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Abstract
Extreme value analysis is concerned with the modelling of extreme events such as floods and

heatwaves, which can have large impacts. Statistical modelling can be useful to better assess

risks even if, due to scarcity of measurements, there is inherently very large residual uncertainty

in any analysis. Driven by the increase in environmental databases, spatial modelling of

extremes has expanded rapidly in the last decade. This thesis presents contributions to such

analysis.

The first chapter is about likelihood-based inference in the univariate setting and investigates

the use of bias-correction and higher-order asymptotic methods for extremes, highlighting

through examples and illustrations the unique challenge posed by data scarcity. We focus on

parametric modelling of extreme values, which relies on limiting distributional results and for

which, as a result, uncertainty quantification is complicated. We find that, in certain cases,

small-sample asymptotic methods can give improved inference by reducing the error rate of

confidence intervals. Two data illustrations, linked to assessment of the frequency of extreme

rainfall episodes in Venezuela and the analysis of survival of supercentenarians, illustrate the

methods developed.

In the second chapter, we review the major methods for the analysis of spatial extremes

models. We highlight the similarities and provide a thorough literature review along with novel

simulation algorithms. The methods described therein are made available through a statistical

software package.

The last chapter focuses on estimation for a Bayesian hierarchical model derived from a

multivariate generalized Pareto process. We review approaches for the estimation of censored

components in models derived from (log)-elliptical distributions, paying particular attention

to the estimation of a high-dimensional Gaussian distribution function via Monte Carlo

methods. The impacts of model misspecification and of censoring are explored through

extensive simulations and we conclude with a case study of rainfall extremes in Eastern

Switzerland.

Key words: extreme values, l-Pareto process, max-stable process, higher-order asymptotics,

likelihood, uncertainty quantification, Bayesian hierarchical model.

iii





Résumé
L’analyse des valeurs extrêmes sert à la modélisation d’événements rares tels que les inonda-

tions ou les vagues de chaleurs, dont l’impact peut être considérable. Beaucoup d’incertitude

résiduelle demeure lors de l’inférence statistique en raison de la faible taille échantillonnale,

or quantifier adéquatement cette incertitude est primordiale afin de mitiger les risques posés

par les catastrophes naturelles. La modélisation spatiale des extrêmes a évolué rapidement

au cours de la dernière décennie, portée par la disponibilité croissante de nombreux jeux de

données dont la taille est conséquente. Les contributions de cette thèse servent à enrichir de

telles analyses.

Le premier chapitre de cette thèse porte sur l’utilisation de la vraisemblance dans le cadre

unidimensionnel. Les méthodes asymptotiques d’ordre supérieur et la correction de biais sont

dérivées et validées par le biais de simulations et d’exemples, illustrant les défis uniques posés

par la rareté des données. Une attention particulière est portée à la modélisation paramétrique,

qui découle de l’utilisation de lois limites ; ces derniers sont approximatives à des niveaux finis,

ce qui complique la quantification de l’incertitude. Dans certains cas, l’étude de simulation

indique que les méthodes pour petits échantillons réduisent le taux d’erreur des intervalles de

confiance. Deux analyses de données plus poussées, sur des précipitations vénézuéliennes et

sur la survie de supercentenaires italiens, servent à illustrer les méthodes développées.

Le deuxième chapitre présente un survol des méthodes pour l’analyse des extrêmes fonc-

tionnels et spatiaux, qui sert à souligner les similitudes entre les différents modèles pour les

méthodes de seuillage et les maxima de blocs. Une revue de litérature exhaustive est fournie,

accompagnée des quelques propositions pour des algorithmes de simulation. Les méthodes

décrites dans les chapitre sont implémentés dans un paquetage statistique.

Le dernier chapitre porte sur l’estimation de modèles Bayésiens hiérarchiques pour une classe

de modèles généralisés de Pareto. Différentes approches numériques pour l’estimation de la

censure sont explorées et une attention particulière est portée à l’estimation des fonctions

de répartitions multidimensionnelles de distributions elliptiques par le biais de méthodes

de Monte Carlo. L’impact de la mauvaise spécification du modèle et la perte d’information

due à la censure sont quantifiées par le biais de simulations et une étude de cas sur des

précipitations en Suisse orientale conclut l’analyse.

Mots clefs : valeurs extrêmes, processus l-Pareto, processus max-stable, asymptotiques d’ordre

supérieur, vraisemblance, inférence statistique, quantification de l’incertitude, modèle hiérar-

chique bayésien.
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Introduction

On June 11th, 2018, a storm caused havoc in downtown Lausanne. The event was unprece-

dented: an estimate of 41mm rain fell within 10 minutes, causing an estimated damage of

more than 27 millions Swiss francs due to flooding. Pictures in the newspaper showed sur-

real scenes of cars sliding downhill and staircases at the train station turning into waterfalls.

Extreme events are rare, but they are often destructive, fatal and costly.

Extreme events often become ingrained in the collective psyche. In Quebec, the 1996 Saguenay

floods are captured by the image of a white house of the Chicoutimi borough standing alone

in the middle of the flooded river. Pictures of the electric pylons crumbling under the weight

of the freezing rain during the 1998 ice storm and radar picture of the clouds generated by the

massive wildfires in Alberta in 2015, which forced the evacuation of more than 80 000 people,

illustrate the impacts and the often large spatial extent of natural catastrophes. Extreme

value analysis deals with the study of such events, which are often characterized by their

complex dependence structure. The field has been booming in the last decade, in part driven

by the climate crisis and the availability of new sources of data. In extreme value, the big data

revolution has most often lead to larger dimensions, in spatio-temporal settings, as opposed

to large sample sizes. Extreme value analysis is inherently difficult because there is little data

available and even no guarantees of the quality of measurements. Long records are needed

to make any inference, because the theory prescribes that only data which are large in some

sense be used for inference. Nevertheless, limiting results can guide us in providing estimates,

bearing in mind that the events of interest may be larger than those on record.

Outline of the thesis

The main objective of this thesis is to explore uncertainty quantification for extremes, both

in the univariate setting and for spatial processes. Chapter 1 surveys classical and well-

established likelihood-based modelling for univariate extremes. We consider the different

modelling strategies for block maxima and threshold exceedances, review penultimate models

in order to better assess the impact of working under domain of attraction conditions. The

novel contribution is derivation of bias correction and higher-order asymptotic methods to

refine inference for high quantiles of interest, typically those of the distribution of N -year

maxima. We provide several examples of derivations of higher-order terms and implement

them in generality. The relative performance of modified profile likelihood for confidence

1
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intervals is assessed by simulation. The chapter ends with two data applications. The first,

modelling of rainfall extremes in Venezuela, highlights the difficulty in assessing risk when

an observation that is much larger than all previous historical records is observed. Based

on the records, we show that this event was extremely rare, but not impossible. The second

application, which consists of modelling survival of Italian supercentenarians, tries to answer

the question of the existence of a finite limit to lifetime from a purely statistical perspective.

Chapter 2 is mostly a literature review. We focus on the functional extreme values and the

theory underlying them, showing how threshold exceedances and max-stable models can be

unified through a point process approach. We address likelihood inference and simulation

and propose novel simulation algorithms as well as implementations of methods described

therein in statistical software.

Chapter 3 deals with the joint estimation of marginal and dependence parameters in an

exceedances model. We revisit recent proposals in the literature and consider the added value

of a new approach for numerical estimation of Gaussian distribution functions. We review

latent Gaussian models for extrapolation of marginal parameters in space and combine the

latent Gaussian model with the multivariate generalized Pareto distribution, highlighting the

inherent difficulties with Bayesian estimation of the model parameters. The novelty of our

approach is in joint modelling of the parameters. We also provide a comparison of two-step

methods and assess the loss of information loss due to censoring through simulation studies.

Notation

Throughout this thesis, we adopt the following notational conventions: N+ denotes the natural

numbers 1,2, . . .,R denotes the real numbers andRD
+ is the positive orthant [0D ,∞D ). Vectors

in RD are denoted by boldface letters, x = (x1, . . . , xD ), and 0D ,1D ,∞D are D-vectors with

identical components. We denote norms by ‖ · ‖, and use ‖ · ‖p for the `p -norm or Lp norm,

depending on the argument, 1{·} is the Dirac δ function, which equals 1 if the statement

is true and zero otherwise. For any x ∈ R, x+ denotes the positive part of x, max{0, x}. All

binary operations such as x + y or a ·x , x a are understood as component-wise. The symbol
d=

indicates equality in the sense of finite-dimensional distributions.

We use sans-serif fonts to denote stochastic processes or random functions, so X is a random

function whose pointwise realization at s is X (s), and X(S) := {X (s)}s∈S is a stochastic process

defined on a metric space (S,d) for a distance function d . We assume (S,d) is compact

throughout and that X(S) has continuous sample paths, denoted by X(S) ∈ C(S,R). The

sup-norm of f ∈C(S,R) is ‖ f ‖∞ = sups∈S| f (s)| and the sphere with respect to a norm ‖ ·‖ang

is Sang = { f ∈C(S) : ‖ f ‖ang = 1}. We denote the compact sets of a complete separable metric

space O by K (O) and the boundary of a set B by ∂B . A measure Λ on O is totally finite if

Λ(O) <∞, Radon ifΛ(K ) <∞ for any compact set K ∈K (O) and boundedly finite ifΛ(B) <∞
for any bounded Borel set B ∈B(O). TheΛ-continuity sets of Oare Borel sets whose boundaries

have zero measure, {B ∈B(O) :Λ(∂B) = 0}.

2



1 Likelihood estimation for univariate
extremes

1.1 Introduction

Estimating worst-case scenarios is important for risk management and policy making, but

the hypothetical events that decision makers are usually interested in can lie far beyond the

range of the available data and empirical estimates cannot be used. Asymptotic theory is

therefore used to infer the tail behaviour of the phenomenon of interest based on the largest

observations. Estimation is often based on small samples, which raises the question of the

accuracy and hence practical usefulness of the asymptotic results, especially those that rely

on asymptotic normality of the maximum likelihood estimator. The focus of this work is

on likelihood-based methods, as the latter are necessary for Bayesian inference and can be

easily extended to include covariates, to pool information, to accommodate censoring and

truncation, etc.

The goal of this chapter is to investigate the use of bias correction and higher-order approx-

imations for univariate extremes. We first introduce the extreme value distributions, and

explain how they arise as limiting models for peaks over threshold and block maxima. Since

the results only hold in the limit, we consider penultimate approximations and asymptotic

bias due to model misspecification, providing various examples. We investigate the use of

the so-called metastatistical model for inference. We then consider the estimation bias of

maximum likelihood estimators and outline the use of higher-order asymptotics for better

uncertainty quantification, focusing on variants of the profile likelihood for inference on a

scalar of interest. The use of the tangent exponential model for the generalized extreme value

distribution, as well as for functions of the parameters, is novel and we assess by simulation

whether these lead to improved inference. We conclude with two examples, the first using

higher order asymptotics to perform inference on the centennial maximum distribution of

rainfall extremes in Venezuela and the second assessing the existence of an upper limit to

human life based on survival records for Italian supercentenarians.
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Chapter 1. Likelihood estimation for univariate extremes

1.1.1 Extreme value distributions

Definition 1.1 (Generalized extreme value distribution)

The distribution function of the generalized extreme value (GEV) distribution with location

parameter µ ∈R, scale parameter σ ∈R+ and shape parameter ξ ∈R is

G(x) =
exp

{
−(

1+ξ x−µ
σ

)−1/ξ
}

, ξ 6= 0,

exp
{−exp

(− x−µ
σ

)}
, ξ= 0,

defined on {x ∈R : ξ(x −µ)/σ>−1} where x+ = max{0, x}. The case ξ= 0 is commonly known

as the Gumbel distribution. We denote the distribution by GEV(µ,σ,ξ).

The generalized extreme value distribution is max-stable: if F ∼GEV, then there exist location

and scale constants b ∈R and a > 0 such that F T (ax +b) = F (x) for any T ∈N+ . The param-

eters of the new distribution are easily derived: if Xi
iid∼ GEV(µ,σ,ξ), then max{X1, . . . , XT } ∼

GEV(µT ,σT ,ξ) with µT = µ−σ(1−T ξ)/ξ and σT = σT ξ for ξ 6= 0, or µT = µ+σ log(T ) and

σT =σ if ξ= 0.

Definition 1.2 (Generalized Pareto distribution)

The distribution function of the generalized Pareto (GP) distribution with scale σ ∈R+ and

shape ξ ∈R is

G(x) =
1− (

1+ξ x
σ

)−1/ξ
+ , ξ 6= 0,

1−exp
(− x

σ

)
+ , ξ= 0.

The range of the generalized Pareto distribution is [0,−σ/ξ) if ξ< 0 and isR+ otherwise. We

denote the distribution by GP(σ,ξ).

If X ∼GP(σ,ξ), straightforward calculations show that X −u | X > u ∼GP(σ+ξu,ξ) for any

u ∈ R such that σ+ ξu > 0, so conditional exceedances above a threshold u also follow a

generalized Pareto distribution. This property is termed threshold-stability.

Under mild conditions, most univariate distribution functions are attracted to extreme value

models in the sense defined next (Embrechts et al., 1997, Theorem 3.4.5).

Theorem 1.3 (Extreme value attractors)

Let {Xi }i∈N+ be a sequence of independent and identically distributed random variables with

distribution function F and upper endpoint x∗ := inf{x : F (x) = 1}. Assume that there exist

sequences of constants an = a(n) > 0 and bn = b(n) for any n ∈ N+ such that any of the

following statements hold:

1. max-stable limit: limn→∞ F n(an x +bn) =G(x), where G(x) is GEV(0,1,ξ);

2. generalized Pareto limit: the conditional distribution of exceedance over a threshold

4



1.1. Introduction

u < x∗ converges to a generalized Pareto distribution,

lim
u→x∗

1−F (xau +u)

1−F (u)
= 1−H(x),

where H(x) is the distribution function of GP(1,ξ);

3. Poisson point process: the sequence of point processes Nn = {i /(n+1), (Xi −bn)/an}i∈N+

converges as n → ∞, for any set of the form (0,1)× [z∗,∞), to a non-homogeneous

Poisson point process with limiting measure (Coles, 2001, Theorem 7.1)

Λ
{
[t1, t2]× [x, z∗)

}= (t2 − t1)
{

1+ξ
( x −µ

σ

)}−1/ξ

+
, 0 ≤ t1 ≤ t2 ≤ 1, x > z∗,

where z∗, z∗ are the lower and upper endpoints of the corresponding generalized ex-

treme value distribution. The case ξ= 0 is understood by continuity to be the limit as

ξ→ 0.

Then, statements 1–3 are equivalent.

The equivalence between convergence to a generalized extreme value distribution and that of

the point process of extremes is discussed in Section 4.4.2 of Resnick (1987).

In practice, the generalized extreme value distribution is used to model block maxima. Max-

stability ensures that, if the maxima of blocks of size m form an approximate sample from a

generalized extreme value distribution, then bigger blocks should follow the same distribution

up to changes in location and scale parameters. The result on the convergence of maxima is

due to Fisher and Tippett (1928), whose results were formalized by Gnedenko (1943).

The generalized Pareto is the asymptotic distribution for exceedances over a high threshold

u. In practice, u must be lower than x∗ and chosen so that there are enough exceedances

above u to estimate the parameters; threshold selection is addressed in Section 1.1.5. The

generalized Pareto approximation is valid only above the specified threshold u. The points

that are flagged as extremes differ for the two methods, as shown by Figure 1.1.

Peaks-over-threshold analysis usually allows one to incorporate more information by dis-

carding fewer data, but temporal dependence needs to be dealt with if observations are not

independent, since extremes may cluster.

Because the scale parameter of the generalized Pareto distribution, σu , depends on u, it may

be tempting to directly use the likelihood of the point process for exceedances falling in the

region (0,1)× (u,∞) given in Theorem 1.3 (cf. de Haan and Ferreira, 2006, § 2.1).

Proposition 1.4 (Likelihood of the Poisson point process for threshold exceedances)

Consider a sample of N observations, of which nu exceed u and which we denote by y1, . . . , ynu .
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Figure 1.1 – Extremes for block maximum (left) and peaks-over-threshold (right) methods. Only
the black filled points are kept.

The likelihood associated to the limiting distribution of threshold exceedances is

L(µ,σ,ξ; y) = exp

[
−c

{
1+ξ

(u −µ
σ

)}−1/ξ

+

]
(cσ)−nu

nu∏
i=1

{
1+ξ

( yi −µ
σ

)}−1/ξ−1

+
, µ,ξ ∈R,σ> 0,

(1.1)

where (·)+ = max{0, ·}. The quantity c is a tuning parameter whose role is described in § 7.5 of

Coles (2001). If we take c = N /m, the parameters of the point process likelihood correspond to

those of the generalized extreme value distribution fitted to blocks of size m. There is no closed

form for the parameter estimates θ̂ = (µ̂, σ̂, ξ̂), which must be obtained through numerical

optimization; we return to the maximization of the likelihood in Example 1.18.

There is often a natural block size for the block maxima method (e.g., yearly for daily data).

This can lead to small samples and potentially a waste of information. A compromise is to

keep the r largest observations and use a likelihood based on these order statistics.

Proposition 1.5 (Likelihood for the r -largest order statistics)

Let Y(1) ≥ ·· · ≥ Y(r ) denote the r largest observations from a sample. Then, under Theorem 1.3,

the likelihood of the limiting distribution of the point process for the r -largest observations is

`(µ,σ,ξ; y) ≡−r log(σ)−
(
1+ 1

ξ

) r∑
j=1

log
(
1+ξ y( j ) −µ

σ

)
+
−

(
1+ξ y(r ) −µ

σ

)−1/ξ

+
, µ,ξ ∈R,σ> 0.

The r -largest observations from the asymptotic model can be generated using the Poisson
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1.1. Introduction

process representation by simulating a unit rate Poisson process 0 < U1 < U2 < ·· · , where

U j = E1 +·· ·+E j and E j
iid∼Exp(1), and setting Y( j ) =µ+σ

(
U−1/ξ

j −1
)
/ξ.

The inverse transformation,

U j = {1+ξ(Y( j ) −µ)/σ}−1/ξ, j = 1, . . . ,r,

can be used to obtain residuals by using plug-in estimates µ̂, σ̂, ξ̂; the corresponding estimated

spacings

Ê1 = Û1, Ê j = Û j −Û j−1, j = 2, . . . ,r,

are approximately independent, as the Poisson process is Markovian. By using the maximum

likelihood estimator in place of the true parameter values, we can obtain approximate pivots

Êi that can be used to construct exponential quantile-quantile plots. The r -largest likelihood

can be used to model block maxima, by keeping the r largest observations out of m. The

choice of the number of order statistics r should typically be small, as the quality of the

asymptotic approximation degrades quickly when r increases. One can also use the likelihood

for peaks-over-threshold modelling, in which case the threshold is taken to be the r th order

statistic.

Remark 1.1 (Notational convention)

In the context of Theorem 1.3, we say that G is the extremal attractor of F and that F is in the

max-domain of attraction of G with tail index ξ, denoted by F ∈ MDA(G). Following Fisher

and Tippett (1928), we say that F is in the max-domain of attraction of a Fréchet, Gumbel,

or reverse Weibull distribution whenever the shape parameter ξ is positive, zero or negative,

respectively. Only distribution functions with infinite upper endpoint may belong to the

max-domain of attraction of the Fréchet class. Many reference textbooks consider the three

possible sub-families (Fréchet, Gumbel and reverse Weibull) separately.

For the Fréchet domain of attraction, Theorem 1.3 is equivalent to regular variation of the

survival function 1−F with tail index 1/ξ (Resnick, 1987, Prop. 1.1). Roughly speaking, regular

variation describes the decay rate of functions that behave like polynomials at infinity.

Definition 1.6 (Regular variation of positive measurable univariate function)

A measurable function h :R+ 7→R+ is regularly varying with tail index α ∈R at ∞, denoted by

RVα if (Resnick, 2007, Definition 2.1)

lim
t→∞

h(t x)

h(t )
= xα, x ∈R+.

If α= 0, the function is said to be slowly varying.

The concept of regular variation is central in extreme value theory since it is the mathematical

basis allowing for extrapolation, and we generalize this notion in Section 2.1.4. We refer the

reader to Chapters 0 and 1 of Resnick (1987) for a detailed exposition of domains of attraction.

7



Chapter 1. Likelihood estimation for univariate extremes

Remark 1.2 (Normalizing constants)

If F ∈MDA(G) for G ∼GEV(0,1,ξ) (cf. de Haan and Ferreira, 2006, Theorem 1.1.2), then there

exists at > 0 and bt ∈R such that the first-order condition

lim
t→∞

b(t x)−bt

at
=

∫ x

1
sξ−1ds =

 xξ−1
ξ , ξ 6= 0,

log(x), ξ= 0,
, x > 0,

is satisfied. Under the assumption that F is twice differentiable with density function f ,

the so-called von Mises conditions are sufficient to check the existence of extreme-value

limits. Define the sequence bt ≡ b(t) as the solution to F (bt ) = exp(−t−1) and let at ≡ a(t) =
s(bt ) = −F (bt ) log{F (bt )}/ f (bt ) (Smith, 1987a). Then, the condition limx→x∗ s′(x) = ξ ∈R is

sufficient for F to belong to the maximum domain of attraction of MDA(G). For threshold

exceedances, we consider instead a threshold bt = F (1−1/t ) and scaling sequence at = r (bt ),

where r (x) = {1−F (x)}/ f (x) is the reciprocal hazard function and the extreme value limit

exists if limx→x∗ r ′(x) = ξ ∈R.

Remark 1.3

Not all distributions satisfy the conditions of Theorem 1.3. Many discrete distributions cannot

be suitably renormalized to extreme value distributions, including the geometric, Poisson

and negative binomial distributions (Examples 3.1.4, 3.1.5 and 3.1.6 Embrechts et al., 1997).

Asymptotically, these families can exhibit oscillatory behaviour due to the discreteness of

the support. The log-Pareto distribution, which in its simplest form has survival function

1−F (x) = 1−1/log(x) for x > e, is an example of distribution that is too heavy-tailed to be

stabilized by affine rescaling.

The support of the generalized extreme value and generalized Pareto distributions varies

with their parameters, making numerical estimation of the parameters difficult. Maximum

likelihood estimators for both families are asymptotically Gaussian and the models are regular

whenever ξ>−1/2 (Smith, 1985; de Haan et al., 2004; Bücher and Segers, 2017; de Haan and

Ferreira, 2006, § 3.4).

1.1.2 Return levels and extreme quantiles

Two typical questions in extreme value analysis are: given the intensity of an extreme event,

what is its recurrence period? and what is a typical worst-case scenario over a given period of

time? For the latter, suppose for simplicity that the daily observations are blocked into years,

so that inference is based on N points for the N years during which the data were recorded.

The return level is a quantile of the underlying distribution corresponding to an event of

probability p = 1−1/T for an annual maximum, which is interpreted as “the level exceeded by

an annual maximum on average once every T years”. If observations are independent and

identically distributed, then we can approximate the probability that a return level is exceeded

l times over a T year period using a binomial distribution with probability of success 1−1/T

and T trials. For T large, the return level is exceeded l = 0,1,2,3,4 times within any T -years
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period with approximate probabilities 36.8%, 36.8%, 18.4%, 6.1% and 1.5%. The probability

that the maximum observation over T years is exceeded with a given probability is readily

obtained from the distribution of the T -year maximum, leading Cox et al. (2002, § 3(b)) to

advocate its use over return levels, among other quantities of interest such as the number

of times a threshold u will be exceeded in T years or the average number of years before a

threshold u is exceeded. Rootzén and Katz (2013) advocate an alternative design life measure

of risk for nonstationary sequences.

Proposition 1.7 (Quantiles, mean and return levels of T -maxima)

Consider the distribution H (x) =GT (x) of the maximum of T independent and identically dis-

tributed generalized extreme value variates with parameters (µ,σ,ξ) and distribution function

G . By max-stability, the parameters of H (x) are µT =µ−σ(1−T ξ)/ξ and σT =σT ξ when ξ 6= 0.

We denote the expectation of the T -observation maximum by eT , the p quantile of the T -

observation maximum by qp = H−1(p) and the associated return level by z1/T :=G−1(1−1/T ).

Then, any of these three quantities can be written asµ− σ
ξ

{
1−κξ

}
, ξ< 1,ξ 6= 0,

µ+σκ0, ξ= 0,

where κξ = T ξΓ(1− ξ) for eT , κξ = T ξ log(1/p)−ξ for qp and κξ =
{− log(1−1/T )

}−ξ for z1/T .

In the Gumbel case, we have κ0 = log(T )+γe for eT , κ0 = log(T )− log{− log(p)} for qp and

κ0 =− log{− log(1−1/T )} for z1/T . The extrapolation of the distribution based on max-stability

is illustrated in Figure 1.2.

We can relate threshold exceedances to the distribution of maxima as follows: suppose a

generalized Pareto distribution F is fitted to threshold exceedances above a threshold u,

with parameters (ζu ,σu ,ξ), where ζu denotes the unknown proportion of points above the

threshold u. If there are ny observations per year on average, then the T -year return level is

z1/T = u +σu/ξ{(T nyζu)ξ−1}. We take F ζu T ny as the approximation to the T -year maxima

distribution, conditional on exceeding u.

Example 1.1 (Maiquetía rainfall)

We illustrate graphically max-stability using a time series used in Section 1.5.1 for the purpose

of illustration. The Maiquetía rainfall series consists of yearly maxima of daily cumulated

rainfall measurements (in mm) for the period 1951 to 1999 recorded at the Simón Bolívar

International Airport. We fit a generalized extreme value distribution G to the first 48 annual

maxima and plot the corresponding density in Figure 1.2. The distribution of the centennial

maximum of daily precipitation is obtained by max-stability as G100. The 100-year return

level based on G , corresponding to roughly the 0.37-quantile of G100, and the mean of G100

are displayed under the density of the latter; due to the skewness, the mean of the centennial

maximum is located to the right of the mode. The largest annual maximum, recorded in

December 1999, is far into the tail of the estimated centennial maximum distribution.

�
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Figure 1.2 – Extrapolated density of centennial maximum of daily rainfall (full) for the Maiquetía
yearly maxima (rug) and fitted generalized extreme value density for the annual
maximum distribution (grey), based on data for 1951–1998. The 100-year return
level (dashed) and mean of the centennial distribution (dotted) are also displayed.
A rug indicates the 410.4mm backcasted extreme record of December 1999.

1.1.3 Penultimate approximations

The generalized extreme value (GEV) distribution arises as the non-degenerate limiting distri-

bution of maxima. In practice, it is typically fitted to data that are partitioned into k blocks of

(potentially random) sizes mi . We shall assume that the block sizes are all the same, so that

mi = m for i = 1, . . . ,k and n = km. The quality of the generalized extreme value approxima-

tion increases with the block size m. For fixed block sizes, the estimated shape parameter

generally differs from its asymptotic counterpart and this discrepancy usually introduces bias

if one extrapolates far beyond the data. This section defines penultimate approximations

and second-order regular variation. These are mainly of mathematical interest, since the

underlying distribution of the data is unknown in practice. Still, calculations for well-known

families of parametric models can be useful in assessing the performance of estimators in

Monte Carlo studies.

Let F (x) denote a thrice-differentiable distribution function with upper endpoint x∗ and den-

sity f (x). Define s(x) =−F (x) log{F (x)}/ f (x). The existence of the limit ξ∞ = limn→∞ s′{bn} is

necessary and sufficient for existence of an > 0 and bn ∈R such that

lim
n→∞F n(an x +bn) = exp

{
−(1+ξ∞x)−1/ξ∞

}
=G(x),

but also for “twice-differentiable convergence”, i.e., convergence of both the corresponding
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density function,

lim
n→∞nan f (an x +bn)F n−1(an x +bn) = (1+ξ∞x)−1/ξ∞−1 exp

{
−(1+ξ∞x)−1/ξ∞

}
= g (x),

and of its derivative uniformly in x on all finite intervals (Pickands, 1986, Theorem 5.2).

Smith (1987a) shows that, if ξ∞ = limn→∞ s′{bn} holds, for any x ∈ {y : 1+ξ∞y > 0}, there exists

z such that

− log[F {v +xs(v)}]

− log{F (v)}
= {

1+xs′(z)
}−1/s′(z) , v < z < v +xs(v).

For each n ≥ 1, setting v = bn and an = s(bn) yields

F n(an x +bn) = exp
[
−{

1+ s′(z)x
}−1/s′(z)

]
+O(n−1)

for z ∈ [min(an x +bn ,bn),max(an x +bn ,bn)], depending on the support of F . The ultimate

approximation replaces s′(z) by s′(x∗) = ξ∞, whereas Smith suggests instead suggests taking

s′(bn), which is closer to s′(an x +bn) than is s′(x∗).

The convergence rate of the generalized extreme value distribution F n(an x+bn) is (Wadsworth

et al., 2010)

max
{
O(s′(bm)−ξ∞),O(s′(am x +bm)− s′(bm)),O(n−1)

}
,

whereas the convergence rate for the density, pointwise, includes an additional error term

of O (s(am x +bm)/s(bm)− (1+ξ∞x)). When the term O(s′(bm)−ξ∞) dominates, Wadsworth

et al. (2010) illustrate how a Box–Cox transformation can improve the rate of convergence.

For threshold exceedances, we start with the reciprocal hazard r (x) = {1−F (x)}/ f (x) in place

of s(x). Smith (1987a) shows that there exists y such that

1−F {u +xr (u)}

1−F (u)
= {

1+xr ′(y)
}−1/r ′(y)
+ , u < y < u +xr (u),

unless r ′(x) is constant. The penultimate shape parameter for the generalized Pareto distribu-

tion is r ′(u), but the true shape parameter lies between r ′(u) and ξ∞.

When we fit the limiting parametric models to finite samples, maximum likelihood estimates

of the shape parameter will tend to be closer to their penultimate counterparts than to the

limiting value.

Penultimate approximations show that the estimated shape will change as the threshold or

the block size increases. Consider for simplicity yearly maxima arising from blocking m = ny

observations per year. We are interested in the distribution of the maximum of N years and

thus in ξN ny , but our estimate will instead target ξny ; an extrapolation error arises from this

mismatch between the shape values, which would be constant if the observations were truly

11
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Figure 1.3 – Estimate of the distribution of the maximum of N = 2000 standard Gaussian variates,
based on block maxima with m = 40 (full) and peaks-over-threshold approximations
with u = z0.975 (dashed). The grey shaded region shows the true theoretical density
function Nφ(x)ΦN−1(x). The line segments near 3.2 represent the return levels z1/T .

max-stable. The curvature of r ′ determines how stable the estimates of ξt are when the

extrapolation window increases.

