sn1N=n)

=
∞∑
n=1

n∑
m=1

E (Xm1N=n)
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?=
∞∑
m=1

∞∑
n=m

E (Xm1N=n)

=
∞∑
m=1

E (Xm1N≥m)

But [N ≥ m] = [N ≤ m− 1]{ ∈ Fm−1 = σ(X1, . . . Xm−1) = σ(S1, . . . , Sm−1)

=
∞∑
m=1

E (Xi) P (N ≥ m)

= E (Xi)
∞∑
m=1

P (N ≥ m)

= E (Xi) E (N)

To use Fubini, check

∞∑
n=1

n∑
m=1
|E (Xm1N=n)| <∞

but
∞∑
n=1

n∑
m=1

E (|Xm|1N=n) =
∞∑
m=1

∞∑
n=m

E (|Xm|1N=n)

=
∞∑
m=1

E (|Xm1N≥m) = E (|Xi|) E (N) <∞.

�

Example 10.2
Consider a simple random walk: let (Xn) be iid with P (Xn = ±1) = 1

2 and Tx =
inf{n ≥ 1;Sn = x} for x 6= 0, x ∈ Z. Starting with E (Ta ∧ Tb) < ∞ for a < 0 < b.

We have

P (X + Sb−a /∈ (a, b)) ≥ 1
2b−a ∀ x ∈ (a, b)
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which implies

P (Ta ∧ Tb > n(b− a)) ≤
(

1− 1
2b−a

)n
because

P (Ta ∧ Tb > n(b− a)) ≤ P
(
Sb−a ∈ (a, b), S2(b−a) ∈ (a, b), . . . , Sn(b−a) ∈ (a, b)

)
so the expectation is finite and we can use Wald’s identity to answer our questions.

1. P (Ta < Tb) = b
b−a and P (Tb < Ta) = −a

b−a
Proof UsingWald’s identity, E (Xi) E (Ta ∩ Tb) = E (STa∩Tb). The term E (Xi) = 0
by symmetry, while the right end side is

aP (STa∧Tb = a) + bP (STa∧Tb = b) = aP (Ta < Tb) + bP (Tb < Ta)

We have a system of linear equations

0 = aP (Ta < Tb) + bP (Tb < Ta)

1 = P (Ta < Tb) + P (Tb < Ta)

�

2. P (Tx <∞) = 1, ∀ x 6= 0.
Proof Write P (Tx <∞) ≥ P (Tx < TM ) = M

M−x → 1. Because (−Sn) has the
same distribution as Sn, P (Tx <∞) = 1 ∀ x ∈ N. �

3. E (Tx) =∞ for x 6= 0
Proof Using Wald’s identity, if E (Tx) <∞, then 0 = E (Xi) E (Tx) = E (STx) = x.
�
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Chapter 11

Conditional probability and conditional expectation
We remark that P (E) = E (1E). Similarly, P (E | F ) = E (1E | F ). Expectations
are “more general” so we define conditional expectation, for which conditional prob-
ability follows as a consequence. The idea is

E (X | Y ) should be E (X, pretending you know Y ) ,

so we average over what is known.

Definition 11.1 (Conditional expectation)
Let X ∈ L1(Ω,F ,P), let G ⊂ F be a sub-σ-algebra of F . We say that C ∈
L1(Ω,G,P) is a version of E (X | G) if for all E ∈ G,

E (C1E) = E (X1E)

C is almost surely unique.

We write E (X | Y ) for E (X | σ(Y )) and E (X | Yi, i ∈ I) for E (X | σ(Yi, i ∈ I)).

Example 11.1
If X,Y ∼ U([0, 1]) are independent, then

E
(
eXY | Y

)
= E

(
eX | Y

)
=
∫ 1

0
exY dx = eY − 1

Y
= C

using our knowledge of conditional probability (calculate E (exp(X) | Y = y)) but
keeping in mind that Y stays random.

Note
Fix E ∈ σ(Y ). Then, we can write E = {Y ∈ B} for some B ∈ B(R). So E (C1E) =
E
(
eY −1
Y 1Y ∈B

)
and

E
(
eXY 1Y ∈B

)
=
∫
exy1y∈B d(µX × µY )

µX is the law of X, µY the law of Y . By Fubini, the join law factors and we may
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write the product measure as dx dy since both have Lebesgue measure on [0, 1].