Example 1.2 (Estimate of the distribution of the maxima of N observations)

Figure 1.3 shows the distribution of the maxima of N = 2000 standard Gaussian variates

(shaded region). The dashed line shows the density of the block maximum penultimate

approximation G ∼ GEV(b40, a40,ξ40) with blocks of size m = 40. The full lines show the

penultimate approximation for threshold exceedances above the 97.5% percentile of the

standard Gaussian distribution, i.e., F ∼ GP{r (u),r ′(u)} with threshold u =Φ−1(0.975) and

ζu = 0.025. The line segments show the estimated return levels z1/T , defined for block max-

ima as the solution of the equation G(z1/T ) = 1−40/2000 and for threshold exceedances by

F (z1/T ) = 1− (Nζu)−1. Both correspond to the 36.4% percentile of the distribution of the

maximum of N observations.

�
Example 1.3 (Penultimate approximation for lognormal variates)

We illustrate the previous discussion to provide some insight into the relevance of penul-

timate approximations. The left panel of Figure 1.4 illustrates how maximum likelihood

estimates of the parameters for repeated samples from the model are closer, on average,

to the penultimate approximation than to the limiting value ξ∞ = 0. By extrapolating the

model using max-stability, differences between the approximations are magnified; see the

right-hand panel of Figure 1.4. In this case, the penultimate shape for m = 1000 is approx-

imately ξ1000 = 0.215, compared to ξ30 ≈ 0.284, which is far from the limiting value ξ∞ = 0.
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Figure 1.4 – Penultimate approximation for standard lognormal variates. Left panel: histogram
of maximum likelihood estimates of the shape of the generalized extreme value
distribution fitted to k = 100 block maxima of sizes m = 30, with penultimate approx-
imation (black line at ξ30 ≈ 0.284) and limiting parameter (grey line at ξ∞ = 0). Right
panel: true density of the maxima of n = 1000 standard lognormal variates (heavy),
density of the Smith penultimate approximation F 1000/30

1 for F1 ∼GEV(a30,b30,ξ30)
for the generalized extreme value approximation to block maxima of size m = 30
(dashed) and ultimate approximation F 1000/30

2 for F2 ∼ GEV(a30,b30,ξ∞) (short
dashes).

The extrapolated density estimates are based on F 1000/30
1 , the generalized extreme value den-

sity associated to the distribution function of the penultimate approximation F 1000/30
1 , with

F1 ∼GEV(a30,b30,ξ30). The penultimate approximation F2 is more accurate than the ultimate

approximation GEV(a30,b30,ξ∞), which is too short tailed.

�

1.1.4 Asymptotic bias of maximum likelihood estimators

Since we use finite block sizes and threshold, maximum likelihood estimators will be biased,

more so if the fraction of sample points used for inference is too large. Moreover, this bias

may not vanish asymptotically unless the fraction of observations kept for inference grows at

a certain rate.

To derive the asymptotic bias of maximum likelihood estimators, one requires generalized

regular variation of second order (de Haan and Stadtmüller, 1996). A distribution is generalized
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regularly varying of second order if there exists a positive function A(t ) such that

Hξ∞,ρ(x) := lim
t→∞

b(t x)−b(t )−a(t )
∫ x

1 sξ∞−1ds

a(t )A(t )
=

∫ x

1
sξ∞−1

∫ s

1
uρ−1duds, x > 0,ρ ≤ 0.

(1.2)

To avoid degeneracy, we exclude functions A(t) that lead to Hξ∞,ρ(x) ∝ ∫ x
1 s−ξ∞−1ds. The

second-order auxiliary function A(t) satisfies the following constraints: limt→∞ A(t) = 0,

limt→∞ |A(t x)/A(t )| = xρ for ρ ≤ 0, and sign{A(xs)} = sign{A(t +xs)} for some xs > 0 and for all

t > 0.

de Haan and Resnick (1996) provide a constructive definition of the second-order auxiliary

function A(t) in their Theorem 2.1, assuming that b(x) is twice differentiable and b′(x) is

eventually positive. Specifically,

A(t ) := tb′′(t )

b′(t )
−ξ∞+1 = r ′(bt )−ξ∞ (1.3)

is the difference between the penultimate and ultimate values of the shape parameter.

The asymptotic bias of maximum likelihood estimators derived for fixed threshold or block

sizes depends on the second order regular variation parameter, ρ, which can be extracted from

the relation limt→∞ A(t x)/A(t ) = xρ for ρ ≤ 0, when generalized regular variation of second

order holds.

Suppose λ ∈ R is the asymptotic rate at which the number of extreme observations grow

relative to the total sample size, i.e., k1/2 A(n/k) → λ as n,k →∞. If λ = 0, the asymptotic

bias of maximum likelihood estimators due to model misspecification vanishes. The optimal

rate at which k must grow relative to n is thus family-dependent. Let θk = (σ̂k , ξ̂k ) denote

maximum likelihood estimators for the generalized Pareto distribution based on the k largest

order statistics from a distribution F for which eq. (1.2) holds. Following Theorem 3.4.2 of

de Haan and Ferreira (2006), the rescaled sequence θ̂k converges as k →∞, k/n → 0, to a

Gaussian variate with distribution

k1/2

(
σ̂k /a(n/k)−1

ξ̂k −ξ

)
d−→No

{
λ

(1−ρ)(1+ξ−ρ)

(
−ρ

1+ξ

)
,

(
1+ (1+ξ)2 −(1+ξ)

−(1+ξ) (1+ξ)2

)}
.

This is proved in de Haan et al. (2004), who report a different expression in their Corollary 2.1

for the asymptotic bias to that in de Haan and Ferreira (2006); see also Smith (1987b) for the

case where u is a fixed threshold.

A similar result holds for block maxima. Let k be the number of maxima of blocks of size m =
bn/kc and let `(θ; x) and i (θ) respectively denote the log-likelihood and the Fisher information

of the generalized extreme value distribution for a single observation and let Qθ(s) denote the
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1.1. Introduction

quantile function of a generalized extreme value distribution. Further define θ0 = (0,1,ξ), and

B(ξ,ρ) :=
∫ 1

0

∂2`(θ, x)

∂x∂θ

∣∣∣∣
x=Qθ(s),θ=θ0

Hξ,ρ

{
− 1

log(s)

}
ds,

where Hξ∞,ρ is defined in eq. (1.2). Then the sequence of maximum likelihood estimators θ̂n

based on k = bn/mc maxima of blocks of length m converges in law to a Gaussian distribution

as k →∞, k/n → 0, viz. (Dombry and Ferreira, 2019, Theorem 2.1)

k1/2

(µ̂n −bm)/am

σ̂n/am −1

ξ̂n −ξ0

 d−→No
{
λi−1(θ0)B(ξ,ρ), i−1(θ0)

}
.

An explicit expression for B(ξ,ρ) appears in Appendix A of Dombry and Ferreira (2019), while

the Fisher information of the generalized extreme value distribution is given in Prescott and

Walden (1980) and in Appendix A.

Since we always work at penultimate levels, one could instead compare the bias committed by

adopting an ultimate approximation, e.g., GEV(bn , an ,ξ∞) with a higher-order approximation

such as GEV(bn , an ,ξn) that is closer to the limiting model (Smith, 1987b, 1988). These

derivations give an avenue for selecting the optimal block size or the quantile at which to

threshold the data in order to minimize the mean squared error of an estimator. Such results

are inapplicable in practice, unfortunately, as the function A(·) is family-dependent and

evaluation of the bias terms would require an estimate of ρ.

The following examples provide derivations of at ,bt ,ξt ,ξ∞,ρ and A(t ) for various parametric

families in the Gumbel max-domain of attraction, so ξ∞ = 0 in all cases. It does not matter

which definition we adopt, either s(x) =−F (x) log{F (x)}/ f (x) or the reciprocal hazard r (x) =
{1−F (x)}/ f (x) to derive the penultimate shape; we use the latter since it is easier to manipulate.

Example 1.4 (Penultimate approximation for Weibull variates)

The Weibull distribution has survival function 1−F (x) = exp{−(x/λ)α} for x ≥ 0, with pa-

rameters α,λ> 0. One can thus take as location and scale constants b(t) = λ{log(t)}1/α and

a(t) = (λ/α){log(t)}1/α−1, respectively. The second-order auxiliary function can be derived

from eq. (1.3) and is

r ′(bt ) = A(t ) =
(

1

α
−1

)
1

log(t )
, t > 1,

which is slowly varying at ∞, so ξ = ρ = 0. The penultimate value ξt lies in the Weibull

domain when α> 1 and in the Fréchet domain when α< 1. The case α= 1 is the exponential

distribution, which is threshold-stable.

�
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Chapter 1. Likelihood estimation for univariate extremes

Example 1.5 (Penultimate approximation for Gaussian variates)

For Gaussian variates, b(t ) ∼ {2log(t )}1/2 as t →∞ since (de Haan and Stadtmüller, 1996)

lim
t→∞b(t )3

{
b(t x)−b(t )− log(x)

b(t )

}
=− log2(x)

2
− log(x).

We can choose the auxiliary functions a(t) = 1/b(t) and A(t) = {b(t)}−2. Expanding the re-

ciprocal hazard using Mill’s ratio, it can be seen that r ′(x) =−x−2 +O(x−4), so ξ= ρ = 0 and

ξt = r ′{b(t )} is negative. The rate of convergence of the ultimate approximation is O{log(t )−1}

while that of the penultimate approximation is O{log(t )−2} (Smith, 1987a).

�

Example 1.6 (Penultimate approximation for Burr variates)

The Burr type XII distribution has survival function 1−F (x) = {1+ (x/φ)c }−k for φ,c,k > 0 and

x ∈R+. The norming constants are b(t ) =φ(t 1/k −1)1/c and

a(t ) = φ

ck
(t 1/k −1)1/c

(
1+ 1

t 1/k −1

)
.

The penultimate shape is

r ′{b(t )} = 1− c

ck
(t 1/k −1)−1 + 1

ck
,

with ξ= limt→∞ r ′{b(t )} = (ck)−1 > 0, and ρ =−1/k.

�

Example 1.7 (Penultimate approximation for generalized gamma variates)

The generalized gamma distribution is used by Papalexiou and Koutsoyiannis (2013) to model

non-zero rainfall. Its distribution function is

F (x) = 1−Γ
{
γ1

γ2
,

(
x

β

)γ2
}
Γ−1

(
γ1

γ2

)
, x > 0,γ1,γ2,β> 0.

where Γ(a, z) := ∫ ∞
z xa−1 exp(−x)dx is the upper incomplete Gamma function. This can be

expressed as a power series at infinity as

Γ(a, z) ∼ za−1e−z
∞∑

k=0

Γ(a)

Γ(a −k)
z−k , z →∞.

We can therefore write the derivative of the reciprocal hazard function for x large as

r ′(x) =−1+
{

1−γ1

γ2
+

(
x

β

)γ2
}
Γ

{
γ1

γ2
,

(
x

β

)γ2
}(

x

β

)−γ1

exp

{(
x

β

)γ2
}

∼−1+
{

1+ 1−γ1

γ2

(
x

β

)−γ2
}{

1+
∞∑

k=1

Γ(γ1/γ2)

Γ(γ1/γ2 −k)

(
x

β

)−γ2k
}

∼ 1

γ2

(
x

β

)−γ2

+O
(
x−2γ2

)
.
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1.1. Introduction

Since the upper endpoint of the generalized gamma is x∗ = ∞ and bt → ∞, it suffices to

consider limx→∞ r ′(x) = ξ∞ = 0. Following Fung and Seneta (2018, §3.2), the quantile function

evaluated at 1−1/t admits the asymptotic expansion

b(t ) = F−1(1−1/t ) ∼
[
βγ2 log

{
βγ2−γ1 t

Γ(γ1/γ2)

}
−k1 +

βγ2 (γ1 −γ2)

γ2
log

{∣∣∣∣k2 −
γ2 log(t )

γ1 −γ2

∣∣∣∣}]1/γ2

×
(
1+O

[
log{|− log(t )|}

log2(t )

])
, t →∞,

for some constants k1,k2 ∈R. The leading term in the expansion of r ′(x) is O(x−γ2 ); it follows

that the second-order auxiliary function A(t ) is slowly varying, so ρ = 0.

�

Two other distributions will appear in the simulation studies. The first is the Student distri-

bution with ν degrees of freedom, which has shape and second order parameter ξ= 1/ν and

ρ = −2/ν, respectively (de Haan and Ferreira, 2006, ex. 2.15). The second is the lognormal

distribution, whose auxiliary function is a(x) ∼ x/log(x) as x →∞, with limits ξ= ρ = 0. The

scaling constants an and bn can be found in Embrechts et al. (1997, p. 156).

Example 1.8 (Metastatistical approach for rainfall extremes)

Marani and Ignaccolo (2015) suggest fitting a Weibull distribution to the whole distribution

of N non-zero rainfall observation and use the penultimate approximation to the latter to

estimate return levels. Write the distribution of the maximum of N Weibull variates as

H N (x;λ,α) =
[

1−exp
{
−

( x

λ

)α}]N ·∼ exp
[
−exp

{
−

( x

λ

)α
+ log(N )

}]
=: HN ,

say, using the notation of Example 1.4, and let θ = (λ,α)> > 02 denote the vector of scale

and shape parameters. The predictive distribution for the yearly maxima, assuming a joint

distribution for p(N ,λ,α), is

∑
n∈supp(N )

∫
α

∫
λ

H n(y ;λ,α)p(n,λ,α)dλdα,

which can be approximated by using the empirical distribution of N and by fitting a separate

Weibull distribution to each of the T years of data, where

ĤMETA(y) = 1

T

T∑
t=1

Hnt (y, θ̂t ). (1.4)

and θ̂t = (α̂t , λ̂t )> are the probability weighted moments (PWM) estimates of the parameters

of the Weibull distribution for the non-zero data in year t . For the Weibull distribution, these

moments are

Ar =E[X {1−F (x)}r ] = 1

r +1

[
λ(r +1)−1/αΓ

(
1+ 1

α

)]
, r ∈N
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Chapter 1. Likelihood estimation for univariate extremes

and their empirical counterparts are

Âr =
1

n

n∑
i=1

x(i )
n − i

n +1
,

where x(1) ≤ ·· · ≤ x(n) are the ranked observations. The first two probability weighted moment

estimators are

α̂= log(2)

log(Â0)− log(2Â1)
, λ̂= Â0

Γ(1+1/α̂)
.

Marani and Ignaccolo claim that their method works better than estimation using peaks-over-

thresholds or block maxima if the number of wet days and the rainfall intensity change over

years. They justify this by generating pseudo-random variates from the Weibull distribution,

hinting that the use of the metastatistical model leads to lower mean squared prediction error

than using the GEV or the GP distributions.

We consider two distributions employed in Papalexiou and Koutsoyiannis (2013) to model

rainfall around the globe, namely the generalized Gamma distribution with parameters

β= 1.83,γ1 = 1.16 and γ2 = 0.54, and the Burr distribution with parameters c = 0.91, k = 6.105

and b = 55.75. Supposing the “true distribution” of rainfall G(x) is either of these two para-

metric models, fitting a Weibull distribution to rainfall will lead to model misspecification

and the estimated parameters θ̂ will be those for which the Kullback–Leibler divergence

KL(h; g ) = ∫
g (x) log{g (x)/h(x;α,λ)}dx is minimized, i.e., θ∗ = argminθKL(h; g ). The maxi-

mum likelihood estimator will be asymptotically Gaussian, n1/2(θ̂−θ∗)
d−→No2(02,H−1JH−1)

where H =Eg
(
∂2 log{h(θ)}/∂θ∂θ>), and J =Eg

(
[∂ log{h(θ)/∂θ][∂ log{h(θ)}/∂θ>]

)
(White, 1982).

Minimizing the Kullback–Leibler divergence amounts to maximizing

Eg
(
log{ f (x)}

)= log(α)−α log(λ)+ (α−1)Eg
(
log(X )

)−λ−αEg
(
Xα

)
and these expectations can be computed explicitly for the generalized Gamma family,

Eg
(
log(X )

)= log(β)+ ψ(0)(γ1/γ2)

γ2
, Eg

(
Xα

)=βαΓ{(γ1 +α)/γ2}

Γ(γ1/γ2)
,

whereψ(0)(x) = Γ′(x)/Γ(x) is the digamma function. We could proceed likewise to compute the

Godambe information matrix HJ−1H analytically, but resort instead to Monte Carlo methods

to evaluate these integrals numerically.

The Weibull distribution lies in the max-domain of attraction of a Gumbel distribution with

ξ= 0, yet Gumbel random variables have lower variance than Fréchet ones. Since the Weibull

model is fitted to the whole data set, the estimates of the Weibull model θ̂ are also less

variable than their extreme value counterparts. This twofold reduction in variance comes
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1.1. Introduction

at the expense of potential bias, as there is no guarantee that the true ultimate value ξ∞
will be zero, or that the penultimate shape r ′(bn) from the fitted Weibull will match that

of the true distribution. For example, the Burr distribution described has ξ∞ ≈ 0.164. In

principle, any distribution could be fitted to the rainfall data, leading to different penultimate

approximations.

An alternative approach proposed by Marani and Ignaccolo, assuming that the parameters

θt are constant over the T years, is to fit a Weibull distribution to the whole sample and use

Hn̄(y, θ̂) as metastatistical distribution, where n̄ is the average number of observations per

year. For the purpose of the simulation, Hn̄ can replaced by its penultimate approximation;

this has no practical impact on the results. The estimated metastatistical distribution ĤMETA(y)

corresponds to yearly maxima. Should one wish to extrapolate the model to obtain estimates

for Ny years, we would replace nt by nt Ny in eq. (1.4).

We simulate data from the generalized Gamma, Burr and Weibull distributions, specifying

the parameters λ = 7.3mm and α = 0.82 for the latter. To reproduce the setup of Marani

and Ignaccolo (2015), we suppose that daily cumulative rainfall totals follow one of the three

parametric models and simulate the number of wet days in year t as {bNt c}T
t=1 with Nt ∼

No(105,222) and T = 30 as in Marani and Ignaccolo (2015) to reflect nonstationarity. We fit the

Weibull distribution to each ‘yearly’ block of data using L-moments, but also to the whole data

set, as suggested in Zorzetto et al. (2016). The parameters of the generalized extreme value

distribution were estimated using maximum likelihood based on the yearly maxima. The target

for inference is the median of the distribution of the maximum of 50 years of daily rainfall,

which is obtained through max-stability for the generalized extreme value distribution and by

using m = N ny in the penultimate approximation for the metastatistical approach. We report

the median of the estimated distribution of the maximum of N ny rainfall events. We can obtain

the median of the 50-year maximum distribution and evaluate the estimated distribution

functions at this value; if the distributions are well-calibrated, the estimate should be around

0.5. The simulations in Figure 1.5 show that adoption of the penultimate approximation leads

to a bias-variance trade-off and potentially to underestimation of high quantiles. Calibration is

better assessed on the percentile scale; the right panel of Figure 1.5 shows to which percentile of

the fitted distribution the true value corresponds. The generalized extreme value distribution

estimates are calibrated, but not sharp. In contrast, the metastatistical model estimates are

not centred around the true value, hence uncalibrated.

The block maximum method delivers extremely variable estimates but, over 2500 replications,

the point estimates are centred around the true value. In contrast, the estimated median

of the 50-year maximum provided by the metastatistical approach is too small even when

ξ∞ = 0. The approach that consists in fitting a single Weibull distribution is particularly

problematic, because the bulk of the data dictates the fit. Likewise, misspecification can

lead to severe underestimation of risk, due to the mismatch between the penultimate shape

from the data generating mechanism and that of the Weibull fit, leading to an extrapolation

error. While the use of block maxima is not a panacea, it is a theoretically-justified inferential
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Chapter 1. Likelihood estimation for univariate extremes

approach. For spatial data, one could reduce the variability of the generalized extreme value

parameter estimates by pooling data from multiple neighbouring sites using local likelihood,

if for example the spatial dependence is strong.

�

1.1.5 Threshold selection methods

The limiting distribution of threshold exceedances is generalized Pareto as u → x∗, but practi-

tioners must choose a finite threshold in order to draw inference. In principle, the number

of points above the threshold, k, should satisfy k/n → 0 as n →∞. Threshold selection is

subtle and it is common to select a high percentile of the data, say the 95% value, as the

threshold, even if this is asymptotically incorrect, as in this case k/n 9 0 as n →∞. Most

approaches for threshold selection rely on properties of the generalized Pareto distribution

(moments, threshold-stability) to determine a region within which the asymptotic distribution

fits the data well and the parameter estimates are stable. Comparison of model fit for different

thresholds is complicated: a fraction of the data enter in both fit, yet for the generalized Pareto

distribution, the model is only specified above the threshold. The latter acts as both a location

parameter and a left-censoring indicator: it determines which data enter the likelihood, yet

cannot be considered a parameter of the model per se. The threshold choice leads to a bias-

variance trade-off that cannot be easily quantified because of the penultimate approximation,

since the shape parameter behaves like r ′(u) as u →∞. Uncertainty due to threshold selection

is often ignored in the subsequent analyses.

Automating threshold selection is almost necessary in multivariate or spatial data sets with

large dimensions. Bader et al. (2018) propose automated selection based on goodness-of-fit

tests, while Northrop et al. (2016) propose using the predictive cross-validated distribution to

assess the performance for predicting holdout observations for a given threshold. Below, we

focus on recent graphical selection tools, which are still standard; mixture models are reviewed

in Scarrott and MacDonald (2012).

Method 1.9 (Robust selection)

The extreme value distributions have unbounded influence functions and outliers can strongly

affect the estimate of the shape. Dupuis (1999) proposes an optimal B-robust estimator of

the generalized Pareto parameters. Points that are outlying or for which the fit is poor are

downweighted; if the weights for the largest observations are very low, this suggests that the

threshold is too low. While there is no guarantee that observations that were simulated from a

generalized Pareto distributed would not be downweighted, systematic downweighting of the

largest exceedances may be indicative of poor fit.

Method 1.10 (Threshold stability plots)

Consider a sequence of ordered candidate thresholds u1 < ·· · < uk ; one of the most widely

used tools for threshold selection is the threshold-stability plots of Davison and Smith (1990).

These show the point estimates of the shape ξ and the modified scale σui −ξui , which should

be constant for any threshold u j > ui assuming that the generalized Pareto above ui holds

20



1.1. Introduction

exactly. In addition to the point estimates, the asymptotic pointwise 95% Wald confidence

intervals are displayed; the standard errors are obtained from the observed information matrix.

These plots can be difficult to interpret because no joint statement can be derived and they

ignore changes in the estimated parameters due to the penultimate approximation. In practice,

one could replace these confidence intervals by those obtained from the profile likelihood to

better reflect the asymmetry of the estimators.

Method 1.11 (White noise process and simultaneous threshold stability plots)

The problem with the threshold stability plots lies in the point-wise nature of the estimate.

Assuming a superposition of k Poisson processes, Wadsworth (2016) derives the limiting

distribution of the maximum likelihood estimators from the Poisson process for overlapping

windows as the number of windows k → ∞ and nk → ∞. The joint asymptotic Gaussian

distribution allows Wadsworth to propose two additional diagnostics: a white noise sequence

of differences in estimates of the shape, standardized to have unit variance. The variables

ξ∗i = (ξ̂ui+1 − ξ̂ui )/{(I−1
ui+1

− I−1
ui

)1/2
ξ,ξ }, where Iui is the Fisher information of the Poisson process

likelihood for exceedances above ui , should form a white-noise sequence of independent

variables centered around the origin; systematic deviations are indicative of inadequacy. To

formally test the hypothesis, a likelihood ratio test can be used assuming a simple alternative,

namely a single change point at threshold u j . The null hypothesis is H0 : ξ∗i
iid∼ No(0,1) for

i = 1, . . . ,k −1 against the alternative Ha : ξ∗i ∼ No(β,σ)(i = 1, . . . , j −1) and ξ∗i ∼ No(0,1) for

j , . . . ,k −1. This alternative is motivated by results on model misspecification (White, 1982),

which suggest that the asymptotic distribution may still be Gaussian, but with a different

mean and variance. This can be used to automate threshold selection, by picking the smallest

threshold for which the P-value is above the level α.

For the asymptotic result to be approximately valid, the number of thresholds must be large,

which implicitly requires large samples for each superposed point process. Practical expe-

rience using Wadsworth (2016) diagnostic over a range of data sets and varying thresholds

point to a lack of robustness: the estimated difference in Fisher information matrices often

fails to be positive definite in practice. Changing the set of thresholds u under consideration

leads to potentially completely different parameter estimates being chosen by the automated

procedure, so the diagnostic is also highly sensitive to the choice of k.

Method 1.12 (Changepoint tests based on penultimate approximations)

Based on the penultimate approximation, one might expect the shape to vary slowly with the

threshold. Wadsworth and Tawn (2012) proposes to fit a Poisson process model to exceedances,

assuming that the shape is piecewise constant. They assume there is a nonhomogeneous

Poisson process with an intensity function on (v,u) and another on (u,∞). Specifically, the

integrated intensities are

Λ{(0,1)× (x,∞)} =


[
1+ξvu(x −µvu)/σvu

]−1/ξvu , v < x < u,[
1+ξu(x −µu)/σu

]−1/ξu , u < x,
(1.5)

and imposing continuity constraints so that the integrated intensity Λ and the intensity λ
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agree at the threshold u yields

µvu = u − σvu

ξvu

([
1+ξu

(
u −µu

σu

)] ξvu
ξu −1

)
,

σvu =σu

[
1+ξu

(
u −µu

σu

)]1/ξu+1

×
[

1+ξvu

(
u −µvu

σvu

)]−1/ξvu−1

.

Let m = #{xi > v} and mu = #{xi > u}; the likelihood is, up to proportionality constants,

σ−m
u

∏
i :xi∈(v,u)

{
1+ ξvu(xi −u)

σu +ξu(u −µu)

}−1/ξvu−1 ∏
i :xi∈(u,∞)

{
1+ξu

(
xi −µu

σu

)}−1/ξu−1

+

×
{

1+ξu

(
u −µu

σu

)}(m−mu )(−1/ξu−1)

×exp

(
−N

[{
1+ ξvu(v −u)

σu +ξu(u −µu)

}−1/ξvu
]{

1+ξu

(
u −µu

σu

)}−1/ξu
)

,

which corrects the formula on page 552 of Wadsworth and Tawn (2012). We can extend this

result by continuity for the cases where ξvu = 0 or ξu = 0. The null hypothesis is H0 : ξvu = ξu

against the alternative ξvu 6= ξu and is tested using a likelihood ratio test statistic.

Attempts to reproduce the simulation study results in Wadsworth and Tawn (2012) by fitting the

Poisson process likelihood via Markov chain Monte Carlo methods were largely unsuccessful,

in parts due to the non-orthogonality of the components; this could be improved by tuning m

(Sharkey and Tawn, 2017). As for threshold stability plots, the user must provide a sequence of

thresholds but unlike the latter, comparisons are done pairwise. This leads to multiple testing

issues and a computationally intensive procedure.

Northrop and Coleman (2014) adapt the idea of Wadsworth and Tawn (2012) and fit a gen-

eralized Pareto model with piecewise constant shape to k different thresholds; continuity

constraints at the thresholds impose k −1 restrictions on scale parameters, so the model only

has k +1 parameters. A score test can be used to test the hypothesis of equal shape and it

only requires evaluation of the model under the null hypothesis that a generalized Pareto

distribution is valid for all thresholds. A diagnostic plot is obtained by plotting P-values against

threshold. One can then choose to take, e.g., (a) the lowest threshold at which the P-value is

non-significant, or (b) the lowest threshold at which the P-values for all higher thresholds are

non-significant: under the null hypothesis, there is an α% probability of rejection at any given

threshold.

Method 1.13 (Extended generalized Pareto)

Papastathopoulos and Tawn (2013) propose three extended generalized Pareto distributions:

for example, the third extended generalized Pareto model has distribution function {1− (1+
ξx/σ)−1/ξ

+ }κ for x > 0 and κ > 0. Each family reduces to the generalized Pareto when the

additional parameter κ= 1 and share the same tail index ξ, the extended generalized Pareto

provide more flexibility for modelling departures from the limiting form. Standard parameter
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stability plots can be used to find a region in which κ≈ 1 and the shape parameter stabilizes.

Example 1.14 (Threshold selection for Padova rainfall)

We look at a time series of daily cumulated rainfall analyzed in Marani and Zanetti (2015)

spanning 268 years between 1725–2006. The exceptional length of the series gives enough

data to apply threshold selection methods; graphical diagnostics are reported in Figure 1.6.

The series include 52 missing daily records, as well as 14 non-consecutive years, including

change of instruments and five relocations. The white noise diagnostic (top left) suggests

use of a threshold of 18.8mm, corresponding to the 87.5% of the non-zero rainfall episodes.

On the contrary, the parameter stability plot (top right) indicates an increase in the shape

estimates beyond the confidence intervals at this point, leading to choice of threshold above

32mm. This is corroborated by the Northrop and Coleman (2014) P-value path for the score

test statistic (bottom left), which would hint that a threshold above 34mm is suitable. The

parameter stability plot for the extended generalized Pareto model also suggests a threshold

above 34mm.

�
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Figure 1.5 – Comparison of the fitted metastatistical approach with 30 years of synthetic rainfall
data from various parametric models. The data are generated from the generalized
Gamma (top), Burr (middle) and Weibull distributions (bottom). Left panels: density
of the estimated median of the maximum of 50 years of daily rainfall over the 2500
replicate datasets. Right panels: penultimate distribution functions evaluated at the
true 50-year maximum median. The solid lines show kernel density estimates from
2500 replications for the metastatistical model ĤMETA (dashes), the penultimate
approximation obtained by fitting a Weibull distribution to all the data (solid) and
the block maximum approach (heavy). The true value is indicated by grey vertical
lines.
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Figure 1.6 – Threshold selection diagnostics for the Padova rainfall series. Top left: white noise
sequence diagnostic of Wadsworth (2016); rescaled differences of shape parameter
estimates, {ξ∗i }. The dashed vertical line indicates the lowest threshold at which
we fail to reject the likelihood ratio test that the sequence behaves like a standard
Gaussian white noise sequence. Top right: parameter stability plot of Wadsworth
(2015) for the transformed shape estimates with simultaneous confidence intervals.
Bottom left: P-values of the score test of Northrop and Coleman (2014) against
threshold. The horizontal line at α= 5% gives the cutoff for individual tests, while
the upper axis indicates selected quantiles and the associated number of threshold
exceedances. Bottom right: parameter stability plot of Papastathopoulos and Tawn
(2013) for κ with pointwise confidence intervals.
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Chapter 1. Likelihood estimation for univariate extremes

1.2 Asymptotics for likelihood-based inference

This section focuses on parametric modelling of univariate extremes from a likelihood-based

perspective, starting with definitions that enable us to derive analytical expressions for the

finite-sample bias of maximum likelihood estimators. Since the quantity of interest for extreme

value distributions is mostly quantiles, special attention is devoted to development and tests

for scalar parameters of interest in presence of nuisance parameters, along with illustrative

examples. Much of this material follows the exposition in Cordeiro and Cribari-Neto (2014),

Brazzale et al. (2007), Severini (2000) and Barndorff-Nielsen and Cox (1994).