∫ 1

0

∫ 1

0
exy1y∈B dx dy =

∫ 1

0

(
1y∈B

∫ 1

0
exy dx

)
dy

=
∫ 1

0
1y∈B

ey − 1
y

dy = E
(
eY − 1
Y

1Y ∈B

)

Example 11.2 (Random walk)
Let (Xi, i ≥ 1) be iid random variable in L1(Ω,F ,P) where E (Xi) = µ, Sn = X1 +
· · ·+Xn. Then

E (Sn+1 | Sn) = E (Sn +Xn+1 | Sn)

= E (Sn | Sn) + E (Xn+1 | Sn)

= Sn + µ

by linearity of conditional expectation, and independence between Sn and Xn+1, so
we fully average. If X ∈ G, then E (X | G) = X (this is common abuse of notation).

Example 11.3 (Conditional expectation for independent random variables)
IfX ⊥⊥ Y , then E (X | Y ) = E (X) and the proof follows by similar calculations using
the defining property of conditional expectations. This is because if E (X) = C, then

E (C1Y ∈B) = E (X) E (1Y ∈B) = E (X) P (Y ∈ B)

while

E (X1Y ∈B) =
∫
R

∫
R
x1y∈B dµX dµY =

∫
1y∈BE (X) dµY = E (X) P (Y ∈ B)

Example 11.4 (Conditional expectation for random variables with joint density)
If X,Y have joint density, fX,Y (x, y), what should the conditional density of X given
Y = y be?

fX|Y (x | y) = fX,Y (x, y)∫
fX,Y (x, y) dx = fX,Y (x, y)

fY (y)
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Then we should have E (X | Y = y) =
∫
xfX|Y (x | y) dx and so a good guess for

E (X | Y ) =
∫
xfX|Y (x | Y ) dx

=
∫
xfX,Y (x, Y ) dx

=
∫
xfX,Y (x, Y ) dx∫
fX,Y (x, Y ) dx

and the denominator is σ(Y )-measurable

Example 11.5 (Discrete conditional expectation)
If Ω is discrete, F = 2Ω. Let (Ωi, i ≥ 1) be a partition of Ω. We say F = σ(Ωi, i ≥ 1),
that is G = σ(Y ) where Y (ω) = i1ω∈Ωi . If X is F-measurable, then

E (X | Y ) (ω) = C(ω) = E (X1Ωi)
P (Ωi)

whenever ω ∈ Ωi. This function is constant over partition classes.

Example 11.6
If ϕ : R2 → R measurable and X,Y ∈ L1(Ω,F ,P), for X ⊥⊥ Y with E (|ϕ(X,Y )|) <
∞. What is E (ϕ(X,Y ) | X)? Let g(x) =

∫
R ϕ(x, y) dµY . We claim

E (ϕ(X,Y ) | X) = g(X) =
∫
R
ϕ(X, y) dµY

We verify once again the defining property: if E ∈ σ(X), write E = {X ∈ B}, so

E (ϕ(X,Y )1E) =
∫
ϕ(x, y)1x∈B d(µX × µY )

=
∫

1x∈B
∫
ϕ(x, y) dµY dµX

=
∫

1x∈Bg(x) dµX

= E (g(X)1E)

11.1 Existence and uniqueness of conditional expectation

We now tackle the proof of uniqueness
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Proposition 11.2 (Uniqueness of conditional expectation)
If C and D are versions of E (X | G), then C a.s.= D.

Proof By assumption, C,D ∈ G, so {C > D} ∈ G. If C
a.s.
6= D, then wlog

P (C > D) > 0. So P
(
C > D + 1

n

)
> 0 for some n. Let E = C > D + 1

n ; then
E (C1E) = E (X1E) = ED1E . But on the other hand,

E (C1E) ≥ E
((

D + 1
n

)
1E
)

= E (D1E) + 1
n

E (1E) > E (D1E)

using monotonicity, linearity and P (E) > 0. �

Proposition 11.3 (Existence of conditional expectation)
For all X ∈ L2(Ω,F ,P) for all G ∈ F sub-σ-algebras, there exists a random variable
Y that is a version of E (X | G).