1.2.1 Likelihood and cumulants

Let θ be a p-dimensional parameter vector and let

`(x ;θ) =
n∑

i=1
log{p(xi ;θ)}

be the log-likelihood function for an independent sample of size n with density p(xi ;θ).

We denote the derivatives of the log-likelihood by

`r =
∂`

∂θr
, `r s =

∂2`

∂θr∂θs
, `r,s =

(
∂`

∂θr

)(
∂`

∂θs

)
, . . . ,

and their moments by E (`r ) = νr ,E (`r s) = νr s ,E
(
`r,s

)= νr,s , etc. The score function U (θ) is a

p-vector with r th entry `r . The Fisher (or expected) information is i (θ) with (r, s) entry −νr,s ,

while the observed information is the function j (θ) =−∂2`/∂θ∂θ> evaluated at the maximum

likelihood estimate θ̂. We use superscripts to denote entries of the inverse information matrix

i−1(θ) or of the inverse observed information matrix. Large sample properties of the maximum

likelihood estimator depend on a Taylor expansion of the score vector but, since our focus is on

higher-order asymptotics, we will also need cumulants of the log-likelihood derivatives, which

are obtained from the cumulant generating function K (τ) = log
{
E

(
exp(τ>Y )

)}
as coefficients

of the corresponding series expansion: the cumulants of the log-likelihood derivatives are

κr = νr , κr s = νr s , κr,s = νr,s ,

κr,s,t = νr,s,t , κr s,t = νr s,t , κr st =−νr,s,t − [3]νr s,t ,

κr,s,t ,u = νr,s,t ,u − [3]νr,sνt ,u , κr s,t ,u = νr s,t ,u −νr sνt ,u , κr s,tu = νr s,tu −νr sνtu , . . . ,

for r, s, t ,u = 1, . . . , p, where [·] denotes the sums over permutations of the indices, the number

of which is displayed in brackets (McCullagh, 2018, §2.3). The first few Bartlett (1953) identities

for cumulants are

κr = 0, κr,s +κr s = 0, κr st + [3]κr s,t +κr,s,t = 0, κr s,t +κr st = κ(t )
r s .
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1.2. Asymptotics for likelihood-based inference

The Bartlett identities hold whenever the cumulants exist and are finite. Let pr denote partial

derivatives of the density function with respect to θr , using the same convention as above.

The third Bartlett identity is derived by considering

`r st =
∂

∂θt

∂

∂θs

(
∂p/∂θr

p

)
= ∂

∂θt

(
pr s

p
− pr ps

p2

)
= pr st

p
− pr s pt

p2 − ps pr t

p2 +2
pr ps pt

p3 − pst pr

p2

= pr st

p
−`r s,t −`r t ,s −`st ,r −`r,s,t ,

using the chain rule and the product rule. The former allows one to write, e.g., ∂/∂θt`r`s =
`r,st +`s,r t , where we use the relations pr /p = `r and `r s = pr s/p −`r,s . Terms such as pr st /p

have null expectation, as can be seen by interchanging the integral and differential operators.

Variants of the Bartlett identities, due to Lawley (1956), involve partial derivatives of cumulants

and are most helpful. By noting that ∂E
(
g
)

/∂θr =E
(
∂g /∂θr

)+E
(
g`r

)
for g differentiable and

taking g = `r s , Lawley showed that

κ(r )
st = ∂

∂θr
E (`st ) =− ∂

∂θr
E (`s`t ) =−E (`r s`t )−E (`r t`s)−E (`r`s`t ) = κr st +κst ,r ,

using the second and third Bartlett identities.

Example 1.15 (Fisher information for the Poisson process likelihood)

The likelihood for the non-homogeneous Poisson process with intensity measureΛ{(0,1)×
(x,∞)} = {1+ξ(x−µ)/σ}−1/ξ for x > u given in eq. (1.1) includes a contribution for the random

number of exceedances Nu . Calculation of the Fisher information thus require calculating

the expectation with respect to both Yi and Nu . If we write Λ(R) ≡ Λ({(0,1)× (u,∞)} and

λ(yi ) = {
1+ξ(yi −µ)/σ

}−1/ξ−1
+ , the log-likelihood is

`(µ,σ,ξ;u, y ,nu) =−Λ(R)+
nu∑

i=1
log{λ(yi )}

and the Fisher information is (Wadsworth, 2016)

I (θ) =−EY ,Nu

(∇2`(Y , Nu)
)=∇2Λ(R)−ENu

(
NuEY

(∇2 log{λ(Y )}1{Y >u}
))

=∇2Λ(R)−Λ(R)EY
(∇2 log{λ(Y )}1{Y >u}

)
,

where the rightmost expectation is taken with respect to the conditional density of Y | Y > u,

f (y) =λ(y)/Λ(R). The entries of the Fisher information matrix are easily calculated (cf. Sharkey

and Tawn, 2017, Appendix C).

�

Example 1.16 (Fisher information for the r -largest observations)

Let Y(1) ≥ ·· · ≥ Y(r ) be a r vector of GEV(µ,σ,ξ) observations. A direct derivation of the
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Chapter 1. Likelihood estimation for univariate extremes

information matrix for the r -largest likelihood given in Proposition 1.5 is painful. Instead,

note that the marginal density of Y(r ) is

fY(r ) (y(r );µ,σ,ξ) = 1

(r −1)!σ

(
1+ξ y(r ) −µ

σ

)−r /ξ−1

+
exp

{
−

(
1+ξ y(r ) −µ

σ

)−1/ξ

+

}
,

so the joint density of Y(1), . . . ,Y(r ) may be written as

1

(r −1)!σ

(
1+ξ y(r ) −µ

σ

)−r /ξ−1

+
exp

{
−

(
1+ξ y(r ) −µ

σ

)−1/ξ

+

}
× (r −1)!

r−1∏
j=1

1

σ

(
1+ξ y( j )−µ

σ

)−1/ξ−1

+(
1+ξ y(r )−µ

σ

)−1/ξ
+

;

that is, we write the joint density as the product of the density of Y(r ) and the joint conditional

density of Y(1), . . . ,Y(r−1) conditional on Y(r ) = y(r ). This conditional density equals that of the

order statistics of r −1 independent variables with generalized Pareto density

h(y−(r ) − y(r );τ,ξ) =
r−1∏
j=1

1

τ

(
1+ξ y( j ) − y(r )

τ

)−1/ξ−1

+
,

where τ=σ+ξ(y(r ) −µ). Thus the overall log likelihood is

`(µ,σ,ξ; y( j ), y(r )) ≡ log
{

fY(r ) (y(r );µ,σ,ξ)
}+ r−1∑

j=1
log

{
h(y( j ) − y(r );τ,ξ)

}
,

where y(1), . . . , y(r−1) represent the observed values of a random sample of generalized Pareto

variables.

To obtain the observed information we first calculate the Hessian matrix of −`, then condition

on Y(r ) = y(r ) and take expectations over X j = Y( j ) − y(r ). It remains to write τ=σ+ξ(y(r ) −µ)

and integrate over Y(r ). We see that the expression for the 3×3 Fisher information matrix based

on the density of Y(1), . . . ,Y(r ) is of the form Ir (µ,σ,ξ)+ (r −1)I (µ,σ,ξ), where Ir (µ,σ,ξ) is the

information matrix based on the density of Y(r ), and I (µ,σ,ξ) is that for a single generalized

Pareto variable. The formulae for these matrices are unenlightening, but they can be used

to compute the information gain due to basing inference on Y(1), . . . ,Y(r ) rather than only

on the sample maximum, Y(1). To do so, we calculate the ratios of the diagonal elements of

I−1
1 (µ,σ,ξ) to those of {Ir (µ,σ,ξ)+ (r −1)I (µ,σ,ξ)}−1; an overall variance reduction for a given

r is obtained by considering l th root of the ratio of determinants, where l is the number of

parameters: { |I1(µ,σ,ξ)|
|Ir (µ,σ,ξ)+ (r −1)I (µ,σ,ξ)|

}1/3

.

Figure 1.7 shows the variance reduction factors for µ, σ, ξ and the overall efficiency. The

variance reduction factors for µ and σ suggest that, for estimation of these parameters, there

is little to be gained by taking r > 5, while for ξ the decline is closer to that of independent

generalized extreme value distributed data. This stems from the structure of the matrix

Ir (µ,σ,ξ)+(r−1)I (µ,σ,ξ); the parametersµ andσ cannot be estimated based only on I (µ,σ,ξ),
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1.2. Asymptotics for likelihood-based inference
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Figure 1.7 – Variance reduction factors for inference based on the r largest order statistic for the
location, scale, shape parameters and overall efficiency (clockwise from top right).
The dashed grey line shows the ideal efficiency gain for independent observations.
The value of the shape parameter ranges from ξ=−0.4 (full black) to ξ= 0.4 (full
pale grey) in increments of 0.2.

which has rank two, whereas both likelihood components contain information on ξ. Hence as

r increases the information gain for the location and scale parameters becomes more limited.

�

1.2.2 Nuisance parameters and the profile likelihood

We explained in Section 1.1.2 that the target of interest is often a quantile of the distribution of

maximum over a given period. One way to derive inference is to reparametrize the likelihood

in terms of the functional of interest.

Consider a parametric model with log-likelihood function `(θ) whose p-dimensional parame-

ter vector θ = (ψ,λ) that can be decomposed into a q-dimensional parameter of interestψ
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Chapter 1. Likelihood estimation for univariate extremes

and a (p −q)-dimensional nuisance vectorλ. The score vector, the information matrix and its

inverse are partitioned accordingly as

U (θ) = `θ =
(
`ψ

`λ

)
, i (θ) =

(
iψψ iψλ
iλψ iλλ

)
, i−1(θ) =

(
iψψ iψλ

iλψ iλλ

)
.

The profile likelihood `p, a function of ψ alone, is obtained by maximizing the likelihood

pointwise at each fixed valueψ=ψ0 over the nuisance vectorλψ0 ,

`p(ψ) = max
λ

`(ψ,λ) = `(ψ,λ̂ψ).

The observed profile information function is

jp(ψ) =− ∂`p(ψ)

∂ψ∂ψ> = {
jψψ(ψ,λ̂ψ)

}−1
.

The profile likelihood is not a genuine likelihood in the sense that it is not based on the density

of a random variable, but one can show that (Severini, 1999, p. 128)

∂`p(ψ)

∂ψ
= ∂`(ψ,λψ)

∂ψ

∣∣∣∣
ψ=ψ0

+Op (1),

− jp(ψ) = ∂2`(ψ,λψ)

∂ψ∂ψ>

∣∣∣∣∣
ψ=ψ0

+Op (n−1/2).

The properties of the profile likelihood function can thus be derived using the full likelihood,

and first-order asymptotic results presented in Section 1.2.5 hold also for profile likelihoods.

Example 1.17 (Profile likelihood of generalized Pareto distribution)

There is no closed-form expression for the maximum likelihood estimators of the parameters

of the generalized Pareto distribution, which must be obtained by numerical optimization.

Grimshaw (1993) uses a profile likelihood to reduce the problem to a one-dimensional opti-

mization in a transformed parametrization, following Davison (1984).

Write the log-likelihood for a random sample x of size n from GP(σ,ξ).

`(σ,ξ; x) =−n log(σ)−
(
1+ 1

ξ

) n∑
i=1

log

(
1+ ξxi

σ

)
, ξ 6= 0,σ>−ξx(n).

The upper endpoint of the distribution depends on the parameters if ξ< 0 and the model is

non-regular. For −1 < ξ≤−0.5, the maximum likelihood estimator is super-efficient, i.e., the

convergence rate depends on the true parameter values, but is faster than n1/2 and the joint

limiting distribution of (σ,ξ) is non-standard because the upper endpoint reduces the effective

number of parameters by one (Smith, 1985, Theorem 3). When ξ < −1, the log-likelihood

becomes unbounded and the maximum likelihood estimates do not solve the score equation.

When ξ=−1, the distribution is uniform with σ= max(x) and `(max(x),−1; x) =−n log(x(n)).
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1.2. Asymptotics for likelihood-based inference

If ξ < −1, the likelihood is unbounded since lim−σ/ξ→max(x)`(σ,ξ; x) = ∞; optimization is

therefore performed on the constrained parameter space {ξ> 0,σ> 0}t {−1 ≤ ξ< 0,−σ/ξ>
max(x)} (Grimshaw, 1993).

For numerical optimization, it is best to reparametrize the model from θ = (σ,ξ) to ϑ= (ξ,η),

where η=−ξ/σ. One can then find an explicit solution for the maximizing value of ξ given

η 6= 0, i.e.,

ξ̂η =
1

n

n∑
i=1

log(1−ηxi ).

The profile log-likelihood for η is

`p(η; x) =−n −
n∑

i=1
log(1−ηxi )−n log

{
− 1

n

n∑
i=1

1

η
log(1−ηxi )

}
,

which attains a maximum for η< 1/x(n); the profile log-likelihood is unbounded at η≈ 0, so

one excludes a region near the origin from the line search

�

Example 1.18 (Numerical optimization for the Poisson point process likelihood)

If the estimated probability of exceedance is small and the Poisson approximation holds,

c
{

1+ξ
(u −µ

σ

)}−1/ξ
≈ nu ,

We can take advantage of Grimshaw’s routine and fit a generalized Pareto distribution as dis-

cussed in Example 1.17 to obtain parameter estimates (σ̂u , ξ̂). Then, the maximum likelihood

estimates for the Poisson process likelihood (1.1) are approximately σ̂ = σ̂u × (nu/c)ξ̂ and

µ̂= u − σ̂{(nu/c)−ξ̂−1}/ξ̂. These points are very close to the maximum likelihood estimates

and can be used as starting values for a Newton–Raphson algorithm.

�

1.2.3 Cox–Snell bias correction

The following is taken from Barndorff-Nielsen and Cox (1994, §5.3). Cox and Snell (1968)

derive an expression for the first-order bias of maximum likelihood estimates, starting from a

second-order Taylor series expansion of the log-likelihood,

∂`

∂θu
+

p∑
r,s,t=1

(θ̂u −θu)
∂2`

∂θu∂θr
+ 1

2
(θ̂s −θs)(θ̂t −θt )

∂3`

∂θr∂θs∂θt

·= 0. (1.6)

From eq. (1.6), we can obtain an asymptotic expansion for θ̂r −θr in terms of log-likelihood

derivatives,

θ̂r −θr = j r s`s +
1

2
j r s`stu(θ̂t −θt )(θ̂u −θu)+·· ·
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Chapter 1. Likelihood estimation for univariate extremes

= j r s`s +
1

2
j r s j tu j v w`stu`u`w +·· ·

by iterating. Replacing this in eq. (1.6) and taking expectations term by term yields the first

order bias

bu =E
(
θ̂u −θu

)= p∑
r,s,t=1

i ur i st
(

1

2
κr st +κr s,t

)
+Op (n−2) (1.7)

=
p∑

r,s,t=1
i ur i st

(
κ(t )

r s −
1

2
κr st

)
+Op (n−2)

=−
p∑

r,s,t=1
i u,r i s,t 1

2
(κr,s,t +κr,st )+Op (n−2).

Cordeiro and Klein (1994) proposed the second expression, which it is advantageous in that it

does not involve mixed joint cumulants κr s,t , but rather the derivatives κ(t )
r s = ∂κr s/∂θt . The

last expression appears in Firth (1993) and McCullagh (2018, p. 210) and is based on Bartlett’s

third identity, coupled with the identity∑
r,s,t

i u,r i s,tκt ,r s =
∑
r,s,t

i u,r i t ,sκs,r t =
∑
r,s,t

i u,r i s,tκs,r t ,

which is obtained by a change of indices and symmetry of the Fisher information.

Plug-in estimates of the cumulants can be used to obtain consistent estimates of the parame-

ters. It follows that a bias-corrected estimate can be obtained by evaluating the vector b at the

maximum likelihood estimate b(θ̂) and subtracting it from the maximum likelihood estimates,

giving θ∗ = θ̂−b(θ̂), with bias that is O(n−2) (Efron 1975, remark 11). An alternative is to rely

on a parametric bootstrap to estimate the bias by simulating samples from the null model with

parameters θ̂, cf. § 10.6 of Efron and Tibshirani (1993). For general bias corrections, Godwin

and Giles (2019) propose solving the implicit equation

θ̃ = θ̂−b(θ̃). (1.8)

The point estimate θ̃ is obtained numerically as the root of this nonlinear system of equations.

Example 1.19 (Bias correction for the generalized Pareto distribution)

Giles et al. (2016) derive the Cox–Snell bias for the generalized Pareto distribution; the log-

likelihood for a sample of size one is

`(x;θ) =− log(σ)− (1+1/ξ) log(1+ξx/σ), 1+ξx/σ> 0, x,σ> 0,ξ ∈R. (1.9)

By making the change of variables x 7→ ξ(y−ξ − 1)/σ, it is straightforward to calculate the
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1.2. Asymptotics for likelihood-based inference

cumulants of the log-likelihood. The Cox–Snell correction is (Giles et al., 2016)

b(σ,ξ) =
(
σ(4ξ2 +5ξ+3)

1+3ξ
,− (1+ξ)(3+ξ)

1+3ξ

)
.

The cumulant kσσξ is incorrectly reported in Giles et al. (2016). We can numerically compare

the first-order bias with that of the maximum likelihood estimator: we generated 5000 datasets

consisting each of n = 30 observations following a GP(1,ξ) for ξ ∈ {−1,−0.99, . . . ,1}. Figure 1.8

shows selected quantiles of the empirical distributions of σ̂/σ and ξ̂−ξ. For the shape, the

quantiles are linear close to −1; recall that the maximum likelihood estimator is super-efficient

near the lower bound −1, cf. Example 1.17. The Cox–Snell correction (dot-dashed thick line)

is unbounded in a neighbourhood of ξ=−1/3 and should not be used unless ξ>−1/5, but

agrees well with the mean bias (thick full line) beyond this point. For the scale σ, the bias is

negligible near ξ=−1, when the estimator is super-efficient and the variance of the estimator

increases with ξ. The bias ofσ is systematically positive and that for ξ is systematically negative.

This bias is well-known in the hydrology literature; Hosking and Wallis (1987) compare the bias

and variance of method of moments and probability weighted moments estimators relative

to those of the maximum likelihood estimators and note that moment-based estimators

can display smaller root mean squared errors in small samples. While maximum likelihood

estimators minimize mean squared error asymptotically, Hosking and Wallis write that very

large samples are necessary for this to be visible in practice.
�

Example 1.20 (Bias correction for the generalized extreme value distribution)

The supplemental material of Roodman (2018) provide a general method to derive the cumu-

lants of the r -largest likelihood derivatives and the generalized extreme value distribution. We

derived those independently and report them in Appendix A.1.

�

1.2.4 Firth’s score correction

Let b(θ) denote the Cox–Snell first-order bias vector, which is O(n−1). In order to perform bias

correction, Firth (1993) defines a modified score function,

U∗(θ) =U (θ)+ A(θ), (1.10)

where E (A(θ)) =−i (θ)b(θ). This adjusts for the fact that the score U (θ) is not usually linear

in θ and solving for U (θ) = 0 leads to bias. Natural candidates for A(θ) are the observed

information, A(o)(θ) = − j (θ)b(θ) and the Fisher information A(e)(θ) = −i (θ)b(θ), but the

former is typically more efficient. Firth expands the score equation U∗ in a Taylor series

around θ, inverts the expansion term by term and take expectations to get

(θ∗r −θr ) =−br (θ)+n−1
p∑

s=1
i r sE (As)+Op (n−3/2),
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Figure 1.8 – Distribution of the maximum likelihood estimator as a function of ξ: σ̂/σ (left) and
ξ̂−ξ (right) based on 5000 datasets of size n = 30 from GP(1,ξ). The lines show the
0.1 and 0.9 percentiles (grey dotted), quartiles (dashed) and median (full line) of the
distribution of σ̂/σ and ξ̂−ξ computed at each 0.01 increment and smoothed using
a cubic spline. The pointwise mean (thick full) and the Cox–Snell bias correction
(thick dot-dashed) b(1,ξ) of Equation (1.9) are overlaid.

which entails that E (As) = ir sbs(θ)+Op (n−1/2) in order for the root of the score function U∗

in eq. (1.10) to yield a bias-corrected estimator. The difference between i (θ̂) and observed

information matrix j (θ̂) is usually Op (n−1/2) and the latter is preferred for bias correction,

though for full exponential families i (θ) = j (θ). Firth (1993) notes that for exponential family

models, this is equivalent to penalizing by Jeffreys’ prior. Alternatively, one could consider

median bias reduction of maximum likelihood estimates (Kenne Pagui et al., 2017).

The estimators of the first-order bias (1.7) rely on the assumption that the data arise from

the specified distribution. Furthermore, the cumulants appearing in the first-order bias

are defined provided −1/3 < ξ< 1 for the generalized Pareto and generalized extreme value

distributions. Bartlett’s identities hold for both families despite the fact that the support

depends on the parameters. Derivation of the Cox–Snell bias is in principle straightforward,

but typically the vector θ is not of interest in its own right; one is rather interested in some

functional g (θ), whose first-order bias must be derived separately; this has yet to be done for

extreme value distributions.
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1.2. Asymptotics for likelihood-based inference

1.2.5 Test statistics based on first-order asymptotics and Bartlett adjustment

Frequentist testing and confidence interval procedures often rely on the asymptotic distri-

bution of test statistics. The starting point for the distributional theory surrounding these

statistics is the asymptotic normality of the score U (θ) by means of a central limit theorem,

U (θ) ∼̇ No(0, i (θ)). The variance of U (θ0) is exactly i (θ0), while that of θ̂ is approximately

i (θ0)−1 under the null hypothesis H0.

We can expand the score function U (θ) in a neighbourhood of the maximum likelihood

estimate θ̂. The latter solves U (θ̂) = 0 by definition, as the score is an unbiased estimator

of zero, E{U (θ)} = 0. Following the local linearization step, one inverts the expansion and

replaces the observed information term-wise by the expected information using the expansion

(cf. Cordeiro and Cribari-Neto, 2014, eq 2.2)

j−1 =− j (θ̂)r s = i (θ)r s +
p∑

t ,u=1
i (θ)r t i (θ)su{i (θ̂tu)− j (θ̂tu)}+·· · ,

and thus j (θ̂)r s/i (θ)r s p−→ 1 for r, s = 1, . . . , p. A more rigorous derivation can be found in

Barndorff-Nielsen and Cox (1994, section 3.3).

The three main classes of statistics for testing a simple null hypothesis H0 : θ = θ0 against

the alternative Ha : θ 6= θ0 are the likelihood ratio, the score and the Wald statistics, defined

respectively as

w := 2
{
`(θ̂)−`(θ0)

}
, wscore :=U>(θ0)i−1(θ0)U (θ0), wwald := (θ̂−θ0)>i (θ0)(θ̂−θ0),

where θ̂ is the maximum likelihood estimate under the alternative and θ0 is the null value of

the parameter vector. A Taylor expansion of w about θ̂ gives

w(θ) = (θ̂−θ)> j (θ̂)(θ̂−θ)+op (1) =U (θ)>i−1(θ)U (θ)+op (1)
d−→χ2

p , n →∞.

The statistics w, wscore, wwald are all equivalent to Op (n−1/2), but the score statistic wscore
only requires calculation of the score and information under H0, which can be useful in

problems where calculations under the alternative are costly. The Wald statistic wwald is not

parametrization-invariant.

For scalar θ, signed versions of these statistics exist, and we will mostly look at variants of

r (θ) := sign(θ̂−θ)
[
2
{
`(θ̂)−`(θ)

}]1/2 ∼̇No(0,1). (1.11)

Example 1.21 (Regularity of the score test for the r -largest observation likelihood)

In a recent paper, Bader et al. (2017) claimed that the asymptotic distribution of the score

statistic for the order statistic likelihood given in Proposition 1.5 is not the usual χ2 distribution

and that the quality of the approximation deteriorates when r increases. They state that

this non-regularity comes from the fact that the support of the distribution depends on the
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Figure 1.9 – χ2
1 quantile-quantile plots of the score test statistic wscore based on 1000 indepen-

dent replicates of the score test statistic computed on a sample size n = 5000 with
r = 1,3,5,10 under H0 : ξ= 0.1, with bootstrap pointwise (points) and overall (lines)
95% confidence intervals.

parameter. Indeed, for extreme value distributions, some of the kth order cumulants (k ∈N+)

are undefined when the shape parameter ξ ≤ −1/k. This has practical implications: the

Fisher information matrix is undefined if ξ≤−0.5 and cannot be evaluated at the maximum

likelihood estimate θ̂ if ξ̂≤−0.5, which precludes the use of the score test. The first Bartlett

identity holds if ξ>−1 and the score has expectation zero at the true parameter value, meaning

that E(U (X ;θ);θ) = 0 for all θ ∈Θ. The maximum likelihood estimate solves the score equation,

U (x; θ̂) = 0 provided ξ̂>−1. This property can be used to verify that the optimization routine

has converged.

The claim of Bader et al. is erroneous and seems to be due to an incorrect implementation

of the score for the r -largest likelihood. The number of order statistics, r , is not a parameter

of the model and we cannot make direct comparisons between different values of r without

changing the observations that enter the likelihood. The score test of Bader et al. (2017) uses

an ill-posed null hypothesis H0 : θ = θ̂: the score (and thus the score test) would be identically

zero if the numerical implementation was correct.

To see this, we simulate 1000 data sets of size n = 5000 under the null hypothesis H0 : ξ= ξ0

from the r -largest order statistics for r ∈ {1,3,5,10} and compute the score statistic wscore ≡
U (x; θ̂ξ0 )>i−1(x; θ̂ξ0 )U (x; θ̂ξ0 ). The empirical distribution of the test statistic in Figure 1.9

matches the asymptotic χ2
1 distribution, independent of the value of r .

�
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1.2. Asymptotics for likelihood-based inference

The χ2 approximation can be improved by Taylor series expansion, showing that

E (W (θ0)) = p{1+β(θ0)/n}+O(n−2),

and this suggests using the Bartlett-adjusted statistic w ′(θ) = w(θ)/{1+β(θ)/n}.

Sometimes only a subsetψ of θ is of interest. The parameter vector θ is thus partitioned into

nuisance parametersλ and interest parametersψ. The likelihood ratio test forψ is

w(ψ) = 2
{
`(θ̂)−`(ψ0,λ̂ψ0

)
}

,

and the Bartlett adjustment term β(ψ) is (Barndorff-Nielsen and Cox, 1994, p. 152)

β(ψ) =
p∑

r,s,t ,u=1
i r s i tuδr stu +

p∑
r,s,t ,u,v,w=1

i r s i tui v wδstuv w +O(n−2),

where

δr stu = 1

4
νr stu +νr t ,su +νsu,r,t +νstu,r

1

4
νr stu −ν(u)

r st +ν(su)
r t

and

δr stuv w = 1

4
νr stνuv w +νst ,rνuv w +νst ,rνuv,w +νsuw

(
1

2
νr t v +

1

3
νr,t ,v +2νt v,r

)
+νt v,rνsu,w

= 1

6
νr t vνsuw + 1

4
νr tuνsv w −νr t vν

(u)
sw −νr tuν

(v)
sw +ν(v)

r t ν
(u)
sw +ν(u)

r t ν
(v)
sw .

The second parametrization, due to Lawley (1956), avoids calculation of mixed cumulants (cf.

Cordeiro and Cribari-Neto, 2014, p. 18). The Bartlett correction for the parameter of interest is

β(ψ) =β(θ)−β(λ).

In general, if we test a restrictionψ=ψ0, the expectation of the log-likelihood ratio becomes

p −q +β(θ)−β(λ). The terms are calculated as before, but summation only takes place over

the parameters inλ, sinceψ0 is fixed.

An alternative to analytical derivation of the Bartlett correction is the use of bootstrap (Rocke,

1989), whereby one estimates E{W (θ0)} by a Monte Carlo average w̄(θ0), obtained by com-

puting repeatedly the likelihood ratio test statistic under B samples from the null model, i.e.,

under f (θ̂ψ0
). The empirical Bartlett correction gives w(θ)p/w̄(θ0) ∼χ2

p . The benefit of the

Bartlett correction is that one only needs to compute the expectation pointwise at θ̂ψ0
rather

than approximate the distribution of the test statistic. The Bartlett corrected statistics are

distributed as χ2
p to order O(n−2).

Example 1.22 (Bartlett correction for the generalized Pareto distribution)

Tedious calculations give the overall Bartlett correction

β(θ) =−2
(
118ξ5 −285ξ4 −1216ξ3 −944ξ2 −210ξ−7

)
3(4ξ+1)(3ξ+1)2 (2ξ+1)

, ξ>−1/4.
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Figure 1.10 – Analytic and bootstrap Bartlett correction (with pointwise 95% confidence inter-
vals) for the generalized Pareto distribution for n = 150. Left panel: adjustment for
the shape alone. Right panel: adjustment correction for joint tests of (σ,ξ). In both
cases, the bootstrap corrections, p/w̄(θ0), were computed by sampling B = 105

samples from GP(1,ξ0).

The Bartlett correction for the scale parameter is

β(σ) =−2
(
944ξ8 +1584ξ7 +880ξ6 +3540ξ5 +6753ξ4 +4626ξ3 +1090ξ2 −42ξ−31

)
3(4ξ+1)(3ξ+1)2(2ξ+1)4 ,

for ξ>−1/4, while that for the shape is

β(ξ) = 4
(
108ξ5 +298ξ4 +228ξ3 +43ξ2 −10ξ−3

)
(4ξ+1)(3ξ+1)2(2ξ+1)2 , ξ>−1/4.

The Bartlett corrections are unbounded in a neighbourhood of −1/4 and can be negative;

this is contrast to bootstrap-based corrections, as shown in Figure 1.10; the variability of the

bootstrap estimates of the Bartlett correction for ξ is about 0.015 in the left panel of the figure.
�

1.3 Higher-order asymptotics

The use of the profile likelihood and first-order methods is the starting point for statistical

inference for parametric models. These methods may fare poorly if the dimension of the

nuisance parameterλ is large. Additionally, testing procedures that rely on first-order theory

may perform poorly in small samples. The distribution of such procedures is typically obtained
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1.3. Higher-order asymptotics

by keeping the first term of the asymptotic expansion of the test statistics, usually to an order

of O(n−1). By keeping more terms from the expansion of the distribution, one may hope to

achieve a more accurate approximation. Such so-called higher-order methods are intended to

provide improved inferences. If the numerical discrepancy between first order and higher-

order methods is negligible, this provides reassurance that the initial assessment was correct;

otherwise higher-order development should in principle improve over first-order methods.

Much of the development of higher-order asymptotics relies on dimension reduction through

conditioning. We recall some key notions related to data compression. The statistic S is

sufficient if the conditional distribution of the sample X given S does not depend on the

parameter θ. By the sufficiency principle, the maximum likelihood estimate, if it is unique, is

a function of the sufficient statistic. Ancillary statistics are quantities whose distribution does

not depend on θ. By Basu’s theorem, if (S, A) is a minimal sufficient statistic and S is complete

sufficient with A ancillary, then S and A are independent.

In the presence of nuisance parameters, we require a different notion of ancillarity. Consider

a decomposition of the parameter vector into features of interest and nuisance, θ = (ψ,λ),

assuming the sample space factorizes asΩΘ =ΩΨ×ΩΛ. Then A is a cut, or ancillary for the

minimal sufficient statistic (S, A), if the factorization

p(s, a;θ) = p(a;λ)p(s | a;ψ)

holds (Barndorff-Nielsen and Cox 1994, p. 38). In such cases, we may be interested in perform-

ing conditional inference onψ by considering only the term p(s | a;ψ). An alternative, if we

can factorize S = (S1,S2) into

p(s1, s2, a;ψ,λ) = p(a;λ)p(s1 | a;ψ)p(s2 | s1, a;ψ,λ), (1.12)

is to base inference forψ on the marginal likelihood p(s1 | a;ψ) by neglecting the rightmost

term of eq. (1.12) if the latter is complicated. Chapter 12 of Davison (2003) gives examples of

using conditional or marginal likelihood for inference.

1.3.1 Modified profile likelihood and the p∗ approximation

For a given value of the q-dimensional vectorψ, we denote the partial maximum likelihood

estimator ofλ by λ̂ψ and the maximum likelihood estimator by θ̂ = (ψ̂,λ̂ψ̂). The profile likeli-

hood is `p(ψ) = `(ψ,λ̂ψ) and the score of the profile is asymptotically Up(ψ̂) ∼No(0, jp(ψ̂))+
O(n−1/2) (Barndorff-Nielsen and Cox, 1994, p. 181). First order inference is based on the signed

profile likelihood root,

r (ψ) = sign(ψ̂−ψ)[2{`p(ψ̂)−`p(ψ)}]1/2 ∼No(0,1). (1.13)

Higher order asymptotic developments can be used to obtain more accurate confidence inter-

vals. Barndorff-Nielsen derives a modified likelihood root statistic r∗ for scalar ψ (Barndorff-
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Chapter 1. Likelihood estimation for univariate extremes

Nielsen and Cox, 1994, §6.6.1)

r∗(ψ) = r (ψ)+ 1

r (ψ)
log

{
q(ψ)

r (ψ)

}
. (1.14)

The asymptotic distribution of q(ψ) in eq. (1.14) is parameter-free and q(ψ) provides an

approximate pivot. The distribution of the modified signed likelihood root r∗(ψ) is closer to a

standard Gaussian distribution than its counterpart r (ψ), since the relative error of r∗(ψ) is

O(n−3/2), or O(n−1) for discrete likelihoods, compared to O(n−1/2) for r (ψ). A scaled profile

function can be obtained by taking exp(−r 2/2).

Barndorff-Nielsen (1980, 1983, 1988) proposed the p∗ approximation for the conditional

distribution of the maximum likelihood estimator θ̂ given an ancillary statistic a,

p∗(θ̂;θ | a)
.= c(θ, a)| j (θ̂)|1/2 exp{`(θ; θ̂, a)−`(θ̂; θ̂, a)},

where c(θ, a) is a normalizing constant. A main benefit of the p∗ formula is that it is invariant to

one-to-one transformations of the data while simultaneously being parametrization-invariant.

The p∗ approximation compresses the information contained in the n-sample x into the

statistic θ̂, achieving dimension reduction from n to p in such a way that the information

lost is minimized. In transformation models, the pair (θ̂, a) is minimal sufficient and the

result holds exactly (Barndorff-Nielsen and Cox, 1994). Define the sample space and mixed

derivatives

`;θ̂(θ; θ̂, a) = ∂`(θ; θ̂, a)

∂θ̂
, `θ;θ̂(θ; θ̂, a) = ∂2`(θ; θ̂, a)

∂θ∂θ̂
> ;

the correction term q(ψ) that appears in eq. (1.14) for scalar ψ is

q(ψ) =

∣∣∣`;θ̂(θ̂)−`; θ̂(θ̂ψ) `λ; θ̂(θ̂ψ)
∣∣∣∣∣∣`θ; θ̂(θ̂)

∣∣∣
∣∣ jθθ(θ̂)

∣∣1/2∣∣ jλλ(θ̂ψ)
∣∣1/2

.

Modifications of the profile log-likelihood function to achieve higher-order accuracy are

possible if we have an explicit bijection between the data y and (θ̂, a); the Barndorff-Nielsen

approximation takes the form

`b(ψ) = `p(ψ)+ 1

2
log

{∣∣ jλλ(θ̂ψ)
∣∣}− log

{∣∣∣∣∣∂2`(ψ,λ;ψ̂,λ̂, a)

∂λ̂∂λ>

∣∣∣∣∣
}

. (1.15)

In general, exact ancillary statistics need not exist and this precludes the use of the p∗ formula.

The sample space derivative with respect to λ̂ that appears in the Jacobian term of eq. (1.15)

can be approximated if one resorts to the use of an approximate ancillary statistic, i.e., a statis-

tic a such that the pair (θ̂, a) is sufficient up to Op (1/n), i.e., p(a;θ0 +δn−1/2) = p(a;θ0){1+
O(n−1)}; see eq. (8.3) of McCullagh (2018). In the case of multiple parameters, it is customary
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1.3. Higher-order asymptotics

to do the inference for each variable in turn; alternatives include the Skovgaard (2001) and

Fraser et al. (2016) analogs of r∗ in the case of vectorψ.

1.3.2 Orthogonal parametrization

Orthogonality between parameters helps reduce variability in estimators. The parameters of

interestψ are said to be globally orthogonal to the nuisance parametersλ, writtenψ⊥λ, if

the information matrix is block diagonal, i.e., iψλ(θ) =O for any value of θ ∈ΩΘ. Cox and Reid

(1987) show that, for values of ψ in a neighbourhood of the maximum likelihood estimate

withψ⊥λ havingψ−ψ̂=Op (n−1/2), then λ̂ψ− λ̂=Op (n−1) instead of the usual Op (n−1/2).

Indeed, when both ψ,λ are scalar (Barndorff-Nielsen and Cox 1994, § 3.6)

λ̂ψ− λ̂=− j−1
λλ(θ̂) jψλ(θ̂)(ψ− ψ̂)+Op (n−1) =−i−1

λλiψλ(ψ− ψ̂)+Op (n−1),

showing that in the general case λ̂ψ−λ̂=Op (n−1/2) unless the expected information block iψλ
or its observed counterpart jψ,λ(θ̂) are zero matrices. One could thus omit the Jacobian term

from the modified profile likelihood eq. (1.15) in the hope that the Op (n−1) term is negligible,

giving the Cox–Reid log-likelihood,

`cr1 (ψ) := `(ψ,λ̂ψ)− 1

2
log{| jλλ(ψ,λ̂ψ)|}.

The bias of the score is O(n−1), but the Cox–Reid likelihood does not correct the bias of the

information and is not invariant to reparametrization. An alternative to global orthogonality

is to require only local orthogonality, i.e., iψλ(θ0) = O for a given value of θ0.

Transformation to orthogonality is always possible if ψ is scalar, but compatibility conditions

appear whenψ is a vector and may not be satisfied. The choice of orthogonal parametrization

is not unique: ifλ⊥ψ, then any smooth one-to-one transformation g (λ) is also orthogonal

to ψ, and this raises the question as to which parametrization is best suited for the analysis.

We now provide details on how to find an orthogonal parametrization for scalar ψ. Consider a

transformation from (ψ,η) to (ψ,λ) such that ψ⊥λ; then one can consider the mixed partial

derivatives {∂2`/(∂ψ∂λr )} expressed as a function of (ψ,η) using the chain rule. On taking

expectations, the system of partial differential equations to be solved reduces to(
∂η

∂λ

)> (
iηψ+ iηη

∂η

∂ψ

)
= 0,

soλ(ψ,η) is a solution of

∂η

∂ψ
=−i−1

ηηiηψ.

If the Jacobian of the transformation from η 7→λ is non-zero, we can find g (λ) as the constant

of integration in the solution of this system of first-order partial differential equations.
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Chapter 1. Likelihood estimation for univariate extremes

It is also possible to express the likelihood in terms of the original parameters (ψ,η), without

derivingλ explicitly in terms of the latter. The modified profile log-likelihood is then (Davison

2003, § 12.4.2)

`cr1
:= `(ψ, η̂ψ)− 1

2
log

{∣∣∣ jγγ(ψ, η̂ψ)
∣∣∣}+ log

{∣∣∣∣∣∂λ(ψ, η̂ψ)

∂η>

∣∣∣∣∣
}

. (1.16)

Orthogonality of the parameters has many important properties that are summarized in Cox

and Reid (1987). A key property is asymptotic independence of the maximum likelihood

estimators ψ̂ and λ̂. Another is that the conditional estimates ψ̂λ vary less than their non-

orthogonal counterparts ψ̂η for givenλ,ψ.

Cox and Reid (1993) propose an alternative profile likelihood modification that does not

require formal derivation of an orthogonal parametrization for a scalar parameter of interest

ψ, viz.

`cr2 (ψ, η̂ψ)− 1

2
log

{
| jηη(ψ, η̂ψ)|

}
− (ψ− ψ̂)tr

{
∂

∂η

(
i−1
ηηiηψ

)}∣∣∣∣
ψ=ψ̂,η=η̂

.

The formula is not invariant to interest-respecting transformations, as it involves an approxi-

mate linearization step.

Example 1.23 (Quantiles of the generalized Pareto distribution)

The following is Example 12.25 from Davison (2003). Suppose one is interested in the (1−p)

quantile of the generalized Pareto distribution,

ψ=
σ(p−ξ−1)/ξ, ξ 6= 0,

−σ log(p), ξ= 0.

The information matrix can be written as

i (ψ,ξ) = 1

(1+ξ)(1+2ξ)

(
iψψ iψξ
iξψ iξξ

)
,

where

iψψ = aψψ(ξ)

ψ2 = 1+ξ
ψ2 ,

iψξ =
aψξ(ξ)

ψ
= (1+ξ){1+ξ log(p)−pξ}

ψξ(1−pξ)
+ 1

ψ
,

iξξ = aξξ(ξ) = (1+ξ){1+ξ log(p)−pξ}2

ξ2(1−pξ)2
+ 2{1+ξ log(p)−pξ}

ξ(1−pξ)
+2.

The information matrix is incorrectly reported in Davison (2003). The partial differential
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Figure 1.11 – Left: profile log-likelihood for the 99 percentile of the generalized Pareto distribu-
tion fitted to the Danish insurance claim data. Estimation is based on the k = 60
exceedances over the threshold u = 15. The solid line shows the profile for the
parametrization (ψ,ξ), while the dashed line shows orthogonal parametrization
(ψ,λ). Right: profile log-likelihood for the average of the 100-year maximum sea
level data, with original parametrization (solid line) and approximate orthogonal
parametrization (dashed grey). The horizontal grey lines indicate cutoff values for
95% and 99% percentiles based on the asymptotic χ2

1 distribution.

equation

ψ
∂ξ

∂ψ
=−

aψξ(ξ)

aξξ(ξ)

can be solved by the method of separation of variables and we can use eq. (1.16) with ∂λ/∂ψ=
aξξ(ξ)/aψξ(ξ).

The left panel of Figure 1.11 shows the profile log-likelihood for the 99 percentile of the

generalized Pareto distribution fitted to exceedances over u = 15 for the Danish insurance

claim data (Embrechts et al., 1997), which yields k = 60 observations. The profile log-likelihood

in the orthogonal parametrization has a slightly wider right tail. Both have been rescaled so

that the maximum is attained at zero.

�
Example 1.24 (Orthogonal parametrization for Fremantle sea level dataset)

The Fremantle sea level data consists of n = 86 measurements of maximum annual sea height

levels measured between 1897 to 1989 (Coles, 2001). The profile log-likelihood for the Cox–

Reid approximate orthogonal parametrization is easily computed numerically after fitting a

generalized extreme value distribution to the data, and the right panel of Figure 1.11 displays
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Chapter 1. Likelihood estimation for univariate extremes

the profile log-likelihoods for the mean of the 100-years maximum. The estimated average

ẑq = 1.91 lies between the first and second order statistics.

�

1.3.3 Tangent exponential model

Calculation of Barndorff-Nielsen’s p∗ approximation requires a decomposition of the parame-

ter θ in terms of the maximum likelihood and an explicit ancillary statistic. Fraser et al. (1999)

propose an approximation to the correction factor q , built in three steps. First, by conditioning

on an approximately ancillary statistic with relative error O(n−1), the dimension of the data

is reduced from the sample size n to the dimension of the parameter p. The model is then

approximated by an exponential family with canonical parameterψ. Lastly, marginalization

over the nuisance parameterλ of the exponential family yields a pivot that is a function ofψ

and whose distribution does not depend onλ.

Rather than approximate the density of the maximum likelihood estimator for every point y ∈
Rd , one can restrict attention to the sample points y 0. The Fraser–Reid approximation, termed

the tangent exponential model, does precisely this. Its rationale arises from consideration of

the full exponential family model, where the derivative of the log-likelihood with respect to

the minimal sufficient statistic givesϕ, the canonical parameter. Following the lines of Fraser

(2003) and Brazzale et al. (2007), we sketch the arguments leading to its construction.

Let Y be a random variable with distribution function F , density function f and p-dimensional

vector of parameters is θ = (ψ,λ); the observed data is y 0. Define the n ×d matrix of approxi-

mate ancillary statistics V. The i th row of V for continuous parameters could be, e.g.,

Vi = −
∂F

(
y0

i ;θ
)

∂θ

1

f
(
y0

i ;θ
) ∣∣∣∣∣
θ=θ̂

,

whereas for discrete models, Vi = dE (Yi ;θ)/dθ|θ=θ̂.

Further define the gradient ∂`/∂y in the direction V,

ϕ(θ)> =
n∑

i=1

d

dVi
`(θ; y)

∣∣∣∣
y i=y 0

i

= V> ∂`(θ; y)

∂y

∣∣∣∣
y=y 0

,

where the directional derivative (d/dv)h(y) = (d/dx)h(y+xv)|x=0. The parameter ϕ can be in-

terpreted as the projection of the sample space derivative onto the span of V. The approximate

pivot q of eq. (1.14) for the tangent exponential model approximation is

q(ψ) =

∣∣∣ϕ(θ̂)−ϕ(θ̂ψ) ∂ϕ/∂λ>(θ̂ψ)
∣∣∣∣∣∂ϕ/∂θ>(θ̂)

∣∣
∣∣ j (θ̂)

∣∣1/2∣∣ jλλ(θ̂ψ)
∣∣1/2

. (1.17)

The first matrix in the numerator of eq. (1.17) is formed by binding the d ×1 column vector
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1.3. Higher-order asymptotics

ϕ(θ̂)−ϕ(θ̂ψ) with the d × (d −1) matrix ∂ϕ/∂λ>.

Instead of the p∗ approximation, one could use the tangent exponential model approximation

directly in place of the rightmost term of eq. (1.15), giving an analogous modified profile

likelihood (Fraser, 2003, eq. 1.3)

`fr(ψ) = `p(ψ)+ 1

2
log

{∣∣ jλλ(θ̂ψ)
∣∣}− 1

2
log

{∣∣ϕλ(θ̂ψ)> jϕϕ(θ̂)ϕλ(θ̂ψ)
∣∣} .

where ϕλ is p × 1 Jacobian of ϕ with respect to the nuisance parameter λ and jϕϕ(θ̂) =
−(∂2/∂ϕ2)`(θ; y 0) is the observed information in theϕ parametrization (Fraser, 2004, pp. 338–

339). Since a closed-form expression for the likelihood in terms of ψ is rarely available, we

report instead `fr(ψ) = log{φ(r∗)}, where r∗ is computed using the tangent exponent model

approximation in eq. (1.17).

1.3.4 Other penalized profile likelihoods

The profile likelihood is not based on the density of a random variable and replacing the

nuisance parameter by its maximum likelihood estimate λ̂ψ is not harmless, particularly if

the dimension ofλ is large. Severini (2000) lists many modifications of the profile likelihood

that can be viewed as penalized estimators that approximate true marginal or conditional

likelihood in the sense of the Barndorff-Nielsen p∗ approximation. The general form of these

modified profile log-likelihoods is

`m(ψ) = `p(ψ)+ 1

2
log

{∣∣ jλλ(θ̂ψ)
∣∣}− log

{∣∣∣`λ;λ̂(θ̂ψ; θ̂, a)
∣∣∣} .

We list two further analytical approximations to `m, which consist in replacing `λ;λ̂ by an

approximation. The first replaces the tangent space derivative by that obtained from the

tangent exponential model construction,

`tem
m (ψ) = `p(ψ)+ 1

2
log

{∣∣ jλλ(θ̂ψ)
∣∣}− log

{∣∣`λ;y (θ̂ψ)V̂λ(θ̂)
∣∣} , (1.18)

where `λ;y = ∂2`/∂λ∂y> is a mixed partial derivative. The second class of approximations, due

to Severini and similar in spirit to ideas in Skovgaard (1996), uses covariances to approximate

the sample space derivative, with an error of O(n−1) in the moderate deviation sense, i.e., for

values ofψwith ψ̂−ψ=O(n−1/2) and O(n−1/2), in the large deviation sense, i.e., for values

ψ̂−ψ=O(1); cf. Severini (2000). The covariance-based modified profile likelihood is

`cov
m (ψ) = `p(ψ)+ 1

2
log

{∣∣ jλλ(θ̂ψ)
∣∣}− log

{∣∣iλ;λ(θ̂ψ; θ̂)
∣∣} , (1.19)

where

iλ;λ(θ̂ψ; θ̂) =E
(
`λ(θ̂ψ)`λ(θ̂)>

)
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is unknown but can be replaced by its empirical counterpart,

îλ;λ(θ̂ψ; θ̂) =
n∑

i=1
`(i )
λ

(θ̂ψ)`(i )
λ

(θ̂)>,

where `(i )
λ

denotes the score associated to the i th observation. This version has the same order

of approximation error.

We look at two novel examples to illustrate the derivations required to derive the tangent

exponential model approximation.

Example 1.25 (Profile likelihood for the scale of max-stable variates)

Suppose Yi
iid∼GEV(µ,σ,ξ) and we have an n sample {yi }n

i=1; we consider ψ=σ andλ= (µ,ξ).

The observed information jλλ is easily obtained as the negative Hessian matrix of the log-

likelihood. Since the distribution is a location-scale family, we have Vi ,µ = 1. Letting si (θ) ={
1+ξ(y0

i −µ)/σ
}
, the second column of the n ×2 matrix V has elements

Vi ,ξ̂ =
σ̂si (θ̂) log{si (θ̂)}

ξ̂2
+

y0
i − µ̂
ξ̂

,

while

`µ̂σ,yi (θ̂σ) = 1+ ξ̂σ
σ2 si (θ̂σ)−1/ξ̂σ−2 − ξ̂σ(1+ ξ̂σ)

σ2si (θ̂σ)2
,

`ξ̂σ,yi
(θ̂σ) = si (θ̂σ)−1/ξ̂σ−1

σ

((
y0

i − µ̂σ
)
(1+ ξ̂σ)

σξ̂σsi (θ̂σ)
+ log{si (θ̂σ)}

ξ̂2
σ

)
+ 1

σsi (θ̂σ)
+

(1+ ξ̂σ)(y0
i − µ̂σ)

σ2si (θ̂σ)2
.

These expressions can be substituted into `tem
m or `cov

m to obtain a modified profile log-

likelihood function.

�

Example 1.26 (Expectation of N threshold exceedances)

Suppose data {xi }nu

i=1 above a high threshold u are modelled with a generalized Pareto distribu-

tion, meaning

P (X ≤ z | X > u) = F (z) = 1−
{

1+ξ
(

z −u

σu

)}−1/ξ

+
, z > u,σu > 0,ξ ∈R.

Then, the maximum of N exceedances has expectation

zN :=
∫ ∞

u
zN F (z)N−1 f (z)dz = u + σ

ξ

{
Γ(N +1)Γ(1−ξ)

Γ(N +1−ξ)
−1

}
, ξ< 1.

The pth percentile of the maxima of N observations is simply the p1/N th percentile of the

generalized Pareto distribution. We can profile over zN by parametrizing the likelihood in
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1.3. Higher-order asymptotics

terms of (zN ,ξ). The n-vector V appearing in the tangent exponential model has elements

Vi =
{(zN −u)+ (xi −u)} log(q)−N (xi −u)Be(N ,1−ξ)

{
log(q)+ψ(0)(1−ξ)−ξψ(0)(N +1−ξ)

}
ξ{N Be(N ,1−ξ)−1}

,

where ψ(0)(·) = Γ′(x)/Γ(x) is the digamma function and

q=
[

1+
(

yi −u

zN −u

)
{1−N Be(N ,1−ξ)}

]
.

The elements of the canonical parameter are

ϕi = Vi ×
(
1+ 1

ξ

)
(N !Γ(1−ξ)−Γ(N +1−ξ))

−(x −u)N !Γ(1−ξ)+ {(zN −u)+ (yi −u)}Γ(N +1−ξ)
, i = 1, . . . ,nu .

These expressions are used to calculate the modified profile log-likelihood appearing in

Figure 1.12.

We illustrate the different approximations of the profile log-likelihood on simulated standard

Gaussian data and compare inferences drawn using block maximum and peaks-over-threshold

methods. We sample n = 2000 observations and target the mean of the maximum of N = 2000

variates, using u = 1.96 as threshold and with m = 50 for block maxima. The profile log-

likelihood `p (heavy black), the tangent exponential model `fr (solid grey) and Severini’s

corrections with a tangent exponential model penalty `tem
m (dashed grey) and an empirical

covariance approximation `cov
m (dashed black) are displayed in Figure 1.12. Most of the higher-

order methods yield wider confidence intervals in the right tails. The true value, 3.43, is well

within the confidence intervals in all cases.

�

Other approximations for the profile likelihood exist in the literature: Barndorff-Nielsen

(1986) proposes a correction to handle non-orthogonal parameters, as do Cox and Reid (1993).

However, the conditional profile likelihood is not parametrization-invariant and the choice

of orthogonal parameter is not unique. Another approximation is proposed in McCullagh

and Tibshirani (1990), who modify the profile likelihood to restore the Bartlett identities up to

second order, so that it is information-unbiased. To do so, they generate bootstrap samples at

points θ̂ψ and evaluate a location-scale transformation based on the simulations. While their

approach is invariant under interest-preserving transformations, such transformations may

not exist ifψ is multidimensional. If the profile likelihood is not an explicit function of ψ, it is

necessary to linearize `p(ψ) in terms of `(ψ,λ) to get a first-order approximation. We shall

not pursue these approaches further.

Another approach worth mentioning is bootstrap-based estimation of the distribution of the

likelihood ratio statistic w(ψ) = 2
{
`(θ̂)−`(θ̂ψ)

}
(cf. Lee and Young, 2005). The procedure,

described in Algorithm 1.1, is computationally intensive, as it requires running a parametric

bootstrap for each value of ψ over a grid {ψi }N
i=1. The significance function obtained from
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Figure 1.12 – Profile log-likelihood `p (heavy black), profile log-likelihood of thetangent ex-
ponential model approximation `fr (solid grey) and Severini’s modified profile
log-likelihood with a tangent exponential model penalty `tem

m (dashed grey) and an
empirical covariance approximation `cov

m (dashed black) for maxima of N = 2000
variates using peaks-over-threshold (left) and block maximum (right) methods.
Horizontal lines show the cut-off for 95% and 99% confidence intervals based on
the quantiles of the χ2

1 distribution.

Algorithm 1.1 Bootstrap estimation of the distribution of the likelihood ratio statistic w

Require: n sample x from F (x ;θ).
1: compute the maximum likelihood estimate (MLE) θ̂;
2: for all i = 1, . . . , N do
3: estimate θ̂ψi and w(ψi ) based on x ;
4: for all b = 1, . . . ,B do
5: simulate n observations x (b,i ) from F (·; θ̂ψi );

6: find the constrained MLE θ̂(b,i )
ψi

based on x (b,i );

7: find the MLE θ̂(b,i ) based on x (b,i );
8: return w (b,i ) = 2

{
`(θ̂(b,i ))−`(θ̂(b)

ψi
)
}
;

9: return the bootstrap P-value at ψi , pi = #{b : w (b,i ) > w(ψi )}/B .

the procedure is not smooth because of Monte Carlo variability, but the approximation to

the distribution is valid up to second order. One can obtain a (1−α) confidence interval

by computing mini {pi < α/2,ψi > ψ̂} and mini {pi < α/2,ψi < ψ̂}, where pi is the boostrap

P-value at ψi .
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1.4. Simulation studies

1.4 Simulation studies

This section explores two small-sample corrections for extremes. The first Monte Carlo simu-

lation looks at the estimation bias of maximum likelihood estimates when fitting generalized

Pareto and generalized extreme value distributions to data simulated from these models. The

second study looks at small-sample corrections for confidence intervals, including modifica-

tions of the profile log-likelihood, the tangent exponential model approximation and Severini’s

corrections.

It is important to recall that extreme value models are valid only asymptotically and the use of

limiting models in finite samples leads to biased estimates.

1.4.1 Bias corrections for extreme value distributions

Sample sizes for extremes, whether block maxima or threshold exceedances, tend to be small

due to the need to compromise between closeness of approximation (and asymptotic bias) and

estimation variability. The estimation bias is often neglected in asymptotic studies (Dombry

and Ferreira, 2019) because of the consistency of maximum likelihood estimators, but it is

important when dealing with small datasets.

The derivation of high order cumulants appearing in the first-order bias term b(θ) is tedious,

particularly for the generalized extreme value distribution. They can be obtained by automatic

integration routines after a change of variables so that the supports of the integrals do not

depend on the model parameters. We performed most of the symbolic calculations in Sage
and resorted to Mathematica whenever the former could not provide a closed-form expression.

These quantities may be of interest in their own right and are provided in Appendix A.

The first-order term in the expansion of the score equation about the maximum likelihood

estimator yields the dominant bias term, which is O(n−1). The third-order (mixed) cumulants

are defined only when −1/3 < ξ< 1, yet even values close to ξ≈−1/5 give unbounded bias

terms. For the generalized extreme value distribution, all cumulants are defined by continuity

for ξ→ 0, but numerical instability at the origin implies that care must be taken when coding

the cumulants, and the implementation in the mev R package uses linear interpolation be-

tween the limiting case ξ= 0 and small values of ξ to deal with the discontinuities when r and

q are zero, as advocated in Brazzale et al. (2007, p. 149).

Both generalized extreme value distribution and generalized Pareto variates are simulated by

applying the quantile transform to simulated uniform variates. Maximum likelihood estimates

are obtained using a constrained optimizer for the generalized extreme value distribution

(augmented Lagrange with boundary constraints) to ensure that ξ̂>−1 and that σ̂+ ξ̂(xi −µ̂) >
0 (i = 1, . . . ,n), so that the likelihood is finite and non-zero. The generalized Pareto distribution

is fitted using the algorithm of Grimshaw (1993). Since the bias correction for ξ̂≤−1/3 doesn’t

exist, calculation of b(θ̂) is impossible when ξ̂<−1/3.

49



Chapter 1. Likelihood estimation for univariate extremes

Maximum likelihood estimate ξ̂

B
ia

s
co

rr
ec

te
d

sh
ap

e
ξ̂

c

−1 −0.5 0 0.5 1

−0
.2

0
0.

2
0.

4
0.

6
0.

8

Subtract
Implicit
Firth score (obs.)
Firth score (exp.)

Figure 1.13 – Bias correction for the shape parameter ξ of the generalized Pareto distribution
GP(σ= 1,ξ=−0.2), with n = 30, based on B = 13000 replications. The grey line
shows the line y = x; as the bias-corrected shapes are necessarily larger than
−1/3. The shaded and dashed polygons for Firth’s score corrections are the α-
convex hull with parameterα= 0.5, which show the region in which bias-corrected
estimates fall relative to the maximum likelihood estimates. Both bias subtraction
and implicit corrections are monotonic functions of ξ.

For each replication, we calculate the maximum likelihood estimates and the bias-corrected

estimates. The resulting point estimates for more than 10 000 replications are summarized in

Tables 1.1 and 1.2. While the mean squared error of the estimate would normally be reported,

its calculation is upset by the fact that bias-corrected estimates, wherever computable, yield

estimates ξ̂>−1/3. Moreover, the estimate need not be available when ξ̂ is strongly negative

or for the bias subtraction with the correction b(θ̂) when ξ̂<−1/3. This happens most often

for the generalized Pareto distribution, for which the negative bias of ξ̂ can be substantial.

For the generalized extreme value distribution, the so-called bias subtraction b(θ̂) cannot be

calculated in 34% of the scenarios when ξ0 =−0.2,n = 20, decreasing to 7% when n = 80. The

second method that fails most often is Firth’s observed score, which cannot be calculated in

3% of the cases for the same setting ξ0 = −0.2,n = 20. The distribution of the estimator ξ̂c

is thus highly skewed to the right and truncated at −1/3. As n increases, the bias correction

goes to zero at rate n−1 and the estimates all approach the maximum likelihood estimates.