L2 has a Hilbert space structure with an inner product.28

Suppose the proposition is true. Then for X ≥ 0, X ∈ L1(Ω,F ,P). Let Xn =
min(X,n); let Yn be a version of E (Xn | G). Then Yn ≤ Yn+1 (otherwise there
exists k such that P

({
Yn+1 < Yn − 1

k

})
> 0 which (taking expectations and using

defining property of conditional expectation) contradicts that Xn ≤ Xn+1 almost
surely.) Then let Y = lim supn→∞ Yn. We then have ∀ E ∈ G,

E (Y 1E) = lim
n→∞

E (Yn1E) = lim
n→∞

E (Xn1E) = E (X1E)

by the defining property so Y is a version of E (X | G). Y ∈ L1(Ω,G,P), Y = limYn,

is G-measurable because is it an increasing limit and each Yn ∈ L1(Ω,G,P) and
E (Y ) = E (X) <∞. This is the usual closure properties.

Next, for X ∈ L1(Ω,F ,P), let X = X+ − X− and let Y + − Y − be versions of
E (X± | G). Then

E
(
Y + − Y −

)
= E

(
X+

)
+ E

(
X−

)
(defining property)

28To identify random variables that are almost equivalent, we (would) need to work with equiv-
alence classes for random variables with distance zero. To go from X ∈ L2 to L1, we will use the
last steps of the standard machine.
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= E (|X|) <∞.

so Y + − Y − ∈ L1(Ω,G,P) and for E ∈ G,

E
(
(Y + − Y −)1E

)
= E

(
Y +1E

)
− E

(
Y −1E

)
(linearity)

= E
(
X+1E

)
− E

(
X−1E

)
(defining property)

= E (X1E) (linearity)

so Y + − Y − is a version of E (X | G) .

L2(Ω,G,P)

L2(Ω,F ,P) X

Y

11.2 Conditional expectation as least-square predictor

Lemma 11.4 (Completeness of L2)
L2(Ω,F ,P) is complete, with norm ‖X‖p = E (Xp)

1
p .

Proof Let Xn, n ≥ 1 be Cauchy in Lp. We need to show Xn has an almost
sure limit. Choose a subsequence (kn, n ∈ N), kn ↑ ∞ such that for all r, s ≥ kn,
‖Xr −Xs‖p ≤ 2−n. Then

E
(∣∣Xkn+1 −Xkn

∣∣) ≤ ∥∥Xkn+1 −Xkn

∥∥
p
≤ 2−n

so

E

∑
n≥1

∣∣Xkn+1 −Xkn

∣∣ <∞

so ∑
n≥1

(
Xkn+1 −Xkn

)
converges almost surely
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which impliesXnk converges almost surely as k →∞.. We thus letX = limkn→∞Xkn .
To check X ∈ Lp and Xr

a.s.−−→ X, note that for n ∈ N, r ≥ kn, and all t ≥ n

E (|Xr −Xkt |
p) ≤ 2−np

By Fatou’s lemma,

E (|Xr −X|p) = E
(

lim
t→∞
|Xr −Xkt |

p
)
≤ lim inf

t→∞
E (|Xr −Xkt |

p) ≤ 1
2np .

Finally, ‖X‖p ≤ ‖X −Xr +Xr‖ ≤ ‖X −Xr‖p + ‖Xr‖p ≤ 2−n + ‖Xr‖p < ∞ using
the triangle inequality and since Xr ∈ Lp. For r ≥ kn, ‖Xr − X‖p ≤ 2−n and so
Xr → X in Lp. �

Theorem 11.5 (Orthogonal projection)
Let L2(Ω,G,P) be a subspace of K := L2(G) := L2(Ω,G,P) (where G is a sub-σ-
algebra of F) which is complete in that whenever (Vn) is a sequence in K which is
Cauchy, that is

sup
r,s≥k

‖Vr − Vs‖2 → 0 as k →∞

then there exists a V in L2(G) such that ‖Vn − V ‖2 → 0 as n → ∞. Then given
X ∈ L2(Ω,F ,P), there exists Y ∈ L2(Ω,G,P) such that

‖X − Y ‖2 = ∆ := inf{‖X −W‖ : W ∈ L2(G)},

and

〈X − Y, Z〉 = 0, ∀ Z in L2(G)

No w if G ∈ G, then taking Z := 1G ∈ L2(G) gives E (Y 1G) = E (X1G) and hence
Y is a version of E (X | G) , as required.