The variability of the estimate obtained using Firth’s score is smaller if we use the observed

information rather than the Fisher information, as predicted. Figure 1.13 illustrates the

correction, with the implicit bias correction always yielding estimates. The α-convex hull

represents the bias corrected point estimates for a given value of ξ̂, since the correction is

random and depend on the data through the score and the observed information.
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θi Correction | ξ0 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5

µ Theoretical (1st order) 5.0 3.1 2.2 1.7 1.3 0.9 0.6 0.3
none 2.3 1.8 1.3 0.8 0.3 −0.2 −0.7 −1.1
Subtract −3.2 −2.8 −1.7 −1.3 −1.1 −1.2 −1.2 −1.2
Implicit −3.2 −2.0 −1.4 −1.1 −1.1 −1.2 −1.2 −1.1
Firth score (obs.) −3.0 −2.0 −1.4 −1.1 −1.1 −1.2 −1.3 −1.4
Firth score (exp.) −5.1 −3.1 −1.9 −1.3 −0.7 −0.4 −0.0 0.4

σ Theoretical (1st order) −1.6 −2.9 −3.5 −3.7 −3.9 −4.0 −4.0 −3.9
none −3.0 −3.4 −3.6 −4.0 −4.4 −4.8 −5.2 −5.4
Subtract −3.0 −1.8 −1.0 −0.8 −0.9 −1.2 −1.5 −1.6
Implicit −1.6 −0.9 −0.6 −0.5 −0.7 −0.9 −1.2 −1.3
Firth score (obs.) −2.6 −1.4 −1.0 −1.0 −1.2 −1.6 −2.0 −2.4
Firth score (exp.) −1.9 −1.1 −0.6 −0.2 −0.0 0.3 0.5 0.8

ξ Theoretical (1st order) −7.2 −3.5 −1.8 −0.6 0.3 1.1 1.9 2.6
none −2.8 −2.0 −1.5 −0.8 −0.3 0.3 0.9 1.4
Subtract 8.4 3.2 0.9 −0.0 −0.4 −0.8 −1.1 −1.6
Implicit 2.8 1.2 0.3 −0.1 −0.5 −0.8 −1.0 −1.6
Firth score (obs.) 1.8 0.7 0.2 −0.0 −0.2 −0.3 −0.4 −0.5
Firth score (exp.) 6.7 2.8 0.6 −0.3 −1.4 −2.4 −3.3 −4.3

Table 1.1 – Median absolute bias (×100) for the generalized extreme value distribution, n = 30.

The overall conclusion of the simulation study, reported in Tables 1.1 and 1.2, is that bias

correction is useful only for the generalized Pareto distribution, for which the first-order

bias of the shape is consistently negative (eigth line of Table 1.2) and of similar magnitude

regardless of the value of ξ0. The Monte Carlo average bias of the maximum likelihood

estimator, b = θ0 −B−1 ∑B
b=1 θ̂b , is much smaller in magnitude than the first-order correction

would imply. The implicit bias correction (eq. (1.8)) performs best and maintains an ordering

relative to the maximum likelihood estimates. Firth’s bias correction, particularly the observed

information, provide good bias reduction on average, but the variance for a given value of

ξ̂ and the potential lack of convergence for the root-finding algorithm makes implicit bias

correction a more interesting avenue.

1.4.2 Higher-order asymptotic methods for confidence intervals

Pires et al. (2018) performed a simulation study to assess the performance of higher order

asymptotic methods for the shape parameter of the generalized Pareto distribution. Their

study concluded that the profile likelihood was oversized, meaning that the coverage prob-

ability was smaller than the nominal coverage probability; the authors also noted that the

point estimates provided by modified profile likelihood were less biased. Although the sign

of the shape parameter may help to understand the behaviour of extrapolated extremes, ξ

is not usually of interest by itself. Use of higher-order methods should in principle provide

more accurate coverage than first order methods. Since the use of profile likelihood-based

confidence intervals is standard for extreme value analysis, it is interesting to see how they

fare relative to penalized methods.
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θi Correction | ξ0 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5

σ Theoretical (1st order) 18.0 12.1 10.0 9.1 8.7 8.5 8.6 8.7
none 8.8 7.9 7.7 6.9 6.3 5.8 5.5 5.2
Subtract −7.6 −10.1 −8.4 −6.6 −5.3 −4.5 −3.9 −3.0
Implicit −6.3 −4.4 −3.1 −2.8 −2.7 −2.8 −2.8 −2.5
Firth score (obs.) −6.2 −4.3 −3.2 −3.0 −3.0 −3.2 −3.7 −4.1
Firth score (exp.) −12.8 −9.7 −7.7 −6.2 −5.4 −5.0 −4.8 −4.7

ξ Theoretical (1st order) −18.7 −12.4 −10.0 −8.7 −8.0 −7.5 −7.2 −7.0
none −10.3 −9.6 −9.2 −8.6 −8.5 −8.2 −8.2 −7.9
Subtract 18.7 10.7 5.3 2.3 0.6 −0.2 −1.0 −2.0
Implicit 4.6 2.2 0.7 0.1 −0.5 −0.8 −1.2 −1.7
Firth score (obs.) 2.2 0.5 −0.6 −0.6 −1.0 −1.1 −1.2 −1.1
Firth score (exp.) 12.5 8.0 4.8 2.9 1.7 1.0 0.4 0.0

Table 1.2 – Median absolute bias (×100) for the generalized Pareto distribution, n = 30.

We conduct a Monte Carlo simulation to study the coverage, bias and variability of the higher

order asymptotic methods for high quantiles. Specifically, we generate samples of size n = 1800

and target the quantile corresponding to an exceedance every 9000 observations. This setting

mimics 100-year return levels estimated from observations over a season of roughly 90 days,

collected over a period of 20 years. The alternative is to look directly at the distribution of the

maximum of N observations, derived using max-stability arguments. We selected the median

and the mean as representative point estimates; the latter is larger than the former whenever

ξ> 0. The three parameters are therefore ordered.

For fixed sample size n, we contrast two methods. We fit the generalized extreme value

distribution to maxima of blocks of sizes m = 30,45,90. We also use peaks-over-threshold

modelling, discarding all but the largest m ∈ {20,40,60} observations and fitting a generalized

Pareto distribution to the exceedances.

Six parametric families of distributions (Burr, Weibull, generalized gamma, Gaussian and

lognormal, Student) were selected as data generating processes to exemplify the use of extreme

value approximations when the data are only in the max-domain of attraction of the latter.

The distributions mimic standard choices appearing in the literature. The Burr and Student

distributions are heavy-tailed, while the others are in the Gumbel max-domain of attraction.

Parameter values for the generalized Gamma distribution were selected to reflect values found

in hydrology in estimating of the shape index for rainfall (Papalexiou and Koutsoyiannis, 2013).

Five methods were used to derive estimates and confidence intervals. The first is the normal

confidence interval derived from the Wald statistic, which is computed on the log scale and

back-transformed, i.e., exp{log(ψ̂)±z1−α/2 se(ψ̂)/ψ̂}. The second is the signed profile likelihood

root r of eq. (1.13), while the third is the r∗ approximation presented in Section 1.3.3. The last

two are the modified profile likelihoods based on the tangent exponential model (eq. 1.18) or

the modified empirical covariance of Severini (eq. 1.19). The last three should provide bias-

corrected point estimates as well as more accurate confidence intervals. For each scenario, we
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calculated the relative bias, the coverage and the average width of the confidence intervals.

The profile log-likelihood estimates are obtained using constrained optimization methods at

selected values of ψ, using dedicated algorithms such as sequential quadratic programming

to obtain profile log-likelihood values for each of the values of ψ on a grid. Every model

is parametrized in terms of the parameter of interest, along with tangent space derivatives,

canonical parameters, score and information matrices. Once the profile log-likelihood values

have been obtained, we compute the signed likelihood root r = sign(ψ̂−ψ){2`(θ̂)−`(θ̂ψ)}1/2.

The correction term q for the tangent exponential model is calculated as per eq. (1.17) and

used to get a value of r∗ = r + r−1 log(q/r ). The maximum of the tangent exponential model

is found as the root of r∗(ψ0)r (ψ0) by a line search starting from the maximum likelihood

estimate, for which r (ψ0) = 0. For the penalized likelihood of Severini, we compute penalty

terms that are added to the profile log-likelihood values and the optimum is obtained as the

maximum of the modified profile.

The values of r∗ obtained from this routine can be numerically unstable, often due to nu-

merical instability near r = 0 or to failure of the optimization routines. To palliate this, we

remove values of r∗ that are not in line with their neighbours and interpolate the rest using

splines. Specifically, we fit constrained quantile regression B splines to r∗− r with a Bayesian

information criterion to select the number of knots, using r as regressor. The default quantile

selected is the median. Since the values most susceptible to cause numerical overflow are

located near r = 0, we down-weight those observations using as weights in the regression

q(r 2), where q is the quantile function of a χ2
1 variable. The departure of the values of r∗− r

from the fitted curve is calculated, and the estimates of the squared standardized estimates

that exceed a 70% confidence interval from the χ2
1 are excluded. A second spline regression is

fitted to the remaining values and the values of r∗ are interpolated using the median. This

ad-hoc scheme usually does not affect estimates by more than an order of 10−6, but is effective

at removing the outliers and was found to work well in practice.

For the confidence intervals, we fit constrained B-splines with response ψ and values r

(respectively r∗) and predict the quantile corresponding to r =±q1/2, where q is the quantile

of the χ2
1 distribution with one degree of freedom at level 1−α. For the penalized methods, we

compute the equivalent of the signed likelihood root statistic and proceed analogously.

The following paragraphs summarize the findings of the simulation study, which was con-

ducted using the routines from the mev package using the infrastructure provided by the R
package simsalapar (Hofert and Mächler, 2016a).

Table 1.3 gives the penultimate shape parameters for the various levels under consideration

for both block maximum and peaks-over-threshold methods. The limiting value is given

alongside the penultimate value for maxima of m = 9000 observations. The difference between

the estimated shape and ξ9000 is less than 0.1 in magnitude.
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Distribution | q = 0.967 q = 0.978 q = 0.989 m = 30 m = 45 m = 90 m = 9000 ξ∞

Burr 0.01 0.03 0.05 0.03 0.04 0.06 0.10 0.1
Weibull 0.15 0.13 0.11 0.16 0.14 0.12 0.05 0
Gen. gamma 0.15 0.14 0.12 0.17 0.15 0.13 0.07 0
Gaussian −0.18 −0.16 −0.13 −0.16 −0.14 −0.12 −0.06 0
Lognormal 0.27 0.26 0.25 0.28 0.27 0.25 0.19 0
Student −0.05 −0.03 0.00 −0.03 −0.02 0.01 0.07 0.1

Table 1.3 – Penultimate shape parameters for six distributions, based on threshold exceedances
with threshold at q percentile (first three columns), block maxima with maximum of
m observations (fourth to sixth column). The penultimate shape parameter for the
maximum of 9000 observations is the reference, still far from the tail index ξ∞ in the
last column.

Block maxima

The general coverage properties are comparable for all three parameters under consideration.

The mean of the N -observation maximum is usually stochastically larger than the quantile or

N -observation median, and has the widest confidence intervals and the smallest coverage;

these are due to the extrapolation error. The penultimate effects are not really visible. The

coverages of all but the Wald method are within 2% of the nominal level, so nominal errors

are reported instead; see Table 1.4. The transformed (Wald) normal confidence intervals,

exp{log(ψ̂)±z1−α/2 se(ψ̂)/ψ̂}, severely undercover, especially when the sample size gets smaller;

with 20 observations (Table 1.5), the 99% confidence intervals capture the true value roughly

82% of the time, but the 5% nominal error rate for the lower interval is 0%, indicating that

the interval is too large on the left and strikingly too short for the upper limit. Despite the

transformation, the Wald confidence intervals fail to capture the positive skewness of the

distribution of the estimated values z1/N ,q1/2 (not shown) and eN , defined in Proposition 1.7.

If the data are generated from the generalized extreme value distribution (F7–F9), the empirical

error rates are closer to nominal for the TEM but no method is universally better.

Further results are reported in Appendix A.3. When k = 60 (Table A.7), the tangent exponential

model-based intervals are closest to the nominal level, but the higher-order methods, and in

particular intervals based on r∗, overcover slightly if the sample size is smaller and the blocks

are larger, e.g., when m = 90 and k = 20 (Table 1.5). The average widths of the confidence

intervals are comparable between methods for the block maximum method with m = 30,k =
60 (Table A.9). For this setting, the intervals based on `tem

m are the shortest among the five

methods implemented. As the sample size decreases, the confidence intervals get wider and

their coverage increases beyond the nominal level. The largest standard error of the average

relative width of the confidence intervals is 0.2; it was estimated using a nonparametric

bootstrap with B = 1000 replications. The point estimates are all comparable, but the average

unbiased estimator of the TEM is roughly 2% more positively biased than the MLE (Table A.2).

All the methods are comparable, so it is reassuring that the higher-order methods and the

intervals derived using the profile likelihood largely agree. For block maxima, all the profile or
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higher-order methods seem impervious to the effects of extrapolation and their coverage is

excellent.

Peaks-over-threshold methods

The results for peaks-over-thresholds are more contrasted, though the performance of Wald-

type confidence intervals remains calamitous even when these are computed on the log-scale

to better capture the skewness; the empirical error rate for the upper 5% of the untransformed

Wald confidence intervals is close to 30% in all scenarios and between 20% and 30% for the

transformed intervals. With k = 20 observations (Table 1.7), most higher-order methods

overcover even when the model is not misspecified and the TEM breaks down and suffers from

overcoverage, while the profile likelihood appears to be more robust. The TEM overcoverage

is mostly in the upper tail, whereas Severini’s corrections display higher empirical error rate

in the lower tail. This break-down of the TEM could be attributed to penultimate effects and

small sample bias; it vanishes as the sample size grows and the TEM behaves as expected when

k = 60 (Table 1.6). Whereas maximum likelihood estimators are negatively biased for any

sample size k ≤ 60, the other point estimators correct for the bias. For k = 20, the TEM point

estimates are positively biased, but have the lowest bias of all the methods when k > 40. Both

of Severini’s modified profiles have lower bias than the MLE. Higher-order methods give wider

confidence intervals, which in turn lead to higher coverage: for example, compared to the

confidence intervals based on the profile likelihood, the TEM intervals are between 1.75 and 2

times larger when k = 20 and about 1.25 times larger than when k = 60. Confidence intervals

based on the profile likelihood typically have good coverage, but their empirical error rates in

the upper tail are typically more than double the nominal values.

1.4.3 Practical guidelines

Poor finite sample properties of maximum likelihood estimators have been documented

before (Hosking and Wallis, 1987, Table 5). However, extension of moment-based estimators to

generalized additive modelling of the covariates and handling of censoring and truncation is

not as straightforward as in a likelihood-based setting. For the generalized Pareto distribution,

maximimization of the profile likelihood nearly guarantees a solution if the sample is large

enough to yield a maximum. While there is a scale/shape trade-off, this typically translate

into large differences only in the tails of the distribution. An alternative to bias correction

based on the Cox–Snell bias is use of the bootstrap, but it is computationally intensive. Rather,

one could consider computing bias curves such as those given in Figure 1.8 for different

values of ξ and for different n, even if the first-order bias term is inversely proportional to the

sample size. By interpolating these curve slices, one could compute an implicit correction.

The advantage is two-fold; the correction is deterministic, so the variance is not affected, and

we need not run a new simulation for every point estimator. By virtue of the bootstrap, one

can also correct any functional directly without explicit derivations for all cases of interest.

Of course, the penultimate approximation is also likely to result in discrepancies because
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of model misspecification (Dombry and Ferreira, 2019), so how well bias correction works

depends on the underlying data-generating process.

Profile likelihood-based confidence intervals have good coverage properties overall and we

can recommend them for estimating quantiles of the distribution of N -observation maxima;

the discrepancy between the nominal error rates in the lower and upper tails seems to be

due to the bias of the quantile estimates themselves. Wald-based confidence intervals should

never be used; their performance is dismal and their coverage is constantly too low, even

after transformation. Tangent exponential model-based confidence intervals have very good

coverage and smaller bias when the sample size is larger than 50, say, for the approximation

to be reliable; while no higher-order method is always better, the TEM correction usually

improves over the penalized profile likelihood of Severini.
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Parameter Quantile N -obs. mean

F Method | Error rate 0.5 2.5 5 5 2.5 0.5 0.5 2.5 5 5 2.5 0.5

F1 Wald 0.0 0.0 0.0 19.5 15.5 10.5 0.0 0.0 0.0 20.5 17.0 12.0
profile 0.5 2.0 4.0 7.0 3.0 0.5 0.5 2.0 4.0 7.5 3.5 0.5
TEM 0.5 2.5 5.0 5.0 2.0 0.5 0.5 2.5 4.5 5.5 2.5 0.5
Severini (TEM) 0.5 1.5 3.5 8.0 3.5 0.5 0.5 1.5 3.5 8.5 4.0 0.5
Severini (cov.) 0.5 2.0 4.5 5.0 2.0 0.5 0.5 2.5 4.5 5.5 2.0 0.5

F2 Wald 0.0 0.0 1.5 13.0 10.5 7.0 0.0 0.0 1.0 13.0 10.5 7.0
profile 0.5 2.5 5.0 4.5 2.5 0.5 0.5 3.0 6.0 4.0 2.0 0.5
TEM 0.5 3.0 6.0 3.5 1.5 0.5 1.0 3.5 7.0 3.0 1.5 0.5
Severini (TEM) 0.5 2.0 4.5 5.0 2.5 0.5 0.5 2.5 5.0 4.5 2.5 0.5
Severini (cov.) 0.5 2.5 5.0 4.5 2.5 0.5 0.5 3.0 6.0 4.0 2.0 0.5

F3 Wald 0.0 0.0 1.0 15.0 12.0 8.0 0.0 0.0 0.5 14.5 12.0 8.0
profile 0.0 1.5 3.5 6.0 3.5 0.5 0.5 2.0 4.0 5.5 3.0 0.5
TEM 0.0 1.5 4.0 5.0 2.5 0.5 0.5 2.0 5.0 4.5 2.0 0.5
Severini (TEM) 0.0 1.0 3.0 6.5 3.5 1.0 0.0 1.5 3.5 6.0 3.0 0.5
Severini (cov.) 0.0 1.5 3.0 6.0 3.0 0.5 0.5 2.0 4.0 5.5 3.0 0.5

F4 Wald 0.0 0.0 0.0 26.0 22.5 17.0 0.0 0.0 0.0 27.5 24.0 18.0
profile 0.5 1.5 3.5 10.0 5.5 1.0 0.5 1.5 3.0 10.5 5.5 1.0
TEM 0.5 2.5 4.5 6.5 3.0 0.5 0.5 2.5 4.5 7.0 3.5 0.5
Severini (TEM) 0.5 1.5 2.5 10.5 6.0 1.5 0.0 1.0 2.5 11.0 6.0 1.5
Severini (cov.) 0.5 1.5 3.0 7.5 4.0 0.5 0.5 1.5 3.0 8.0 4.0 0.5

F5 Wald 0.0 0.5 2.0 11.5 8.5 5.5 0.0 0.0 1.0 11.0 8.5 5.5
profile 0.5 2.5 5.5 4.5 2.5 0.5 1.0 3.0 7.0 4.0 2.0 0.5
TEM 0.5 2.5 5.5 3.5 2.0 0.5 1.0 3.5 7.0 3.5 1.5 0.5
Severini (TEM) 0.5 2.0 4.5 5.0 2.5 0.5 0.5 2.5 5.5 4.5 2.5 0.5
Severini (cov.) 0.5 2.5 5.0 4.5 2.5 0.5 0.5 3.0 6.5 4.0 2.0 0.5

F6 Wald 0.0 0.0 0.5 22.5 19.0 13.5 0.0 0.0 0.0 24.5 20.5 15.0
profile 0.5 2.0 4.0 10.0 5.5 1.5 0.5 2.0 3.5 11.0 6.0 1.5
TEM 0.5 2.5 5.0 7.5 4.0 1.0 0.5 2.5 4.5 8.0 4.5 1.0
Severini (TEM) 0.5 1.5 3.0 11.0 6.5 1.5 0.5 1.5 3.0 11.5 7.0 2.0
Severini (cov.) 0.5 2.0 3.5 9.5 5.0 1.0 0.5 2.0 3.5 10.0 5.5 1.5

F7 Wald 0.0 0.0 1.0 17.0 13.5 9.5 0.0 0.0 0.5 17.5 14.5 10.0
profile 0.5 2.0 4.5 7.0 3.5 1.0 0.5 2.5 4.5 7.0 3.5 1.0
TEM 0.5 2.5 5.5 5.5 2.5 0.5 0.5 3.0 5.5 5.5 3.0 0.5
Severini (TEM) 0.5 2.0 4.0 8.0 4.0 1.0 0.5 2.0 4.0 8.0 4.5 1.0
Severini (cov.) 0.5 2.0 4.0 7.0 3.5 1.0 0.5 2.5 4.5 7.0 3.5 1.0

F8 Wald 0.0 0.0 0.5 19.0 15.5 11.0 0.0 0.0 0.5 19.5 16.5 12.0
profile 0.5 2.0 4.5 7.0 3.5 1.0 0.5 2.0 4.5 7.0 3.5 1.0
TEM 0.5 3.0 5.5 5.0 2.5 0.5 0.5 3.0 5.5 5.0 2.5 0.5
Severini (TEM) 0.5 1.5 3.5 7.5 4.0 1.0 0.5 1.5 3.5 7.5 4.0 1.0
Severini (cov.) 0.5 2.0 4.0 6.5 3.5 0.5 0.5 2.0 4.5 6.5 3.0 0.5

F9 Wald 0.0 0.0 0.0 22.5 19.0 14.5 0.0 0.0 0.0 23.0 19.5 15.0
profile 0.5 1.5 3.5 8.0 4.0 1.0 0.5 1.5 3.5 7.5 4.0 0.5
TEM 0.5 2.5 5.0 5.0 2.5 0.5 0.5 2.5 5.0 5.0 2.0 0.0
Severini (TEM) 0.0 1.0 2.5 8.5 4.5 1.0 0.0 1.0 2.5 8.0 4.0 0.5
Severini (cov.) 0.0 1.5 3.0 6.5 3.0 0.5 0.5 1.5 3.5 6.5 3.0 0.5

Table 1.4 – One-sided nominal error rate (in %) for lower (first to third columns) and up-
per (fourth to sixth columns) confidence intervals, block maximum method with
m = 45,k = 40. The distributions (from top to bottom) are Burr (F1), Weibull (F2),
generalized gamma (F3), normal (F4), lognormal (F5), Student t (F6), GEV(ξ= 0.1)
(F7), Gumbel (F8) and GEV(ξ=−0.1) (F9).
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Parameter Quantile N -obs. mean

F Method | Error rate 0.5 2.5 5 5 2.5 0.5 0.5 2.5 5 5 2.5 0.5

F1 Wald 0.0 0.0 0.0 23.0 20.0 15.5 0.0 0.0 0.0 24.0 21.0 17.0
profile 0.5 2.0 4.0 6.5 3.0 0.5 0.5 2.0 4.0 6.5 3.0 0.5
TEM 0.5 2.5 5.0 3.5 1.5 0.0 0.5 2.5 5.0 3.5 1.5 0.0
Severini (TEM) 0.0 1.0 3.0 7.5 3.5 0.5 0.0 1.0 3.0 7.5 3.5 0.5
Severini (cov.) 0.5 2.0 4.5 3.0 1.0 0.0 0.5 3.0 6.0 3.0 1.0 0.0

F2 Wald 0.0 0.0 0.5 20.0 17.5 13.5 0.0 0.0 0.0 20.0 17.5 13.5
profile 0.5 2.0 4.0 6.0 3.0 0.5 0.5 2.5 4.5 5.5 2.5 0.5
TEM 0.5 2.5 5.0 3.5 1.5 0.0 0.5 2.5 5.5 3.0 1.5 0.0
Severini (TEM) 0.0 1.0 2.5 7.0 3.5 0.5 0.0 1.5 3.0 6.5 3.0 0.5
Severini (cov.) 0.0 1.5 3.5 5.0 2.5 0.5 0.5 2.0 5.0 4.5 2.0 0.5

F3 Wald 0.0 0.0 0.5 21.5 19.0 15.0 0.0 0.0 0.0 21.5 19.0 15.5
profile 0.0 1.0 3.0 7.5 4.0 1.0 0.0 1.0 3.5 7.0 3.5 0.5
TEM 0.0 1.5 3.5 5.0 2.5 0.0 0.5 1.5 4.0 4.5 2.0 0.0
Severini (TEM) 0.0 0.5 1.5 9.0 5.0 1.0 0.0 0.5 2.0 8.5 4.5 1.0
Severini (cov.) 0.0 1.0 2.5 6.5 3.5 0.5 0.0 1.5 3.5 6.0 3.0 0.5

F4 Wald 0.0 0.0 0.0 28.5 25.5 20.5 0.0 0.0 0.0 29.0 26.0 21.5
profile 0.5 1.5 3.5 7.0 3.5 0.5 0.5 1.5 3.5 6.5 3.0 0.5
TEM 0.5 2.5 5.0 3.0 1.0 0.0 0.5 2.5 5.0 3.0 1.0 0.0
Severini (TEM) 0.0 1.0 2.0 8.0 3.5 0.5 0.0 1.0 2.0 8.0 3.5 0.5
Severini (cov.) 0.0 1.5 3.5 3.5 1.5 0.0 0.5 1.5 4.0 3.0 1.0 0.0

F5 Wald 0.0 0.0 1.0 18.0 15.0 11.5 0.0 0.0 0.0 18.5 15.5 12.0
profile 0.5 2.5 4.5 6.0 3.0 0.5 0.5 2.5 5.5 5.5 3.0 0.5
TEM 0.5 2.5 5.0 4.5 2.0 0.5 1.0 3.0 6.0 4.0 2.0 0.5
Severini (TEM) 0.0 1.5 3.0 7.0 4.0 1.0 0.5 1.5 4.0 7.0 3.5 1.0
Severini (cov.) 0.5 2.0 4.0 5.5 3.0 0.5 0.5 3.0 6.0 5.0 2.5 0.5

F6 Wald 0.0 0.0 0.0 25.5 22.0 17.5 0.0 0.0 0.0 27.0 23.5 19.0
profile 0.5 2.0 4.0 8.5 4.5 1.0 0.5 2.0 4.0 8.0 4.0 1.0
TEM 0.5 3.0 5.5 5.0 2.5 0.5 0.5 3.0 5.5 5.0 2.0 0.0
Severini (TEM) 0.0 1.5 3.0 9.5 5.0 1.0 0.0 1.5 3.0 9.5 5.0 1.0
Severini (cov.) 0.5 2.0 4.0 6.0 3.0 0.5 0.5 2.5 4.5 5.5 2.5 0.5

F7 Wald 0.0 0.0 0.5 22.0 19.0 15.0 0.0 0.0 0.0 22.5 20.0 15.5
profile 0.5 2.0 4.5 7.5 4.0 0.5 0.5 2.0 4.5 7.0 3.5 0.5
TEM 0.5 2.5 5.5 5.0 2.0 0.5 0.5 2.5 5.5 4.5 2.0 0.5
Severini (TEM) 0.0 1.5 3.0 8.5 4.5 1.0 0.0 1.5 3.0 8.5 4.5 1.0
Severini (cov.) 0.5 1.5 4.0 6.5 3.0 0.5 0.5 2.5 5.0 6.0 3.0 0.5

F8 Wald 0.0 0.0 0.0 23.5 20.5 16.5 0.0 0.0 0.0 24.0 21.0 17.0
profile 0.5 2.0 4.0 7.0 3.5 0.5 0.5 2.0 4.0 6.5 3.0 0.5
TEM 0.5 2.5 5.5 4.0 1.5 0.0 0.5 2.5 5.5 3.5 1.5 0.0
Severini (TEM) 0.0 1.0 2.5 8.0 4.0 0.5 0.0 1.0 2.5 7.5 3.5 0.5
Severini (cov.) 0.0 1.5 3.5 5.0 2.5 0.5 0.5 2.0 4.5 4.5 2.0 0.0

F9 Wald 0.0 0.0 0.0 27.0 24.0 19.0 0.0 0.0 0.0 27.0 24.5 20.0
profile 0.0 1.5 3.0 6.5 3.0 0.5 0.0 1.5 3.5 6.0 2.5 0.0
TEM 0.5 2.5 5.0 2.5 1.0 0.0 0.5 2.5 5.0 2.5 0.5 0.0
Severini (TEM) 0.0 0.5 1.5 7.5 3.5 0.5 0.0 0.5 2.0 6.5 3.0 0.0
Severini (cov.) 0.0 1.0 3.0 4.0 1.5 0.0 0.0 1.5 3.5 3.0 1.0 0.0

Table 1.5 – One-sided nominal error rate (in %) for lower (first to third columns) and up-
per (fourth to sixth columns) confidence intervals, block maximum method with
m = 90,k = 20. The distributions (from top to bottom) are Burr (F1), Weibull (F2),
generalized gamma (F3), normal (F4), lognormal (F5), Student t (F6), GEV(ξ= 0.1)
(F7), Gumbel (F8) and GEV(ξ=−0.1) (F9).
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Parameter Quantile N -obs. mean

F Method | Error rate 0.5 2.5 5 5 2.5 0.5 0.5 2.5 5 5 2.5 0.5

F1 Wald 0.0 0.0 0.0 29.0 26.0 20.5 0.0 0.0 0.0 31.5 28.5 23.5
profile 0.5 1.5 3.0 5.5 1.5 0.0 0.5 1.5 3.5 5.0 1.0 0.0
TEM 1.0 3.5 6.5 0.5 0.0 0.0 0.5 3.5 7.5 0.5 0.0 0.0
Severini (TEM) 0.0 1.0 2.5 3.0 0.5 0.0 0.0 1.0 2.5 3.0 0.5 0.0
Severini (cov.) 0.0 1.0 2.5 4.0 1.0 0.0 0.0 1.5 3.0 3.0 1.0 0.5

F2 Wald 0.0 0.0 0.0 28.0 24.5 19.5 0.0 0.0 0.0 29.5 26.0 21.5
profile 0.5 1.5 3.0 6.0 2.0 0.0 0.5 1.5 3.0 4.5 1.0 0.0
TEM 0.5 3.0 6.0 0.5 0.0 0.0 0.5 3.5 7.0 0.0 0.0 0.0
Severini (TEM) 0.0 1.0 2.0 3.0 1.0 0.0 0.0 1.0 2.5 2.5 0.5 0.0
Severini (cov.) 0.0 1.0 2.0 3.5 1.0 0.0 0.0 1.0 3.0 2.5 1.0 0.5