For the proof, recall the parallelogram law: (a+ b)2 + (a− b)2 = 2(a2 + b2)

Proof Let ∆ = inf{‖X − Z‖ : Z ∈ L2(Ω,G,P)}. Let (Yn, n ≥ 1) ∈ L2(Ω,G,P) be
such that ‖Yn −X‖ → ∆. If Yn is Cauchy, then it has an almost sure limit Y .
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Yr

Ys

Yr + Ys
2

X

‖ · ‖ = Yr + Ys
2 ‖ · ‖ = Yr − Ys

2
‖ · ‖ = X − Yr ‖ · ‖ = X − Ys

Then

‖X − Yr‖22 + ‖X − Ys‖22 = 2‖X − (Yr + Ys)/2‖22 + 2‖(Ys − Yr)/2‖22

so

‖Yr − Ys‖22 = 2‖X − Yr‖22 + 2‖X − Ys‖22
≤4∆2+ε

− 4‖X − (Yr + Ys)/2‖22
≥4∆2

when r, s are large. So for r, s sufficiently large, ‖Xr−Xs‖22 ≤ ε and thus (Xn, n ≥ 1)
is Cauchy. To show uniqueness of the minimizer, we show it is a version of the
conditional expected value.
Claim
Y is a version of E (X | G)

Proof It suffices to show E ((X − Y )1E) = 0 for all E ∈ G. We prove the stronger
fact: E ((X − Y )Z) = 0 for all Z ∈ L2(Ω,G,P). So for Z ∈ L2(Ω,G,P), for all t ∈ R,
Y + tZ ∈ L2(Ω,G,P). So

‖X − (Y + tZ)‖22 ≥ ‖X − Y ‖22
that is

E
(
(X − Y )− tZ)2

)
≥ E

(
(X − Y )2

)
so

−2tE (Z(X − Y )) + t2E
(
Z2
)
≥ 0
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This hold true for all t, but quadratic terms tend to zero faster than linear (for any
a, b 6= 0, at2−2bt < 0 for some t), so for this to hold true, we need E (Z(X − Y )) = 0.

�

�
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measurable map, 23
measurable space, 12
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probability, 14

monotone class theorem, 31
monotone convergence theorem, 50
multiple integrals, 86
multiplicative functions, 15

Orthogonal projection, 113
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π-system lemma, 18, 37
portmanteau lemma, 67
pre-measure, 15
product measure, 87
product space, 84

random variables, 23
random walk, 4

probability, 101
restriction, 59
reverse Fatou lemma (for integrals), 61

Scheffé lemma, 69
σ-algebra, 12
simple functions, 47

properties, 48
Skorokhod’s construction, 30
St-Petersburg paradox, 42
standard machine, 57
stopping time, 102
strong law of large numbers, 26, 77

tail σ-algebra, 44
tightness, 66
Tonelli’s theorem, 90

variance, 72
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L1, 75

118


	Introduction: motivating examples
	Random walks on lattices
	Galton-Watson trees

	Measures and sigma-algebras
	Sigma-algebras
	Measures
	Extension of measures
	Lebesgue measure
	Carathéodory Extension Theorem
	Probability bounds: reverse Fatou and first Borel-Cantelli lemma

	Random variables
	Measurable maps
	Limits

	Distribution functions and laws
	Distribution functions
	Skorokhod construction
	Monotone class theorem

	Independence
	Independence
	Second Borel-Cantelli lemma
	Kolmogorov's 0-1 law

	Integration and expectation
	Defining integrals
	Monotone convergence theorem
	Expectation
	Change of variables
	Restriction of measures
	Integral Inequalities
	 Convergence, Lp spaces and Lp convergence

	Tightness and inequalities
	Tightness
	Inequalities

	Laws of large numbers
	Strong law of large numbers
	Weirstrass approximation

	Product spaces, multiple integrals and Fubini theorem
	Product space
	Multiple integrals
	Joint laws and joint densities
	n-fold and infinite products

	Random walks
	Stopping time of random walk

	Conditional probability and conditional expectation
	Existence and uniqueness of conditional expectation
	Conditional expectation as least-square predictor