F3 Wald 0.0 0.0 0.0 28.0 25.5 21.0 0.0 0.0 0.0 29.5 26.5 22.5
profile 0.0 0.5 2.0 7.0 2.5 0.0 0.0 1.0 2.5 5.5 2.0 0.0
TEM 0.5 2.0 4.5 1.0 0.0 0.0 0.5 2.5 5.5 0.5 0.0 0.0
Severini (TEM) 0.0 0.5 1.5 4.0 1.0 0.0 0.0 0.5 2.0 3.5 1.0 0.0
Severini (cov.) 0.0 0.5 1.5 4.5 1.5 0.0 0.0 1.0 2.5 3.5 1.5 0.5

F4 Wald 0.0 0.0 0.0 29.0 25.5 20.0 0.0 0.0 0.0 31.0 28.0 23.0
profile 0.5 1.5 3.0 3.0 0.5 0.0 0.5 1.5 3.0 2.0 0.5 0.0
TEM 1.0 3.5 7.0 0.0 0.0 0.0 1.0 3.5 6.5 0.0 0.0 0.0
Severini (TEM) 0.0 1.0 2.0 1.5 0.0 0.0 0.0 1.0 2.0 1.0 0.0 0.0
Severini (cov.) 0.0 0.5 2.0 2.5 1.0 0.0 0.0 1.0 2.0 2.0 1.0 0.5

F5 Wald 0.0 0.0 0.0 28.5 25.0 20.5 0.0 0.0 0.0 29.5 26.5 22.0
profile 0.0 1.5 3.0 8.0 3.5 0.0 0.5 2.0 4.0 7.0 3.0 0.0
TEM 0.5 3.0 6.0 1.5 0.0 0.0 1.0 4.0 7.5 1.0 0.0 0.0
Severini (TEM) 0.0 1.5 3.0 5.5 2.0 0.0 0.0 1.5 3.5 4.5 1.5 0.0
Severini (cov.) 0.0 1.5 3.0 5.5 2.0 0.0 0.5 2.0 4.0 4.5 1.5 0.5

F6 Wald 0.0 0.0 0.0 29.5 26.5 21.0 0.0 0.0 0.0 32.0 28.5 24.0
profile 0.5 1.5 3.5 5.5 1.5 0.0 0.5 2.0 3.5 5.0 1.0 0.0
TEM 1.0 4.0 7.5 0.5 0.0 0.0 1.0 4.0 7.5 0.5 0.0 0.0
Severini (TEM) 0.0 1.5 3.0 3.0 0.5 0.0 0.0 1.0 3.0 3.0 0.5 0.0
Severini (cov.) 0.0 1.0 2.5 4.0 1.5 0.0 0.5 1.5 3.0 3.5 1.5 0.5

F7 Wald 0.0 0.0 0.0 29.0 25.5 20.5 0.0 0.0 0.0 30.5 27.5 22.5
profile 0.5 1.5 3.0 6.0 2.0 0.0 0.5 1.5 3.5 5.5 1.5 0.0
TEM 1.0 3.5 6.5 0.5 0.0 0.0 1.0 3.5 7.5 0.5 0.0 0.0
Severini (TEM) 0.0 1.0 2.5 4.0 1.0 0.0 0.0 1.0 3.0 3.5 1.0 0.0
Severini (cov.) 0.0 1.0 2.5 4.5 1.5 0.0 0.0 1.5 3.0 3.5 1.5 0.5

F8 Wald 0.0 0.0 0.0 27.5 24.0 19.5 0.0 0.0 0.0 29.0 26.0 21.5
profile 0.5 1.5 3.5 4.0 1.0 0.0 0.5 1.5 3.5 3.0 0.5 0.0
TEM 0.5 3.5 6.5 0.0 0.0 0.0 0.5 3.5 7.0 0.0 0.0 0.0
Severini (TEM) 0.0 1.0 2.0 2.0 0.5 0.0 0.0 1.0 2.5 2.0 0.5 0.0
Severini (cov.) 0.0 0.5 2.0 3.0 1.0 0.0 0.0 1.0 3.0 2.5 1.0 0.5

F9 Wald 0.0 0.0 0.0 28.0 24.0 18.5 0.0 0.0 0.0 29.5 26.5 21.0
profile 0.5 1.0 2.5 2.5 0.5 0.0 0.5 1.5 2.5 1.5 0.0 0.0
TEM 1.0 3.5 6.5 0.0 0.0 0.0 0.5 3.0 6.5 0.0 0.0 0.0
Severini (TEM) 0.0 0.5 1.5 1.0 0.0 0.0 0.0 0.5 1.0 0.5 0.0 0.0
Severini (cov.) 0.0 0.5 1.5 2.0 0.5 0.0 0.0 1.0 2.0 1.5 1.0 0.5

Table 1.6 – One-sided nominal error rate (in %) for lower (first to third columns) and upper
(fourth to sixth columns) confidence intervals, peaks-over-threshold method with
k = 20. The distributions (from top to bottom) are Burr (F1), Weibull (F2), gener-
alized gamma (F3), normal (F4), lognormal (F5), Student t (F6), GP(ξ = 0.1) (F7),
exponential (F8) and GP(ξ=−0.1) (F9).
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Parameter Quantile N -obs. mean

F Method | Error rate 0.5 2.5 5 5 2.5 0.5 0.5 2.5 5 5 2.5 0.5

F1 Wald 0.0 0.0 0.0 24.0 20.0 14.5 0.0 0.0 0.0 25.5 22.0 16.5
profile 0.5 1.5 3.5 9.5 4.5 0.5 0.5 1.5 3.0 10.0 4.5 0.5
TEM 0.5 3.0 5.5 4.5 1.5 0.0 0.5 2.5 5.5 5.0 2.0 0.0
Severini (TEM) 0.5 1.5 3.5 8.0 3.5 0.5 0.5 1.5 3.5 8.5 4.0 0.5
Severini (cov.) 0.5 1.5 3.5 8.0 3.5 0.5 0.5 1.5 3.5 8.5 4.0 0.5

F2 Wald 0.0 0.0 0.0 19.5 16.5 11.5 0.0 0.0 0.0 19.5 16.5 12.0
profile 0.5 1.5 3.5 7.5 4.0 1.0 0.5 2.0 3.5 7.5 4.0 1.0
TEM 0.5 3.0 5.5 4.0 2.0 0.5 0.5 3.0 6.0 4.0 1.5 0.5
Severini (TEM) 0.5 2.0 3.5 6.5 3.5 0.5 0.5 2.0 4.0 6.0 3.0 0.5
Severini (cov.) 0.5 2.0 3.5 6.5 3.5 0.5 0.5 2.0 4.0 6.0 3.0 0.5

F3 Wald 0.0 0.0 0.0 21.0 18.0 13.0 0.0 0.0 0.0 21.0 18.0 13.5
profile 0.0 1.0 2.0 9.0 5.5 1.5 0.0 1.0 2.5 9.0 5.0 1.0
TEM 0.0 2.0 4.0 5.0 2.5 0.5 0.5 2.0 5.0 5.0 2.5 0.5
Severini (TEM) 0.0 1.0 2.5 8.0 4.5 1.0 0.0 1.0 3.0 8.0 4.5 1.0
Severini (cov.) 0.0 1.0 2.5 8.0 4.5 1.0 0.0 1.5 3.0 8.0 4.5 1.0

F4 Wald 0.0 0.0 0.0 30.0 26.5 20.5 0.0 0.0 0.0 32.0 28.0 22.5
profile 0.5 1.5 3.0 11.0 6.0 1.0 0.5 1.0 2.5 11.5 6.0 1.0
TEM 0.5 3.0 5.0 4.5 2.0 0.0 0.5 2.5 4.5 5.0 2.0 0.0
Severini (TEM) 0.0 1.0 2.5 9.5 4.5 0.5 0.0 1.0 2.0 9.5 5.0 0.5
Severini (cov.) 0.0 1.0 2.5 9.0 4.5 0.5 0.0 1.0 2.5 9.5 4.5 0.5

F5 Wald 0.0 0.0 0.5 17.0 14.0 9.5 0.0 0.0 0.0 17.5 14.5 10.0
profile 0.5 2.0 3.5 7.5 4.0 1.0 0.5 2.0 4.0 7.0 4.0 1.0
TEM 0.5 3.0 5.5 4.5 2.0 0.5 1.0 3.5 7.0 4.5 2.0 0.5
Severini (TEM) 0.5 2.0 4.0 6.5 3.5 1.0 0.5 2.5 5.0 6.5 3.5 0.5
Severini (cov.) 0.5 2.0 4.0 6.5 3.5 1.0 0.5 2.5 5.0 6.5 3.5 0.5

F6 Wald 0.0 0.0 0.0 27.0 23.5 18.0 0.0 0.0 0.0 29.0 25.0 19.5
profile 0.5 2.0 3.5 12.5 7.0 2.0 0.5 1.5 3.0 13.5 7.5 2.0
TEM 0.5 3.0 5.5 7.0 3.5 0.5 0.5 2.5 5.5 7.5 4.0 0.5
Severini (TEM) 0.5 1.5 3.5 11.0 6.5 1.5 0.5 1.5 3.5 11.5 6.5 1.5
Severini (cov.) 0.5 1.5 3.5 11.0 6.5 1.5 0.5 1.5 3.5 11.5 6.5 1.5

F7 Wald 0.0 0.0 0.0 21.5 18.0 13.0 0.0 0.0 0.0 22.5 19.0 14.0
profile 0.5 1.5 3.5 9.5 5.5 1.5 0.5 1.5 3.5 10.0 5.5 1.5
TEM 0.5 3.0 5.5 5.5 3.0 0.5 0.5 3.0 6.0 5.5 3.0 0.5
Severini (TEM) 0.5 2.0 4.0 8.5 5.0 1.0 0.5 2.0 4.0 8.5 5.0 1.0
Severini (cov.) 0.5 2.0 4.0 8.5 5.0 1.0 0.5 2.0 4.0 8.5 4.5 1.0

F8 Wald 0.0 0.0 0.0 23.0 19.5 14.5 0.0 0.0 0.0 23.5 20.5 15.5
profile 0.5 1.5 3.5 9.0 5.0 1.0 0.5 1.5 3.5 9.0 5.0 1.0
TEM 0.5 3.0 5.5 4.5 2.0 0.5 0.5 3.0 5.5 4.5 2.0 0.5
Severini (TEM) 0.0 1.5 3.5 7.5 4.0 1.0 0.0 1.5 3.5 7.5 4.0 1.0
Severini (cov.) 0.5 1.5 3.5 7.5 4.0 1.0 0.0 1.5 3.5 7.5 4.0 0.5

F9 Wald 0.0 0.0 0.0 27.5 23.5 18.0 0.0 0.0 0.0 28.0 24.5 19.0
profile 0.5 1.5 2.5 9.5 5.0 0.5 0.5 1.0 2.5 9.5 5.0 0.5
TEM 0.5 2.5 5.0 4.0 1.5 0.0 0.5 2.5 5.0 3.5 1.5 0.0
Severini (TEM) 0.0 1.0 2.5 8.0 4.0 0.5 0.0 1.0 2.5 8.0 3.5 0.5
Severini (cov.) 0.0 1.0 2.5 8.0 3.5 0.5 0.0 1.0 2.5 8.0 3.5 0.5

Table 1.7 – One-sided nominal error rate (in %) for lower (first to third columns) and upper
(fourth to sixth columns) confidence intervals, peaks-over-threshold method with
k = 60. The distributions (from top to bottom) are Burr (F1), Weibull (F2), gener-
alized gamma (F3), normal (F4), lognormal (F5), Student t (F6), GP(ξ = 0.1) (F7),
exponential (F8) and GP(ξ=−0.1) (F9).
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1.5 Data illustrations

1.5.1 Vargas tragedy

The heavy rainfall of December 1999 caused an estimated 30,000 deaths in the state of Vargas

in Venezuela, due to debris flow that hit coastal installations. Daily cumulated rainfall data

recorded at the Maiquetía Simón Bolívar International Airport is available for the period

1961–1999, in addition to yearly maximum daily rainfall for the period 1951–1960. Anecdotal

records are also available: for example, during the floods of February 1951, a reported 282

mm of rain fell in Maiquetía, while the neighbouring station of El Infiernito, located in the

Cordillera de la Costa, between Caracas and Maiquetía, recorded 529 mm for the same day

(Wieczorek et al., 2001). Other series include monthly total precipitation, which mostly agree

with the daily records (except for 1999). The December 1999 storm led to estimated cumulated

precipitation of 911mm (backcasted) over a three-day period at Maiquetía airport. These data

were analyzed in Coles and Pericchi (2003) and Coles et al. (2003), who argued that an event of

this magnitude would not have been considered impossible had uncertainty been properly

accounted for. December is typically dry month, but also more prone to very intense rainfall

episodes; the records combine different types of meteorological events.

While one could combine information about the yearly maxima for the period 1951-1960 using

the Poisson point process, we model the tail of daily cumulated rainfall for 1961–1998 using a

generalized Pareto distribution, selecting the empirical 99.8% value, u = 57.5mm, as threshold.

This leaves n = 24 exceedances for inference. Threshold stability plots for the shape (not

shown) indicate this is a reasonable choice; moreover, the changepoint score test of Northrop

and Coleman (2014) presented in Method 1.12 above the 98.5% value, 20.9mm, yields P-values

that exceed 0.2. It would be tempting to select a lower threshold, but the conclusions (unlike

the shape parameter estimates) change drastically for a threshold between 45mm and 55mm,

due to a large number of high, but not extreme events. Based on the tangent exponential model

approximation for the distribution of the maximum of the centennial cumulated daily rainfall,

the P-value for the 410.4mm event recorded on December 16th, 1999 is 4% with u = 38.7mm

(n = 67, 99.5%), whereas it is 25% with u = 57.5mm (n = 24, 99.8%). This additional uncertainty

results from a combination of lower sample size and heavier tail. Figure 1.14 shows the profile

likelihood for the median of the centennial maximum.

The bias-corrected estimate of the shape for the generalized Pareto distribution with threshold

u = 57.5mm is 0.04, while the maximum likelihood estimate is ξ̂=−0.07; since smaller shape

estimates also have smaller standard errors, this can magnify the underestimation of risk at

the extrapolation stage. The quantile-quantile plot of Figure 1.15 for the fitted model also

hints that we better capture the tail of the distribution with the bias-corrected estimates.

Although the extrapolation allows us to draw statements about quantities of interest, a

Bayesian approach is more natural for assessing the likelihood of the 1999 tragedy. We thus

consider the posterior predictive distribution, which the metastatistical distribution is meant
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Figure 1.14 – Profile likelihood and higher order approximations for the median of the cen-
tennial maximum daily rainfall at Maiquetía based on 24 threshold exceedances
above u = 57.5mm, using daily data from 1961–1998. Profile likelihood (full black
line), tangent exponential model approximation (dotted) and Severini’s modified
profiles (grey dashed and dot-dashed). The grey horizontal line at −1.92 indicates
cutoff values for 95% confidence intervals based on the asymptotic χ2

1 distribution.
The rug at 410.4mm indicates the maximum record of December 1999.

to approximate. We fit the generalized Pareto distribution to the same data using the ratio-of-

uniforms method (Wakefield et al., 1991) with priorσ−1(ξ−1/2)3(1−ξ)51{−1/2≤ξ≤1}, a modified

version of the Beta prior of Martins and Stedinger (2000) whose mean is 1/10, in agreement

with rainfall studies of Serinaldi and Kilsby (2014). This prior enforces finite moments and

regularizes the posterior, discarding most very heavy-tailed distributions that would lead to

nonsensical predictions in the context of rainfall. Based on N = 10000 independent draws

from the posterior obtained using the R package revdbayes (Northrop, 2019a), we then sam-

ple 73 exceedances ≈ 0.002 exceedances/day ×365.25 days/year ×100 years and compute the

maximum of these samples. The metastatistical model is obtained by considering a mixture of

generalized extreme value distributions; their parameters are obtained through a max-stability

argument based on the empirical distribution of the number of wet days and probability-

weighted moment estimates of the Weibull parameters fitted to non-zero rainfall for each

year. The value of December 16th, 1999, corresponds to the 0.955-quantile of the posterior

predictive distribution and the 0.98-quantile of the metastatistical model. The corresponding

posterior predictive distributions are shown in Figure 1.16. That based on the generalized

Pareto fit is more concentrated around values in the range 150–250mm and has a slightly more

open tail. As before, the metastatistical model gives an estimate that seems too low in view of

the records and the time series.
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Figure 1.15 – Probability-probability plot (left) and quantile-quantile plot (right) for daily cumu-
lated rainfall threshold exceedances based on the generalized Pareto distribution
with threshold u = 57.5mm, using the bias-corrected estimator of eq. (1.8). The
dashed grey lines show approximate 95% pointwise confidence intervals based on
order statistics.

The Maiquetía data provide a good illustration of the pitfalls associated with analysis of

extremes: the choice of threshold has a huge impact on the conclusions of the analysis, and

revised estimates taking into account the data for 1999 would lead to tremendous changes.

Measurements are not available after the largest event was recorded; unpublished work of

Barlow et al. (2019) explore effects of stopping rules on inference. Concurring with Coles and

Pericchi (2003), the Vargas tragedy was much larger than expected and corresponds to an

unlikely, but possible event, even if it would fall outside its 95% posterior predictive credible

interval.

1.5.2 Super centenarians

The possible existence of a finite upper limit for human lifetime is a longstanding question

that has recently sparked interest in the extreme value community (Hanayama and Sibuya,

2016; Einmahl et al., 2019; Rootzén and Zholud, 2017). The Italian centenarian data set,

kindly provided by Holger Rootzén, contains the birth date and age of 3836 individuals from

the super centenarian survey conducted by Istituto Nazionale di Statistica (Istat); the data

are analyzed in Barbi et al. (2018). Individuals appear in the database if they reached age

105 years between January 1st, 2009 (c1) and January 1st, 2016 (c2); and the survival time

is censored for individuals alive at c2. The cohort thus comprises people born between

1896 and 1910 whose excess lifetime is measured as days of survival beyond u = 38351 days.

Nonparametric estimates of the survival function and the cumulative hazard function are

displayed in Figure 1.17.
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Figure 1.16 – Posterior predictive distribution of rainfall conditional on exceeding u = 57.5mm
based on the maximum of 73 generalized Pareto variates (dashed). Metastatistical
distribution for centennial maxima obtained through penultimate approximation
and max-stability argument (full).

Figure 1.18 shows the construction of the likelihood contributions for individuals in the sample

whose age exceeded u0 between calendar times c1 and c2; the observations are potentially

left-truncated and right-censored and taking this into account is important. Failure to account

for the censoring would lead to negative bias for the shape parameter ξ since, for example,

individuals born after 1910 would not be given a chance to reach 116 years. Let S and f denote

the survival and the density functions, let xi denote the calendar date at which individual i

reached u0 years, let ti denote the excess lifetime at calendar time c2, and let si denote an

indicator variable taking value 1 if individual i was alive at calendar time c2 and zero otherwise.

The likelihood is

L(θ; t , s) =
n∏

i=1

[
f (ti )

S{(c1 −xi )+}

]1−si
[

S(ti )

S{(c1 −xi )+}

]si

,

where x+ = max{x,0}. We fit a generalized Pareto distribution to excess lifetimes over a range

of thresholds starting from u = 105 years. We performed likelihood ratio tests (not reported) to

check for differences between men and women, by fitting different generalized Pareto and

exponential distributions to both subsamples; none of the improvements in fit is statistically

significant at the 10% level. Maximum likelihood estimates of the generalized Pareto parame-

ters and upper endpoints are given in Table 1.8. The largest excess lifetime is censored (Emma

Moreno, who died aged 117 years in 2017) and the estimated shape ξ̂ tends to be close to zero,

although for high u its variability is large.
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Figure 1.17 – Estimated conditional survival function (left) and conditional cumulative hazard
function (right) above u based respectively on the Kaplan–Meier and Nelson–Aalen
estimators for left-truncated right-censored data (Tsai et al., 1987) for the super
centenarian data. Dotted (dashed) lines give 95% pointwise confidence inter-
vals (95% confidence bands). The intervals for the cumulative hazard functions
are arcsine-transformed intervals (Bie et al., 1987) and the critical levels for the
confidence bands are based on results in Wellner and Hall (1980).

Whenever ξ̂ is negative, the estimated distribution has a finite upper endpoint ι = −σ/ξ

and one could reparametrize the profile likelihood in terms of the latter; if ξ̂ ≥ 0, excess

lifetime is unbounded. Figure 1.19 shows the profile likelihood and the modified version

`fr of Section 1.3.3 for the upper endpoint for two thresholds; the 95% confidence interval

based on the likelihood root r and the tangent exponential model approximation given for

two scenarios in Table 1.10 have similar lower endpoints and the tangent exponential model

approximation has a heavier right tail; right endpoints are nearly infinite for higher thresholds

(not shown), since ξ̂ι→ 0 as ι→∞, so the drop in deviance is negligible starting from 200 years

or so. As is often the case, the tangent exponential model approximation behaves erratically

in a neighbourhood of r = 0; we interpolate the values from the root r∗ = 0 using a spline. To

check the accuracy of the approximations, we used Algorithm 1.1 to compute the distribution

of the likelihood ratio statistic w using the bootstrap by simulating from the generalized

Pareto model (Lee and Young, 2005). For each ι, we compute the bootstrap P-value P
(
wp(ι)

)
and compare it with the P-value obtained from the asymptotic χ2

1 distribution. Figure 1.20

shows that, in this setting, the bootstrap and asymptotic χ2
1 P-values agree up to Monte Carlo

variability. The P-values decrease as the distance between ι and ι̂ increases.

One drawback of the frequentist paradigm in the present case is the inability to compute
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Figure 1.18 – Lexis diagram showing the life trajectory of observed individuals; those who would
attain age u0 beyond calendar time c2 or those who died before calendar date c1 or
below age u0 are unobserved. Individual A passes age u0 at date xA < c1, has excess
lifetime (beyond u0) of c1 −xA at date c1, and dies at age u0 + tA (left-truncated).
Individual B reaches age u0 at calendar time xB and dies between calendar time c1

and c2 at age u0 + tB . Individual C is left-truncated at excess lifetime c1 −xC and is
right-censored at excess lifetime c2 −xC . Individual D is right-censored at excess
lifetime c2 −xD .
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u nu σ̂ ξ̂ ι̂ `(θ̂)

105 3836 1.67 (0.04) −0.04 (0.02) 142 −4253.7
105.5 2665 1.72 (0.05) −0.07 (0.02) 130 −2955.2
106 1874 1.70 (0.06) −0.07 (0.03) 129 −2064.3
106.5 1345 1.63 (0.07) −0.06 (0.03) 132 −1448.2
107 946 1.47 (0.08) −0.02 (0.04) 196 −999.3
107.5 650 1.40 (0.09) 0.01 (0.05) ∞ −665.7
108 415 1.47 (0.11) −0.01 (0.06) 210 −440.6
108.5 278 1.55 (0.14) −0.05 (0.07) 139 −294.6
109 198 1.33 (0.15) 0.03 (0.09) ∞ −202.9
109.5 134 1.24 (0.18) 0.09 (0.13) ∞ −132.7
110 88 1.22 (0.23) 0.12 (0.17) ∞ −85.4
110.5 60 0.83 (0.23) 0.43 (0.28) ∞ −54.6
111 34 1.50 (0.47) 0.06 (0.30) ∞ −34.9
111.5 23 1.23 (0.51) 0.24 (0.45) ∞ −24.9

Table 1.8 – Maximum likelihood estimates of the generalized Pareto for the Italian super-
centenarian data. From left to right, threshold u (in years), number nu of obser-
vations above the threshold, estimates (standard errors) of the scale σ, shape ξ and
endpoint in years ι parameters, maximum log-likelihood, `(θ̂).

u σ̂ `(θ̂) σ̂e α̂e `e (θ̂)

105 1.61 (0.03) −4255.8 1.68 (0.05) 0.05 (0.03) −4253.7
105.5 1.62 (0.04) −2959.1 1.75 (0.06) 0.10 (0.04) −2954.9
106 1.60 (0.04) −2067.3 1.73 (0.07) 0.11 (0.05) −2063.8
106.5 1.55 (0.05) −1450.0 1.67 (0.08) 0.10 (0.06) −1447.8
107 1.45 (0.05) −999.3 1.48 (0.08) 0.02 (0.05) −999.2
107.5 1.42 (0.06) −665.7 — — —
108 1.45 (0.08) −440.6 1.47 (0.12) 0.02 (0.07) −440.6
108.5 1.49 (0.10) −294.8 1.59 (0.17) 0.09 (0.13) −294.5
109 1.36 (0.11) −202.9 — — —
109.5 1.34 (0.13) −133.0 — — —
110 1.35 (0.17) −85.7 — — —
110.5 1.22 (0.18) −56.4 — — —
111 1.58 (0.32) −34.9 — — —
111.5 1.49 (0.35) −25.1 — — —

Table 1.9 – Maximum likelihood estimates (standard errors) and maximum likelihood values for
the exponential distribution (second and third columns) and extended exponential
distribution F (x) = 1−exp{−x/σe −αe (x/σe )2/2} when α̂e 6= 0 (last three columns)
for the Italian super-centenarian data, as a function of the threshold u.

potential upper endpoints when the estimate shape is positive, since the (infinite) upper

endpoint ι lies on the boundary of the parameter space. To remedy this, we consider Bayesian

inference for the model and assign vague priors to the parameters (standard Gaussian and
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Figure 1.19 – Profile likelihood `p (full black) and modified profile likelihood based on the
tangent exponential model approximation `fr (dashed grey) as a function of the
upper endpoint ι based on exceedances of lifetime beyond 106 years (left) and
106.5 years (right) for the Italian super centenarian data. The horizontal dotted
grey lines indicates cutoff values for the 95% confidence interval based on the
asymptotic χ2

1 distribution.

u r r∗

105 142.2 (131.7, 212.9) 143.4 (132.4, 235.8)
105.5 129.9 (120.6, 145.6) 134.2 (125.0, 151.2)
106 129.3 (119.4, 150.2) 134.0 (123.9, 160.4)
106.5 131.7 (120.9, 194.6) 137.0 (124.8, 227.9)

Table 1.10 – Point estimates (95% confidence intervals) for the upper limit to lifetime ι (in years)
based on the profile likelihood ratio statistic w (middle) and the modified likeli-
hood ratio statistic w∗ for the tangent model approximation (right) using threshold
exceedances of u for the Italian semi-super centenarian data set.

half-Cauchy for ξ and σ, respectively). We use a Hamiltonian Monte Carlo algorithm (cf.

Section 3.1.2) to sample five chains of 25 000 draws from the posterior distribution, after

discarding the first 1000 iterations and thinning to retain every fifth iteration for memory

allocation even if unnecessary (Carpenter et al., 2017). We use the 25 000 remaining draws to

compute 90% credible intervals which are reported in Table 1.11 with the posterior median.

For low thresholds, the posterior medians are close to the maximum likelihood estimates

given in Table 1.10. The contours of the joint posterior density for (σ,ξ) are further from

bivariate Gaussian and become curved since smaller values of ξ are incompatible with the

data, resulting in asymmetric intervals and larger point estimates. The mixing of the chains is
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Figure 1.20 – Italian super centenarian data: P-value function, P
(
wp(ι)

)
, for the profile likeli-

hood ratio statistic wp = 2{`(θ̂)−`(θ̂ι} using excess lifetime above u = 107 years
based on the asymptotic χ2

1 distribution (black) and the bootstrap distribution
(grey).

u ι

105 142.9 (127.4,305.3)
105.5 130.6 (122.5,164.3)
106 130.1 (121.8,178.2)
106.5 133.2 (122.1,437.2)
107 230.6 (127.7, ∞ )
107.5 ∞ (131.6, ∞ )
108 484.0 (124.2, ∞ )
108.5 148.9 (120.7, ∞ )
109 ∞ (125.6, ∞ )
109.5 ∞ (129.6, ∞ )
110 ∞ (127.6, ∞ )
110.5 ∞ ( ∞ , ∞ )
111 ∞ (118.8, ∞ )
111.5 ∞ (120.1, ∞ )

Table 1.11 – Posterior median (90% credible intervals) for the upper limit to lifetime ι (in years)
using uninformative priors, as a function of the threshold u.

good in all the scenarios considered.

The apparent stability of the estimates and the large standard errors for ξ̂ do not allow us to
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u 105 105.5 106 106.5 107 107.5 108 108.5 109 109.5 110 110.5 111 111.5

ξ̂ 98 100 99 96 63 36 56 69 32 17 16 1 31 16
nc 15 10 14 13 21 33 62 72 57 24 8 5 6 11

Table 1.12 – Percentage of bootstrap samples in which ξ̂(b) > ξ̂(first row) and in which the num-
ber of right-censored simulated data n(b)

c > nc for individuals reaching age u in
[c1,c2] (second row) as a function of threshold u. The standard error for the Monte
Carlo estimator is less than 0.5%.

rule out the exponential tail for thresholds u > 107 years at level 10% (the P-values for the

lower four thresholds are 4.1%, 0.5%, 1.4% and 6.0%). We fix ξ= 0 and compute maximum

likelihood estimates for the exponential model; see the second column of Table 1.9.

Another way to assess the hypothesis that excess lifetimes are exponentially distributed is by

simulation; we condition on the birth dates and simulate excess lifetimes from a left-truncated

exponential distribution in the time frame [c1,c2], censoring observations that fall outside the

frame. For low thresholds, there is some indication of lack of fit. The simulated proportion

of individuals that are censored agrees with the proportion in the data set for all thresholds.

For each simulated data set, we can fit a generalized Pareto distribution and compare the

shape ξ̂(b) in replication b = 1, . . . ,B with that obtained in the original sample, ξ̂. We see

discrepancies at low thresholds in Table 1.12, when the sample size is large enough to allow

one to detect departure from exponentiality. This could be due to a decrease in the force of

mortality at low thresholds, followed by an increase. Adjustment for increase in the number

of individuals, as indicated by potentially different rate of exceedances of u for older ages,

depends on information that is yet unavailable; see Davison (2018) for a discussion of the

impacts of non-stationarity.

The limiting distribution of excess lifetime could be exponential, even if we reject this hypoth-

esis for low thresholds; such an hypothesis would be compatible with penultimate effects. To

assess this, consider a survival function of the form S(x) = exp{−x/σ−α(x/σ)2/2} for x,α,σ> 0;

this includes the exponential and is, up to second order, the penultimate approximation for

Gaussian variates, for which the penultimate shape is negative. The corresponding parameter

estimates and maximum log-likelihood values are reported in the last three columns of Ta-

ble 1.9. If excess lifetime was ultimately exponential, we would expect to observe a decreasing

α and this is the case for all thresholds beyond 108.5 years. Simulations (not reported here)

indicate that improvements in fit appear only if the penultimate shape of the generalized

Pareto is negative, which is consistent with the estimates ξ̂. The estimates are thus in some

sense compatible with penultimate effects.

The fact that the upper bounds of the credible and confidence intervals are infinite reflects

the fact that the shape could be zero or positive. Rootzén and Zholud (2017) argue that one

could consider the exponential model, on the ground of parsimony. Under the latter, the

probability of surviving one additional year conditional on survival up to u years is exp(−1/σ)

as a consequence of the the memoryless property. Based on exceedances of u = 110 years,
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the model would yield an estimated probability of surviving an additional year of 0.476 with

95% confidence interval (0.416, 0.537) and fewer than four in a thousand super-centenarians

would be expected to live older than Emma Moreno. This justifies the claim of Rootzén and

Zholud that life is infinite, but short.

1.6 Conclusion

This chapter discussed likelihood-based estimation of extreme value distributions, focusing on

higher-order methods and bias correction. The extreme value distributions are non-standard

models: their support is parameter-dependent and the cumulants of the log-likelihood deriva-

tives exist only for sufficiently large values of the shape parameter. These restrictions make

inference challenging, in particular because the distribution depends on the threshold choice

in peaks-over-threshold analysis or the block size for block maxima. We have advocated the

use of the distribution of the maximum of N observations because its interpretation is more

natural than return levels; the discrepancy between the penultimate approximation and the

estimated distributions can be substantial, as illustrated through examples. The penultimate

approximation can be useful as a gold standard in simulation studies and in understanding

that, even if asymptotically constant, the shape parameter is often bound to change as the

threshold or the block size changes. Its use in practice is difficult unless one is willing to

assume a parametric family for the underlying data, as the metastatistical approach does: the

choice of distribution introduces arbitrariness that practitioners need to understand better.

The penultimate approach requires derivation of exact normalizing constants, which is easily

done by assuming a parametric model for the whole distribution of the data. Estimation of

the latter directly from the limiting model is hopeless, and this explains why we only carry

out frequentist and Bayesian inference using the likelihood of the limiting model. While

the Poisson process formulation is the most useful for combining multiple sources of data,

optimization of the likelihood is highly dependent on the tuning parameter even if guidelines

for orthogonalization are available (Sharkey and Tawn, 2017).

Most of the methods described in the chapter have been programmed and implemented in the

mev package (Belzile et al., 2019); this include likelihood, score functions and Fisher and ob-

served information matrices for different likelihoods, profile and modified profile likelihoods

for the generalized extreme value and generalized Pareto distributions in different parametriza-

tions, optimization routines, threshold selection methods described in Section 1.1.5 and bias

correction methods; see the link provided in Appendix D for a detailed list of the functionalities

implemented.

The novel contributions in the chapter include derivation of several examples second order

condition (Examples 1.6 and 1.7), the comparison of the metastatistical approach with the

generalized extreme value distribution, the derivation of the Fisher information for the r -

largest observations, a comparison of the Cox–Snell correction for the generalized extreme

value distribution and the generalized Pareto distribution as reported in Giles et al. (2016)
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and Roodman (2018) with the implicit bias correction and the Firth’s score correction through

simulation, the derivation of the Bartlett correction for the generalized Pareto distribution,

comparison of profile likelihood-based confidence intervals for mean and quantiles of the

distribution of the N -observations maximum, derivation of the TEM for mean and quantiles of

the N -observation maximum, return levels, parameters and expected shortfall numerically,

including some analytical examples in Examples 1.25 and 1.26. Several real data examples

illustrate the methods.

Likelihood methodology provides a convenient framework for investigating the performance

of estimators and for derivation of explicit expressions for cumulants, first-order bias, etc. The

peaks-over-threshold method, while potentially allowing for more data points to be used in

the analysis, has been shown to lead to significantly negatively-biased estimates of the shape.

The bias for ξ is systematic over the range of ξ and bias correction may be advised, particularly

if extrapolation for periods far beyond that of the data is envisioned. The study of higher-order

asymptotics for extreme value distributions has shown that the first order approximation is

poor, but that the use of analytic higher-order methods such as bias correction or Bartlett

correction is not a panacea; in fact, it seems that a parametric bootstrap provides more

sensible estimates when ξ is negative, as illustrated in Examples 1.19 and 1.22. Simulation

studies show that, while the profile-likelihood confidence intervals based on r have adequate

coverage, their error rate is too small. The confidence intervals for the tangent exponential

model approximation are much wider, reflecting the skewness of the estimated distribution.

Inclusion of covariates, non-stationary modelling and data transformations are not easily

studied, despite the possibility of including these in the framework.
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2 A panorama of spatial extremes

This chapter presents the three main approaches for modelling spatial extremes, namely

peaks-over-threshold, max-stable and conditional extremes models. The literature review

includes some novel contributions, with a particular emphasis on simulation. The reader is

invited to consult page 2 for a description of the notation used in this chapter. Whenever a

proof is provided, it is either novel or else serves to provide further insight in the result.

2.1 Preliminary notions

Because extreme events are, by definition, rare, it is impossible to estimate quantities of

interest empirically since these lie outside the range of the data. One may be interested in

predicting extremes at a site where no measurements are available, or in assessing the risk

of complex extreme physical phenomena, such as floods or heatwaves, which are inherently

spatio-temporal. In such cases, extrapolation to unobserved periods and sites is necessary,

but it cannot be handled in the univariate or the multivariate frameworks. Thus, we focus on

functional extremes and review methodological and theoretical developments in the field of

spatial extremes.

2.1.1 Point processes

Point processes are a key tool for describing occurrences of extremes, so we detail key prop-

erties, following van Lieshout (2010). Let (O,dO) be a complete separable metric space with

associated Borel σ-algebra B(O) and let Bb(O) be the subset of bounded Borel sets. A point

processΦ is a random configuration of “points” on O, an unordered set {φ1, . . . ,φn} ∈On for

any n ∈N∪ {∞}. For any set B , the (random) number of points falling in B is the counting

measureΦ(B) = card(B ∩Φ).

A configuration of points φ is locally finite (or boundedly finite) if card({φ}∩B) <∞ for any

bounded set B ⊆ O. Spatial point processes are often defined on bounded subsets: it is

thus customary to define point processesΦ on the space of locally finite configurations Nlf,
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equipped with the σ-algebra

B(Nlf) :=σ{
φ : card({φ}∩B) = n,n ∈N∪ {∞},B ∈B(O) bounded

}
.

For any bounded set B ∈B(O), we identify the process via the integer-valued random variable

Φ(B) = ∑n
i=1 1{φi∈B}. A point process is said to be simple (or nonatomic) if all points are

pairwise distinct, meaning thatΦ({φ}) ≤ 1 almost surely for all φ ∈O.

Moments of the point process are defined through those of the counting variable. Suppose

that the expected number of points falling in any compact K ⊂O is finite, i.e., E{Φ(K )} <∞;

the first-order moment measure, also termed the intensity measure, isΛ(B) =E{Φ(B)} for any

Borel set B . IfΦ is regular, so the σ-finite measureΛ is dominated by the Lebesgue measure,

we can writeΛ(dφ) =λ(φ)dφ andΛ(B) = ∫
B λ(φ)dφ. The Radon–Nikodym derivative ofΛ(·),

denoted λ(·), is the intensity function of the nonatomic process. The process is said to be

homogeneous if the intensity λ(·) is constant over O. The expected number of points in a

bounded set A is then the measure of that set, λν(A) for λ≥ 0.

Higher-order moments of a point process take into account counts in multiple sets. Consider

bounded Borel sets B1, . . . ,BD andΦ(B1), . . . ,Φ(BD ) for any D ∈N+ . The Dth order measure is

simply

Λn(B1 ×·· ·×BD ) =E{Φ(B1) · · ·Φ(BD )}.

If the sets are all identical to B , then the Dth order measure of B is simply the Dth power

of its first-order moment, ΛD (B) =Λ(B)D . The Dth-order measureΛn can be extended to a

σ-finite measure: for any measurable mapping f : O→Rwhich is either nonnegative or else

integrable and providedΛD exists,

E
( ∑
φ1,...,φD∈Φ

f (φ1, . . . ,φD )

)
=

∫
OD

f (φ1, . . . ,φD )Λn(dφ1, . . . ,dφD ). (2.1)

This result is often referred to as Campbell’s theorem.

Poisson point processes

Simple parametric families can be used to describe the counts of the point process. The

class most used is the class of Poisson point processes, denoted hereafter by PPP(Λ). A point

process is Poisson if

(i) for any Borel B ∈B(O),Φ(B) ∼Pois{Λ(B)};

(ii) for all disjoint Borel sets B1, . . . ,Bn , the variables Φ(Bi ) are independent (complete

randomness).

The simplest Poisson point process example is the homogeneous Poisson process on the

positive real lineR+.
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Definition 2.1 (Homogeneous Poisson point process onR+)

The homogeneous Poisson point process on R+ with intensity dλ can be characterized in

terms of waiting time, that is, the distance between two events of the point process. Specifically,

let Ei
iid∼ Exp(1) be waiting times and define the sequence of arrival times {Γn}n∈N+ with Γn =∑n

i=1 Ei .

This definition can be used to generate a homogeneous Poisson point process with unit rate

onR+. For more general domains S ⊂O satisfying Λ(S) <∞, simulation of a homogeneous

Poisson process can be done by first simulating the number of points in S as NS ∼Pois(Λ(S))

and then by simulating nS points uniformly from S. If S is irregular, it may be simpler to

simulate on a larger spatial domain and use an accept-reject scheme.

To generate samples from inhomogeneous Poisson processes, the simplest option is thinning:

if the Poisson process has a bounded intensity function λ(φ) ≤ M for all φ ∈ O, one can

generate points from a homogeneous Poisson process on Owith intensity M and keep each

simulated observation with probability λ(φ)/M . While thinning is typically easy to implement,

it is not the most efficient simulation method. We can instead use the preservation property

of Poisson processes, which states that Poisson processes remain Poissonian under suitable

transformations (cf. Resnick, 2007, Proposition 5.2).

Proposition 2.2 (Transformation of Poisson processes)

Let Φ be a Poisson point process with intensity measure Λ. Let T : O→O′ be a measurable

transformation such that for any compact set K ′ ∈K (O′), the inverse image T −1K ′ ∈K (O) is

also compact and that T −1({ϕ}) = 0 for all ϕ ∈O′. ThenΦ◦T −1 ∼PPP(Λ◦T −1) on O′.

Example 2.1

Consider the mapping x 7→ 1/x of points of the homogeneous Poisson process on R+ with

intensity dζ; the transformation is bijective over (0,∞) and thus preserves the properties of

the Poisson distribution as per Proposition 2.2. The transformed process Γ−1
n is also Poisson

with intensity ζ−2dζ.

�

Marked point process

It is possible to enlarge the state space of a (Poisson) point process with intensity measure

Λ and consider simultaneously a location and the realization of an event (a mark) attached

to this coordinate. More specifically, consider elements of the product state space E=O×F,

where O is a metric space to be understood as the location component of the process and F

is the mark space F, i.e., a metric space with a suitable associated σ-algebra. Suppose that

random components mi on Fare independent and identically distributed with probability

measure µ. Then, the (Poisson) point process defined on E with elements
∑

i∈N+ 1{φi ,mi } is a

marked point process and its intensity factorises asΛ×µ. In particular, one can generate from

the marked process by sampling the points of a Poisson process with intensityΛ and attach to

each realization a mark mi drawn from µ (cf. de Haan and Ferreira, 2006, Lemma 9.4.7). The
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reader is referred to § 4.1.1 of Heinrich (2013) for a more rigorous definition of marked point

processes.

Slivnyak–Mecke theorem

The Palm distribution of a point process is, heuristically, the conditional distribution of the

point process Φ given a point at the location φ. The Slivnyak–Mecke theorem provides an

equivalence between this Palm distribution and that of the point processΦ∪ {φ}. It allows for

interchange of measures, an analog of Fubini’s theorem for point processes.

Theorem 2.3 (Slivnyak–Mecke)

Let Φ be a Poisson point process with finite intensity measure Λ on a complete separable

metric space O. For any nonnegative function f : O×Nlf →R+,

E
( ∑
φ∈Φ

f (φ,Φ\ {φ})

)
=

∫
O

E
(

f (φ,Φ)
)
Λ(dφ). (2.2)

More generally, for D ∈N+ pairwise distinct points (denoted by the superscript 6=) and f : OD ×
Nlf →R+,

E
( 6=∑
φ1,...,φD∈Φ

f ({φ1, . . . ,φD },Φ\ {φ1, . . . ,φD })

)
=

∫
OD

E
(

f (φ1, . . . ,φD ,Φ)
) D∏

i=1
Λ(dφi ).

A proof can be found in Møller and Waagepetersen (2003), Section 3.2.1.

2.1.2 Properties of spatial processes

Throughout, we use the notation Z(S) = {Z (s)}s∈S for the stochastic process on Rm whose

pointwise realizations are Z (s) for s ∈Rm and denote by Z the D-vector with components

Z (s1), . . . , Z (sD ). The translation operator Th is Th
[
{Z (si )}D

i=1

]= {Z (si +h)}D
i=1 for any h ∈Rm .

Two major concepts for stochastic processes are stationarity and ergodicity.

Definition 2.4 (Strict stationarity)

Let Th be the translation operator. A stochastic process Z(S) with sample paths inRm is said to

be strictly stationary if all its finite-dimensional distributions are invariant under translation,

i.e., Z
d= Th(Z ) for any h ∈Rm .

Loosely speaking, a strictly stationary process is ergodic if realizations sufficiently far apart are

near independent. This in particular means that properties of the process can be obtained by

replacing expectation of functionals by empirical averages (for example covariance). Ergod-

icity is described in more detail on pages 54–58 of Cressie (1993), from which the following

definition is extracted.
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Definition 2.5 (Ergodicity)

Let Th be the translation operator and let B be a measurable set with T −1
h (B) = {b : Th(b) ∈

B}. A strictly stationary process Z is ergodic if T −1
h (B) = B for all h implies P (Z ∈ B) = 0 or

P (Z ∈ B) = 1, i.e., the only sets invariant to translation are sets of measure zero or the whole

sample space.

The requirement of strict stationarity is too stringent for many applications, so two weaker

notions are used.

Definition 2.6 (Weak stationarity)

The stochastic process Z (s) is termed weakly (or second order) stationary if its mean process

is constant and the covariance between sites depends only on the distance between them, i.e.,

E{Z (s)} =µ for all s ∈Sand Cov{Z (s), Z (s +h)} =C (h) for all s,h ∈S.

For the second notion, we need first the following definition.

Definition 2.7 (Semi-variogram)

The semi-variogram γ :Rm ×Rm →R+ is half the process incremental variance, i.e.,

2γ(s, s +h) :=Var{Z (s +h)−Z (s)}.

The following conditions are both necessary and sufficient for a nonnegative function γ(s1, s2)

to yield a valid semi-variogram: (a) γ(s, s) = 0; (b) γ(·, ·) is even, meaning γ(s1, s2) = γ(s2, s1)

for any s1, s2 ∈S; and (c) γ(·, ·) is conditional negative definite, i.e.,
∑n

i=1

∑n
j=1 ai a jγ(si , s j ) ≤ 0

for any pair of sites si , s j and for any a ∈Rn such that
∑n

i=1 ai = 0. These three relations must

hold for any potential values of the variogram parameter vector θ ∈Θ.

Definition 2.8 (Intrinsic stationarity)

A stochastic process Z(Rm) is intrinsically stationary if its increments are second order sta-

tionary, i.e., E{Z (s +h)−Z (s)} = 0 and γ(s, s +h) = γ(0,h) for all s,h ∈Rm .

We use the short-hand notation γ(h) ≡ γ(0,h) for the semi-variogram if the process under

consideration is intrinsically stationary. If we fix the value of Z(Rm) at the origin, setting

Z (o) = 0 almost surely, then the covariance matrix derived for increments from Z (o) is

Cov{Z (s1), Z (s2)} = γ(s1)+γ(s2)−γ(s1 − s2).

Second order stationarity implies intrinsic stationarity, so the covariance function C and semi-

variogram γ are related via γ(h) =C (0)−C (h) with lim‖h‖→∞γ(h) =C (0) as lim‖h‖→∞C (h) = 0.

(Chilès and Delfiner, 2012, eq. 3.2). The converse is false in general but, if Z is ergodic, the

semi-variogram is bounded and C (h) → 0 as ‖h‖→∞, resulting in lim‖d‖→∞γ(d ) =C (0) and

C (h) = lim
‖d‖→∞

γ(d )−γ(h).

If the variogram or the covariance does not depend on the direction of the lag vector h, then

the process is said to be isotropic and we write γ(h) = γ(h), where h = ‖h‖. Otherwise, the
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process is anisotropic. It is common to incorporate a rotation matrix for processes inR2 to

account for any geometric anisotropy, which can be described by the composition of a rotation

and a dilation matrix, A, in which case we use an isotropic variogram with distance h = ‖Ah‖.

A common parametrization for the latter is (cf. Chilès and Delfiner, 2012, p.98)

A =
(

a1 cos(%) a1 sin(%)

−a2 sin(%) a2 cos(%)

)
, a1, a2 > 1,% ∈

(
−π

2
,
π

2

)
. (2.3)

To ensure identifiability, it is customary to set a1 = 1 when the variogram or covariance model

includes a scale parameter.

2.1.3 Convergence of measures

We will be interested in the sequel in point processes and their extremal attractor, the func-

tional analog of Theorem 1.3. To this effect, we review a particular notion of weak convergence

for stochastic process excluding some regions since we want the limiting point process to have

a finite intensity measure. Let (S,d) be a compact metric space and consider the separable

Banach space of bounded continuous functions F= { f : f ∈C(S,R)} equipped with the ‖ ·‖∞
norm and the subset F+ of nonnegative bounded functions { f : f ∈C(S, [0,∞))}. We follow

Lindskog et al. (2014) and consider subsets of Fthat are bounded away from a cone C .

Definition 2.9 (Cone)

A cone C is a measurable subset of Fwhich is closed under dilation, meaning t x ∈C for all

x ∈C and t ∈ (0,∞).

Definition 2.10 (Bounded away from a cone)

Let the open ball of radius r around C be C(r ) := { f ∈F: d( f ,C ) := infg∈C d( f , g ) < r }. A Borel

set B ∈B(F\C ) is bounded away from a cone C if d(B ,C ) > 0, meaning that B ⊂F\C(r ) for

some r > 0. We say that a function f is bounded away from C if f (x) = 0 for all x ∈ C(r ). A

totally finite measure is said to be bounded away from a cone C if, for any positive radius r ,

Λ{ f ∈F(S) : d( f ,C ) > r } <∞.

Before introducing the concept of functional regular variation, we must define convergence

of measures on metric spaces; see Daley and Vere-Jones (2002), Appendix A.2, for a detailed

exposition of the topic. Below, we always consider measures that are neither constantly null

nor degenerate at a point.

We consider nonnegative bounded continuous functions F+: define F+
C
=F+ \C for some

closed cone C . The open cone F+
C

is a metric subspace of F+ with associated σ-algebra

B(F+
C

) = {B : B ⊂F+
C

,B ⊂B(F+)}. We consider the setMFC
of all Borel measures on F+

C
that

are finite on F+ \C(r ) for every r > 0 (Lindskog et al., 2014).

The subspace F+
C

is a complete separable metric space and, if we equip the space of bounded

Borel measures on F+
C

,M(F+
C

), with the topology of weak-hash convergence, thenM(F+
C

)
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is also metrizable and can be made into a complete separable metric space (Lindskog et al.,

2014, Theorem 2.2).

A set inMFC
is relatively compact if every sequence {Λn}n∈N+ for M ⊂MFC

contains a conver-

gent subsequence (Hult and Lindskog, 2006).

The notion of convergence of measures we consider in the sequel is w# convergence (Daley

and Vere-Jones 2002, Proposition A2.6.II).

Definition 2.11 (Weak-hash convergence)

Let {Λn}n∈N+ andΛ∞ be boundedly finite measures on a complete separable metric space F.

We say thatΛn converges in the w# topology,Λn
w#−→Λ∞ as n →∞, if

∫
f dΛn → ∫

f dΛ∞ on F

for any bounded continuous functions f vanishing outside a bounded set.

Alternatively, for {Λn}n∈N+ ,Λ ∈MFC
, the sequence of measuresΛn

w#−→Λ∞ if limn→∞Λn(B) =
Λ∞(B) for any Λ∞-continuous Borel set B ∈ B(F) that is bounded away from C (Lindskog

et al., 2014, Theorem 2.1).

Remark 2.1

Weak-hash convergence as defined in Definition 2.11 implies vague convergence (Lindskog

et al., 2014, Lemma 2.1), but the two notions are equivalent for locally compact spaces. Simi-

larly, weak convergence (Daley and Vere-Jones, 2002, Definition A2.3.I), which we denote by
w−→, reduces to w# convergence whenever Sis compact.

Theorem 2.3 in Lindskog et al. (2014) provides a continuous mapping theorem for measures

on complete separable metric spaces.

Theorem 2.12 (Mapping theorem)

Let F1 and F2 be complete separable metric spaces and let C1 ∈F1 and C2 ∈F2 be closed

cones. Consider the associated metric subspace F1
C

= F1 \ C1 and F2
C

= F2 \ C2. If the

measurable transformation T : (F1
C

,B(F1
C

)) → (F2
C

,B(F2
C

)) is a homeomorphism such that

T −1(A) is bounded away from C1 for any set A ∈B(F2
C

)∩T (F1
C

) bounded away from C2, then

the pushforward measureMF1
C
→MF2

C
defined byΛ◦T −1 for anyΛ ∈MF1

C
is continuous.

Example 2.2 (Pseudo-polar transformation inRD
+ )

For the pseudo-polar transformation T (x) = (‖x‖, x/‖x‖) to be bijective, we consider the

punctured space from which the origin is removed: because the cone {0D } is compact inRD
+

and the image set {0}×S is closed, the pushforward measure is continuous.

�

In spatial statistics, data are assumed to arise from a random field that is only observed at a

finite number of sites. Projection is a continuous mapping, so the parameters of the spatial

process can be estimated based on the observed realizations at the measurement stations.

Corollary 2.13 (Finite-dimensional projections)

Let s1, . . . , sD ∈ S be D sites. The mapping Tproj : F+
C

7→ RD
+ \ Tproj(C ), where Tproj( f ) =

{ f (s1), . . . , f (sD )} is continuous by Theorem 2.12.

79



Chapter 2. A panorama of spatial extremes

Under stricter assumptions, the continuity of the pushforward measure is readily established.

Corollary 2.14

Suppose that either (a) T : F1 →F2 is absolutely continuous with C2 = T (C1) closed in F2

or (b) T is continuous and either F1 or C1 is compact. Then TM :MF1
C
7→MF2

C
, defined by

TM(Λ) :=Λ◦T −1, is continuous inMF2
C

.

Convergence of a sequence of measures {Λn} to a limiting measure Λ∞ in MFC
therefore

implies convergence of the pushforward measuresΛn ◦T −1 w#−→Λ∞ ◦T −1 inMFC
.

Remark 2.2 (Extensions)

We focus solely on stochastic processes with continuous sample paths. This excludes processes

taking values in the Skorohod space of càdlàg functions (right continuous with left limits) and

the class of upper-semi continuous processes, a notable example of which is the disk model of

Schlather (2002), see also Davison and Gholamrezaee (2011) and Huser and Davison (2013).

The reader is referred to Hult and Lindskog (2005) for more details on regular variation on

these types of spaces.

2.1.4 Regular variation

A general formulation of regular variation for metric spaces (Hult and Lindskog, 2005) allows

one to relax the assumption of local compactness of the metric space. To avoid complications

discussed on p. 274 of Lindskog et al. (2014), we will follow Lindskog et al. and define tail

regions as subsets of Sbounded away from a cone C , without compactifying the space. This

allows extrapolation on rays.

Definition 2.15 (Regular variation onMFC
)

A sequence of measures {Λn}n∈N+ in MFC
is regularly varying if there exists a positive in-

creasing regularly varying sequence {an}n∈N+ such that, as n →∞, anΛn
w#−→Λ∞ inMFC

for a

nonzero measureΛ∞ ∈MFC
.

Alternatively, regular variation of a measureΛ ∈MFC
is equivalent to the existence of a nonzero

measureΛ∞ ∈MFC
and an increasing positive function a :R+ →R+ such that

tΛ{a(t )·} w#−→Λ∞(·), t →∞.

Lemma 2.16

Regular variation of the measure Λ implies that the limit measure Λ∞ is homogeneous of

order −α for α> 0, meaning

Λ∞(t A) = t−αΛ∞(A)

for all A ∈B(F+
C

) and t ∈R+ (Lindskog et al., 2014, Theorem 3.1).

As a consequence of the continuous mapping theorem (Theorem 2.12), functional regular

variation also implies regular variation onRD
+ ; the latter is usually defined in the multivariate
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2.2. Max-stable processes

setting using vague convergence onRD
+ \{0D } with the one-point uncompactification (Resnick,

2007, Theorem 6.1).

A useful result for analyzing the tail behaviour of scale mixture models is Breiman’s lemma (cf.

Basrak et al., 2002).

Lemma 2.17 (Breiman’s lemma)

Let R be a positive random variable with survival function F̄R , and let S be a D-dimensional

random vector independent of R. Suppose that either

1. F̄R ∈RV−α for α ∈ (0,∞) and E
(‖S‖α+ε∞

)<∞ for some ε> 0 or

2. F̄R (r ) ∼Cr−α as r →∞ for some C > 0 and E
(‖S‖α∞

)<∞.

Then, the product RS is regularly varying on [−∞D ,∞D ] \ {0D } with tail index α > 0. In the

univariate case,

lim
y→∞

P
(
RS > y

)
P

(
R > y

) =E
(
Sα

)
.

Furthermore, if S ∈ (0,1) almost surely, then the conclusion also holds for α= 0 and α=∞,

where E (S∞) = 0 by convention.

The proof of the multivariate version of Breiman’s lemma follows from a pseudo-polar de-

composition of S 7→ (‖S‖∞,S/‖S‖∞) and an application of the univariate Breiman lemma.

Extensions of Breiman’s lemma with vector radial variables R ∈RD and dependent radial and

angular components are given in Theorem 1 of Fougères and Mercadier (2012).

Regular variation can only describe processes that have positive shape parameters pointwise,

but we can derive convergence results nevertheless by considering marginal transformations,

coupling Definition 2.15 and Theorem 2.12.

2.2 Max-stable processes

Definition 2.18 (Max-stable process)

A stochastic process Z(S) on a compact metric space Sis max-stable if, for any k ∈N+ , there

exist sequences of scaling functions ak :S→ (0,∞) and bk :S→R such that, for k independent

and identical copies Z1(S), . . . ,Zk (S) of Z(S),

maxk
i=1 Zi (s)−bk (s)

ak (s)
d= Z (s), s ∈S.

As a consequence of max-stability, Z (s) ∼GEV{µ(s),σ(s),ξ(s)} for each s ∈S.
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Max-stable processes arise as non-degenerate limits of pointwise maxima of random pro-

cesses: consider independent and identically distributed copies of a stochastic process X(S).

If there exists sequences of normalizing functions an :S→ (0,∞) and bn :S→R such that

maxn
i=1 Xi (s)−bn(s)

an(s)
−→ Z (s), n →∞, s ∈S,

in the sense of finite-dimensional distributions, then the process Z(S) = {Z (s)}s∈S is max-

stable and is termed the max-stable extremal attractor of X(S).

We decouple the convergence of the marginal distribution from that of the dependence struc-

ture and require that the marginal distribution function of X (s), Fs , be absolutely continuous

in order to use the probability integral transform to transform the process onto a standardized

scale; further assumptions are necessary to do this for upper semi-continuous processes

(Sabourin and Segers, 2017). If the pointwise marginals of Z are unit Fréchet for any s ∈S,

we say the process is simple max-stable and denote it by Z∗ to indicate that it is standard-

ized. More generally, if Z (s) ∼GEV{µ(s),σ(s),ξ(s)}, we can obtain the standardized process

Z∗(s) = T {Z (s)} through the transformation

T {Z (s)} =


[
1+ξ(s)/σ(s){Z (s)−µ(s)}

]1/ξ(s) , ξ(s) 6= 0,

exp
[
{Z (s)−µ(s)}/σ(s)

]
, ξ(s) = 0,

s ∈S. (2.4)

The multivariate setting is treated in Section 2.2.2.

So far, we have focused on convergence in the sense of finite-dimensional distributions.

Functional convergence is, however, necessary to compute, e.g., the area of the exceedance

region, |S|−1
∫
S1{Z (s)>u}ds or the spatial average |S|−1

∫
SZ (s)ds. Following Theorem 2.8 of

de Haan and Lin (2001), functional convergence of a sequence of continuous stochastic

processes in F+
0 can be described as follows.

Theorem 2.19 (Convergence to a simple max-stable process in F+
0 )

Let {Xi (S)}i∈N+ be independent and identically distributed stochastic processes with sample

paths in F+
0 (S) such that their pointwise marginal distribution function Fs (x) :=P{X (s) ≤ x}

is continuous in s ∈S for all x. Let F←
s (u) = inf{x : Fs (x) ≥ u} for u ∈ [0,1]. The following are

equivalent:

(i) There exist continuous sequences of functions an :S→ (0,∞) and bn :S→R such that

maxn
i=1 Xi (s)−bn(s)

an(s)
−→ Z (s), n →∞, s ∈S,

in F+
0 , where Z(S) is a max-stable process whose pointwise margins Z (s) at s are Fréchet

with shape ξ(s) and ξ :S→R is continuous.
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2.2. Max-stable processes

(ii) The first-order condition

lim
t→∞

F←
s (1−1/t x)−F←

s (1−1/t )

at (s)
= xξ(s) −1

ξ(s)
(2.5)

holds uniformly in s ∈Sand locally uniformly in x ∈ (0,∞) for ξ(s) continuous. Further-

more,

1

n

n
max
i=1

1

1−Fs (Xi (s))
w#−→ [1+ξ(s)Z (s)]1/ξ(s) ≡ Z∗(s), n →∞, s ∈S, (2.6)

in F+
0 for continuous ξ :S→R. The process Z∗(S) appearing on the right-hand side of

(2.6) is simple max-stable.

Theorem 2.19 separates convergence to a max-stable process into a requirement of marginal

uniform convergence, eq. (2.5) and a statement on the convergence of measure of the depen-

dence structure in standardized margins, eq. (2.6). These criteria are essentially the same as

those of Deheuvels (1978) in the multivariate setting.

2.2.1 Spectral representation of max-stable processes

The spectral representation of a max-stable process, which first appeared in de Haan (1984),

is a constructive characterization of the process in terms of a Poisson point process. It is

the building-block for simulation and for likelihood inference. Many variants of the spectral

representation exist (cf. Vatan 1985; Giné, Hahn and Vatan 1990; Schlather 2002), but we shall

restrict attention to that presented in Corollary 9.4.5 of de Haan and Ferreira (2006).

Theorem 2.20 (Spectral representation of max-stable processes (1))

Any simple max-stable process Z(S) on the compact set Swith continuous sample paths in

F+
0 admits the representation

Z∗(s)
d= ∞

max
i=1

ζi Wi (s), s ∈S, (2.7)

where

• ζ1 > ζ2 > ·· · are points of a Poisson point process onR+ with intensity ζ−2dζ;

• the spectral functions, W(S), are independent and identically distributed copies of a

stochastic process in F+
0 satisfying E{W (s)} = 1 for all s ∈Sand E (‖W‖∞) <∞;

• {ζi } is independent of W j (s) for all s ∈Sand for all i , j ∈N+ .

The condition E
(‖W(S)‖∞

)<∞ holds whenever W(S) is bounded.

Theorem 2 in Schlather (2002) provides a more general spectral representation which is useful

for creating new parametric classes of max-stable processes.
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Theorem 2.21 (Spectral representation of max-stable processes (2))

Let {ζi }i∈N+ be decreasing points of a Poisson point process on R+ with intensity measure

ζ−2dζ. Independently of {ζi }i∈N+ , let W1,W2, . . . , be independent and identically distributed

copies of an arbitrary stochastic process W(Rm) and let W+(Rm), where W+(s) := max{0,W (s)},

be such that E{W+(s)} = 1 for all s ∈Rm . Then,

Z∗(s) := ∞
max
i=1

ζi Wi+(s), s ∈Rm , (2.8)

is a simple max-stable process onRm . If W(Rm) is stationary, so is Z∗(Rm).

The requirement E{W+(s)} = 1 ensures that pointwise marginals are unit Fréchet.

Remark 2.3

The representation in eq. (2.7) is not unique, so different spectral functions may lead to the

same max-stable process Z∗(S). One could also multiply a max-stable process by a random

field with unit expectation and get a max-stable process with the same distribution (see, e.g.,

Ribatet, 2013). For identifiability, one needs to impose additional restrictions, e.g., by fixing the

value of the process at a particular site o ∈S. This leads to no loss in generality for intrinsically

stationary processes, since we can always define W′, with W ′(s) =W (s)−W (o) for s ∈S; both

W′ and W will have the same incremental variance.

de Haan’s spectral representation of the simple max-stable process Z∗ gives

Λ(B) =
∫ ∞

0
P (ζW (s) ∈ B)ζ−2dζ,

and an application of Fubini’s theorem shows that the intensity function, if it exists, is

λ(z) =
∫ ∞

0
fW (z/ζ)ζ−D−2dζ. (2.9)

If spectral functions are truncated in the spectral representation (2.8), the intensity measure

Λ+, defined on F+
0 , has positive mass on { f ∈F+

0 : mins∈S f (s) = 0} (cf. Coles and Tawn, 1991).

Remark 2.4 (Change of measure for non-standardized processes)

Consider the pointwise map T given in eq. (2.4) for µ, σ, ξ continuous functions on S, and

suppose that

nP
{

T

(X−bn

an

)
∈ ·

}
w#−→Λ(·), n →∞,

forΛ ∈MFC
a homogeneous measure of order −1. By Theorem 2.20, the simple max-stable

process with intensity measureΛ admits the spectral representation of Equation (2.7). Because

T is continuous on F+
C

, it follows by virtue of Proposition 2.2 that the max-stable attractor of

X(S) admits the representation max∞i=1 T −1{ζW (s)} with limiting intensity measure Λ◦T (·).

Consider the projection of the random function onto D sites s1, . . . , sD ⊂SD and assume that
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2.2. Max-stable processes

W has density function h for any B ∈B(RD ),

Λ◦T (B) =
∫ ∞

0

∫
RD

+
1{T −1(ζw )∈B}h(w )dwζ−2dζ,

and making the change of variable z j = T −1(ζw j )( j = 1, . . . ,D) gives

Λ◦T (B) =
∫ ∞

0

∫
B

h
{

T (z j )ζ−1, j = 1, . . . ,D
}] D∏

j=1

∣∣∣∣∂T (z j )

∂z j

∣∣∣∣ζ−D−2dzdζ. (2.10)

IfΛ has a Radon–Nikodym derivativeλ, we see from (2.9) that the intensity function associated

toΛ◦T is λ{T (z)}
∏D

j=1

∣∣∂T (z j )/∂z j
∣∣ by the chain rule.

Definition 2.22 (Exponent measure)

Let Sbe a compact metric space and let ρ∞ be a totally finite measure on S∞ satisfying the

moment constraint
∫

f ρ∞(d f ) = 1 for all s ∈Sand such that for any D ∈N+ , any compact

subsets K1, . . . ,KD of Sand z > 0D , (Giné et al., 1990)

− log

[
P

(
D⋂

j=1

{
sup
s∈K j

Z∗(s) ≤ z j

})]
=Λ

{
f ∈F+

0 :
D⋃

j=1

{
sup
s∈K j

f (s) > z j

}}

=
∫
S∞

D
max

j=1

(
sups∈K j

f (s)

z j

)
ρ∞(d f ).

In pseudo-polar coordinates, the exponent measure Λ factorises into radial and angular

measures, dΛ= ζ−2dζdρ∞.

The intensity measure of the limiting Poisson point process Z∗ gives the void probabilities of

the complements of measurable sets B , viz. − log
{
P

(
Z∗(S) ∈ B

)}=Λ(Bc) (Giné et al., 1990).

Definition 2.23 (Distribution function of multivariate max-stable vector)

For a fixed collection of sites s1, . . . , sD with s ∈ S, the distribution function of the random

vector Z ∗ = {Z∗(s1), . . . , Z∗(sD )} is

P
(

Z ∗ ≤ z
)= exp{−V (z)} = exp

{−Λ(
[0D , z)c)} , z > 0D .

The function V (z) =Λ{(0D , z]c} is termed the exponent measure.

Consider the transformation of the random vector Z into pseudo-polar coordinates, Z 7→
(R,Ω) fromRD

+ → (0,∞)×S1, where S1 = {ω ∈RD
+ : ‖ω‖1 = 1} is the `1-simplex. The measureΛ

factorises as a product measureΛ(dz) = Dζ−2dζρ1(dω) with angular measure ρ1, a probability

measure satisfying the moment constraint D
∫
S1
ω jρ1(dω) = 1 for j = 1, . . . ,D; this moment

constraint holds for any ρ1, whereas it will be measure dependent if the radial measure is not

‖ ·‖1 (Einmahl and Segers, 2009). We can re-express the event {Z ≤ z}c as

Bz = {(R,W ) ∈ (0,∞)×S1 : RW � z} =
{

(R,W ) ∈ (0,∞)×S1 : R >
D

min
j=1

z j

W (s j )

}
,
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and it follows that (cf. Coles and Tawn, 1991)

V (z) = D
∫
S1

∫ ∞

0
1{ζ>min z/w}ζ−2dζρ1(dw ) = D

∫
S1

D
max

j=1

w(s j )

z j
ρ1(dw ). (2.11)

The distribution function of the D-dimensional simple multivariate extreme value model is

thus

P
(

Z ∗ ≤ z
)= exp

(
−E

[
max

{
W (s1)

z1
, . . . ,

W (sD )

zD

}])
, z ∈RD

+ \ {0D }. (2.12)

An alternative characterization of the exponent measure uses a decomposition of the set

[0D , z) into disjoint regions in which the maximum is attained by component j ( j = 1, . . . ,D)

in the expectation in eq. (2.12). This yields the formula (Huser and Davison, 2013)

V (z) =
D∑

j=1

1

z j
E

(
W (s j )1{W (s i )<zi W (s j )/z j ,i 6= j}

)
. (2.13)

Another formula for the exponent measure in terms of the intensity function is (cf. Ho, 2018,

proof of Proposition 3.2),

V (u) =Λ{[0D ,u)c} =
∫

1{z�u}λ(z)dz ,

where λ(z) is the intensity function. Partition {z � u} into
⊔D

i=1{zi > ui , z j /u j ≤ zi /ui , j 6= i }.

Using the −(D +1)-homogeneity of λ(·),

V (u) =
D∑

i=1

∫
RD−1

∫ ∞

ui

1{z−i /zi≤u−i /ui }z−1−D
i λ(z/zi )dzi dz−i

and making a change of variable y j = z j /zi for j ∈ {1, . . . ,D}\{i }, one can rewrite the expression

in terms of the D-vector y with j th component y j and i th component 1, giving

V (u) =
D∑

i=1

∫
RD−1

∫ ∞

ui

1{y−i≤u−i /ui }λ(y)z−2
i dzi dy−i

=
D∑

i=1
u−1

i

∫
RD−1

1{y−i≤u−i /ui }λ(y)dy−i , (2.14)

which gives a symmetric form for the exponent measure.

Hierarchical kernel extreme value process

Oesting (2018) extends the spectral representation to a more general class of max-stable

processes that encompasses the hierarchical kernel extreme value process of Reich and Shaby.

Let x ∈R∞
+ and let ‖x‖p = (∑∞

i=1 xp
i

)1/p be the lp norm for p ∈ (1,∞], the case p =∞ being

understood in the limiting sense as ‖x‖∞ = max∞i=1 xi . The following result is Theorem 2.1 of
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2.2. Max-stable processes

Oesting (2018).

Theorem 2.24 (`p representation of simple max-stable processes)

Let {ζi }i∈N+ be decreasing points of a Poisson point process on R+ with intensity measure

ζ−2dζ. Independently of {ζi }i∈N+ , let W1,W2, . . . , be independently and identically distributed

copies of a stochastic process W on Swith unit expectation for all s ∈ S. For 0 < p ≤ ∞
and any s ∈S, let A(s) be a collection of independent p-Fréchet variables with distribution

function exp(−x−p )1{x≥1}, the case p =∞ being understood to mean Ai = 1 almost surely. Let

Yi = ζi Wi for i ∈N+ and define the corresponding sequence Y= {Yi }∞i=1. Then, the process

Z∗(s)
d= A(s)

Γ(1−1/p)
‖Y (s)‖p , s ∈S, (2.15)

is simple max-stable.

We say that the max-stable process Z∗(S) admits an lp representation if eq. (2.15) holds. A

max-stable process with lp representation also admits an lq representation for p < q <∞,

but the converse requires further conditions (Oesting, 2018). The extremal coefficient θ(·),

defined in Section 2.7.3, is bounded below for lp processes; in particular the pairwise extremal

coefficient is bounded below by 21/p , and is linked to a nugget in Reich and Shaby (2012).

Oesting therefore terms the standard max-stable process, which corresponds to p = ∞, a

denoised process.

2.2.2 Parametric models for max-stable processes

In the univariate case, the only limiting max-stable distribution is the generalized extreme

value distribution. In the functional case, the de Haan spectral representation of max-stable

processes shows that we can build max-stable processes using any spectral function W that

satisfy the mean constraint of Theorem 2.21. We use log-Gaussian or truncated Gaussian

processes as spectral functions to create parametric models for extremes.

Example 2.3 (Spectral representation of the Brown–Resnick process)

The Brown–Resnick process on S⊂Rm associated to the semi-variogram γ (cf. Kabluchko

et al., 2009) is formed by considering an intrinsically stationary log-Gaussian process W(S)

with exp{X (s)−γ(s)} where X (s) is a sample-continuous Gaussian random field with stationary

increments, mean zero and semi-variogram γ with X (o) = 0 almost surely. Remarkably,

although X only has stationary increments, the process

Z∗(si ) = max
i∈N+

ζi exp
{

X (si )−γ(o, s)
}

, s ∈S,

is simple max-stable, stationary and its law depends only on the variogram γ(·). The same is

true if we start with a non-stationary Gaussian process with (necessarily finite) covariance

function σ2(s). Kabluchko (2011) shows under conditions that the weak limit (in the sense of

finite-dimensional distributions) of suitably rescaled triangular arrays of Gaussian processes

is of Brown–Resnick type and max-stable, but that Z(S) is not necessarily stationary.
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The Brown–Resnick process is named after Brown and Resnick (1977), who constructed a

univariate process on R+ by taking a Brownian motion B(s) and setting W (s) = exp{B(s)−
|s|/2}.

�

Example 2.4 (Spectral representation of the extremal Student process)

The max-stable attractor of elliptically contoured processes is the extremal Student process

(Thibaud and Opitz, 2015), obtained by considering spectral functions of the form

W (s) = cνmax{0, X (s)}ν, s ∈S, (2.16)

for ν> 0, where X(S) a stationary continuous Gaussian process with correlation function ρ(·),

and cν a normalizing constant π1/221−ν/2[Γ{(1+ν)/2}]−1. The extremal Student process with

ν= 1, W (s) = (2π)1/2 max{0, X (s)} for s ∈S, is called the Schlather model, following Schlather

(2002). The power ν corresponds to the regular variation index of R. The extremal Student

process includes the Brown–Resnick process as a limiting case when ν→∞ (Nikoloulopou-

los et al., 2009). In dimension D, the extremal Student distribution admits the stochastic

representation Y = RAΩ+µ with µ = 1, and where R is a nonnegative radial variable, i.e.,

P (R ≥ 0) = 1, and A is the Cholesky root of the correlation matrixΣ, i.e., AA> =Σ (Opitz, 2013b).

If R is regularly varying with positive tail index, then the process Y is also regularly varying by

Breiman’s lemma (Lemma 2.17).

�

Example 2.5 (Intensity and conditional intensity of Brown–Resnick processes)

Consider a log-Gaussian process W (s) = exp{X (s)−γ(s)}, with X (s) a zero-mean Gaussian

process with stationary increments such that W (o) = 0 almost surely. Define the column

vector γ= [γ(o, s1), . . . ,γ(o, sD )]> and the quantities

A =Σ−1 −
Σ−11D 1>

DΣ
−1

1>
DΣ

−11D

, K10 =
(

Ik

OD−k,k

)
, K01 =

(
Ok,D−k

ID−k

)
,

Γ−1
k = K>

01AK01, µk =−Γk K>
01AK10 log(z1:k )−Γk K>

01

(
Aγ+ Σ−11D

1>
DΣ

−11D

)
.

Dombry et al. (2013), § 2.2, give the intensity function of the Brown–Resnick process,

λ(z) =
|Σ|−1/2(1>

DΣ
−11D )−1/2

(2π)(D−1)/2 ∏D
j=1 z j

exp

{
−1

2
log(z)>A log(z)−

(
γ>A+

1>
DΣ

−1

1>
DΣ

−11D

)
log(z)

}

×exp

{
−1

2

(
γ>Aγ+ 2γ>Σ−11D −1

1>
DΣ

−11D

)}
, z ∈ [0D ,∞D ) \ {0D }.

The conditional intensity of the last D −k components coincides with the density of the log-

Gaussian vector with mean vector µk and covariance matrix Γk (Wadsworth and Tawn, 2014,
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§ 3.3),

|Γk |−1/2

(2π)(D−k)/2 ∏D
j=k+1 zi

exp

[
−1

2
{log(z (k+1):D )−µk }>Γ−1

k {log(z (k+1):D )−µk }

]
.

The conditional intensity is readily obtained upon dividing the intensity for all D compo-

nents by that of the first k, upon writing log(z) = K10 log(z1:k )+K01 log(z (k+1):D ). Incidentally,

Wadsworth and Tawn (2014) condition on the first k components, while the formulas pre-

sented in Dombry et al. (2013) condition on the last k. The matrix A is a singular nonnegative

definite precision matrix, given that ker(A) = span{1D }.

�
Example 2.6 (Intensity and conditional intensity of Brown–Resnick processes (2))

Engelke et al. (2015) condition explicitly on a site and consider the process in terms of the

semivariogram γi , j = γ(si , s j ) for (i , j ) ∈ {1, . . . ,D}2. We assume that the semivariogram has

no nugget component, so that γ(s, s) = 0 for all s ∈S. Suppose without loss of generality that

the D-vector of observations has an exceedance for site s1 and define the (D −1)× (D −1)

covariance matrixΣwith entries Σi j = γi+1,1 +γ j+1,1 −γi+1, j+1 (1 ≤ i ≤ j ≤ D −1) and let x be

a (D −1) vector with j th entry log(z j+1/z1)+γ1,( j+1) ( j = 1, . . . ,D −1). We denote the inverse of

the covariance matrix by Q .

If the first k components exceed their marginal threshold u1:k , the conditional intensity of the

last D −k components conditional on the first site is (Asadi et al., 2015)

λ|1:k (z) = 1

z2
1 z2 · · ·zk

φk−1
(
x1:(k−1),Σ1:(k−1),1:(k−1)

)
ΦD−k

(
ηC ,ΣC

)
, 1 < k < D,

whereΣC =Q−1
(D−k):(D−1),(D−k):(D−1) and

ηC = log

(
u(D−k+1):D

z1

)
+γ(D−k+1):D,1 −Σ(D−k):(D−1),1:(k−1)Σ

−1
1:(k−1),1:(k−1)x1:(k−1).

If k = 1, λ|1(z) = z−2
1 ΦD−1{log(u2:D )− log(z1)1D−1 +γ2:D ,Σ} whereas, if k = D, the intensity

function is λ(z) = z−1
1

∏D
j=1 z−1

j φD−1(x ,Σ). Since Z 2:D | Z1 is log-normal, the censored con-

tribution is the integral of the conditional distribution of the last D −k components up to

log(u(D−k+1):D ), cf. Proposition C.2.
�

Example 2.7 (Intensity and conditional intensity of extremal Student processes)

The intensity function of the extremal Student distribution with correlation function Σ and ν

degrees of freedom is (Ribatet, 2013, Appendix A)

λ(z) =

(
sign(z)|z |1/ν>

Σ−1 sign(z)|z |1/ν
)−(ν+D)/2

|Σ|1/2π(D−1)/2νD−1

Γ
(
ν+D

2

)
Γ

(
ν+1

2

) D∏
j=1

|z j |1/ν−1, z ∈RD \ {0D }, (2.17)

where sign(z) is the vector with i th entry sign(zi ) = −1{zi<0}+ 1{zi>0}. The index ν is the

exponent of the Gaussian process in the de Haan spectral representation of the extremal

89



Chapter 2. A panorama of spatial extremes

Student process, whose spectral functions are of the form

π1/221−ν/2

Γ{(1+ν)/2}
Xν
+

for X a Gaussian process with correlation function ρ(·). The conditional intensity function of

the D −k last components given the first k coincides with that of T ν
+, where T is a multivariate

Student random vector with ν+ k degrees of freedom. For z ∈ (0D ,∞D ), the conditional

intensity of components (zk+1, . . . , zD ) given (z1, . . . , zk ) is (Ribatet, 2013)

λ|1:k (z) =
|Ωk |−1/2 ∏D

j=k+1 z1/ν−1
j

ν(D−k){π(ν+k)}(D−k)/2

Γ
(
ν+D

2

)
Γ

(
k+ν

2

) {
1+

(
z1/ν

(k+1):D −ηk

)>
Ω−1

k

(
z1/ν

(k+1):D −ηk

)
ν+k

}−(ν+D)/2

,

with conditional mean ηk =Σ(k+1):D,1:kΣ
−1
1:k z1/ν

1:k and conditional variance

Ωk =
ν+ z1/ν

1:k
>
Σ−1

1:k z1/ν
1:k

k +ν
(
Σ(k+1):D −Σ(k+1):D,1:kΣ

−1
1:k,1:kΣ1:k,(k+1):D

)
.

Suppose without loss of generality that the components of z are ordered from largest to

smallest; the extremal Student process places mass on subsets of RD
+ \ {0D } of Lebesgue

measure zero, i.e., on sets of the form
{

z ∈RD
+ \ {0D } : z1:k > 0k , z (k+1):D = 0D−k

}
for 1 ≤ k < D.

The restricted intensity function for vectors lying on the boundary of RD
+ \ {0D } is obtained

by integrating λ over negative components from −∞ to 0, yielding (Thibaud and Opitz, 2015,

eq. 14)

λ+
|1:k (z) = Stk+ν

(
0D−k−1;ηk ,Ωk

)
νk−1π(k−1)/2|Σ1:k |1/2

Γ
(
ν+k

2

)
Γ

(
ν+1

2

) (
k∏

j=1
z j

)1/ν−1(
z1/ν

1:k
>
Σ−1

1:k z1/ν
1:k

)
,
−(ν+k)/2

z ∈RD
+ \ {0D }.

For an observation z with ordered components, if z1:k > 0k and z (k+1):D = 0D−k , the density is

λ+
|1:k (z1:k ,0D−k ).

�

Example 2.8 (Exponent measure of the Brown–Resnick process)

Consider sites {s j , j = 1, . . . ,D} and a semivariogram γ(·) such that γ(o) = 0. We define Γ as

the D ×D matrix with entries γi , j = γ(si − s j )/2 for i , j = 1. . . ,D and let Λ be the matrix of

squared coefficients {λ2
i j }D

i , j=1, where λ2
i j = γ(si , s j )/2 for a semi-variogram function γ(·, ·)

(Engelke et al., 2015). Huser and Davison (2013) showed that the exponent measure of the

Brown–Resnick process can be written as

V (z) =
D∑

j=1

1

z j
ΦD−1

(
log(z− j )− log(z j 1D−1);−Γ− j , j ,Γ− j , j 1>

D−1 +1D−1Γ j ,− j −Γ− j ,− j
)

=
D∑

j=1

1

z j
ΦD−1

(
λ. j +

1

2λ. j
◦ log

(
z− j

z j

)
;0D−1,R− j

)
,
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where ◦ denotes the Hadamard product and the partial correlation matrix R−i has elements

% j ,k;i =
λ2

i j +λ2
i k −λ2

j k

2λi jλi k
, j ,k ∈ {1, . . . ,D} \ {i }.

�

Remark 2.5 (Links between the different parametrizations of the Brown–Resnick model)

Wadsworth and Tawn (2014) express the Brown–Resnick process as a function of a covariance

matrix Σwhich, for a collection of D sites, has elements σi j = γ(si ,o)+γ(s j ,o)−γ(si , s j ) with

σ2
i ≡σi ,i . This yields an alternative formula for the exponent measure,

V (z) =
D∑

i=1

1

zi
ΦD−1

(
log

(
z−i

zi

)
;−
σ2
−i

2
−
σ2

i

2
+σi ,−i ,T(i )ΣT(i )>

)
,

where T(i ) is a (D −1)×D transformation matrix with T(i )
,−i = ID−1 and T(i )

,i =−1D−1.

Define the column vector γo = (γ(o, s1), . . . ,γ(o, sD ))> and the quantities (Dombry et al., 2013)

A =Σ−1 −
Σ−11D 1>

DΣ
−1

1>
DΣ

−11D

, L =−Σ−1γo −
1−1>

DΣ
−1γo

1>
DΣ

−11D

Σ−11D .

The expressions in Huser and Davison (2013), Wadsworth and Tawn (2014), Engelke et al.

(2015) and Dombry et al. (2013) can be related upon noting that

(A−i )−1L−i =Γ−i ,i =
σ2
−i

2
+
σ2

i

2
−σi ,−i ,

(A−i )−1 =Γ−i ,i 1>
D−1 +1D−1Γi ,−i −Γ−i ,−i = T(i )ΣT(i )>.

Example 2.9 (Exponent measure of the extremal Student model)

The exponent measure of the extremal Student model first appeared in Demarta and McNeil

(2005) in the bivariate case and in Nikoloulopoulos et al. (2009), Theorem 2.3, in the general

case. Let Σ be a correlation matrix with inverse Σ−1 = Q, say. Then, the exponent measure of

the extremal Student model is (Opitz, 2013a)

V (z) =
D∑

i=1

1

zi
StD−1

((
z−i

zi

)1/ν

;Σ−i ,i , (ν+1)−1 (
Σ−i ,−i −Σ−i ,iΣi ,−i

)
,ν+1

)
.

�

Proof

We follow the argument leading to Equation (2.14). Write

V (u) =
D∑

i=1

∫
RD−1

1{z−i /zi≤u−i /ui }
∫ ∞

ui

z−1−D
i

Γ
(
ν+D

2

)
Γ

(
ν+1

2

) |Q|1/2

π(D−1)/2νD−1
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×
{(

z

zi

)1/ν>

Q
(

z

zi

)1/ν
}−(ν+D)/2 D∏

j=1
j 6=i

(
z j

zi

)1/ν−1

dzi dz−i .

Make the change of variable y j = (z j /zi )1/ν for j 6= i , j = 1, . . . ,D , and write y for the D-vector

with j th coordinate y j and i th coordinate 1; noting that |Σ| = |Σ−i ,−i −Σ−i ,iΣi ,iΣi ,−i ||Σi ,i | =
|Q−i ,−i |−1 because Σ is a correlation matrix, we get

V (u) =
D∑

i=1

∫
RD−1

∫ ∞

ui

1{y−i≤(u−i /ui )1/ν}z−2
i

Γ
(
ν+D

2

)
Γ

(
ν+1

2

) Σ−1/2
i ,i |Q−i ,−i |1/2

π(D−1)/2
c−(ν+D)/2

i

×
[

1+
(y−i −Q−1

−i Q−i ,i )>(ν+1)Q−i /ci (y−i −Q−1
−i Q−i ,i )

ν+1

]−(ν+D)/2

dzi dy−i ,

where we expanded the quadratic form y>Qy into Qi ,i +2y>
−i Q−i ,i +y>

−i Q−i ,−i y−i and factored

ci = Qi ,i −Qi ,−i Q−i ,−i Q−i ,i =Σ−1
i ,i = 1 out of the expression in square brackets. Finally,

V (u) =
D∑

i=1

1

ui
StD−1

((
u−i

ui

)1/ν

;−Q−1
−i Q−i ,i , (ν+1)−1Q−1

−i ,ν+1

)
.

This expression coincides with eq. 11 of Thibaud and Opitz (2015).

�

2.2.3 Parametric models for multivariate extreme value distributions

Many parametric models exist in the D-variate case: we limit the presentation to those most

widely used for modelling. Multivariate extreme value distributions are often presented in

unit Fréchet margins in terms of their distribution function H(z) = exp{−V (z)}, so we report

the exponent measure V (z).

Example 2.10 (Exponent measure of the logistic model)

The exponent measure of the logistic model of Gumbel (1960) with dependence parameter

α ∈ (0,1] is

V (z) =
{

D∑
j=1

(
1

z j

)1/α
}α

, z ∈RD
+ ,

and the derivative of V (z) with respect to the first k components is (cf. Castruccio et al., 2016)

V1:k (z) =−α−k Γ(α+1)

Γ(α−k +1)

k∏
j=1

z−1/α−1
j

(
D∑

j=1
z−1/α

j

)α−k

.

Perfect dependence is obtained in the limit as α→ 0, whereas α= 1 yields the independence

model. The logistic multivariate extreme value distribution is popular for theoretical purposes
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2.2. Max-stable processes

due to its simplicity. As a consequence of exchangeability, the mean squared error of the

maximum likelihood estimator α̂ is proportional to n−1D−1 if the marginal parameters are

known (Hofert et al., 2012). The score and Fisher information are given in Shi (1995).

�

Example 2.11 (Exponent measure of the asymmetric logistic model)

Let PD be the collection of all nonempty subsets of {1, . . . ,D}. The exponent measure of the

asymmetric logistic model (Tawn, 1990) with asymmetry parameters θi ,b ∈ [0,1] satisfying∑
b∈PD

θi ,b = 1 for i = 1, . . . ,D and dependence parameters 0 <αb ≤ 1 is

V (z) =
∑

b∈PD

(∑
i∈b

(
θi ,b

zi

)1/αb
)αb

, z ∈RD
+ .

Stephenson (2003) gives some insight into the construction of the asymmetric logistic max-

stable distribution, which is a max-mixture of logistic max-stable vectors. Consider sampling

Z b from a logistic distribution of dimension |b| (or Fréchet variates if |b| = 1) with parameter

αb). Each marginal value corresponds to the maximum of the corresponding weighted entries,

i.e., X j = maxb∈PD θ j ,b Z j ,b for all j = 1, . . . ,D . The asymmetric logistic model is rarely used in

high dimensions without further constraints, as it is overparametrized.
�

Example 2.12 (Exponent measure of the negative logistic model)

The exponent measure of the negative logistic distribution with parameter α≤ 0 is (Galambos,

1975)

V (z) =
∑

b∈B
(−1)|b|

(∑
i∈b

zi
−α

) 1
α

, z ∈RD
+ .

�

Example 2.13 (Exponent measure of the asymmetric negative logistic distribution)

Joe (1990) mentions the asymmetric negative logistic model as a generalization of Galam-

bos’ negative logistic model. It is constructed in the same way as the asymmetric logistic

distribution; see Theorem 1 in Stephenson (2003). Let αb ≤ 0 for all b ∈BD and θi ,b ≥ 0 with∑
b∈BD

θi ,b = 1; the exponent measure is

V (z) =
∑

b∈B

∑
c∈b

(−1)|c|
{∑

i∈c

(
θi ,b

zi

)αb
} 1

αb

, z ∈RD
+ . (2.18)

This does not correspond to the “negative logistic distribution” given in §4.2 of Coles and

Tawn (1991) or §3.5.3 of Kotz and Nadarajah (2000), which is not a valid distribution function

in dimension D ≥ 3 as the constraints therein on the parameters θi ,b are necessary but not

sufficient to yield a valid distribution function. The proof that exp{−V (z)}, with V (z) as in

eq. (2.18) for z ∈ [1D ,∞D ), is a valid distribution follows from the fact that it is a max-mixture

(Stephenson, 2003, Theorem 1).
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�

Some models are more easily defined in terms of the angular (or spectral) density ρ1(w ) given

in Equation (2.11).

Example 2.14 (Spectral density of the multilogistic model)

This multivariate extension of the logistic model, proposed by Boldi (2009), places mass on

the interior of the simplex. Let W ∈ S1 be the solution of

W j

WD
=

C jU
−α j

j

CDU−αD
D

, j = 1, . . . ,D,

where C j = Γ(D−α j )/Γ(1−α j ) for j = 1, . . . ,D and U ∈ S1 follows a D-mixture of Dirichlet with

the j th component being Dir(1D −δ jα j ), so that the mixture has density function

hU (u) = 1

D

D∑
j=1

Γ(D −α j )

Γ(1−α j )
u
−α j

j , 0 <α j < 1, j = 1, . . . ,D.

The angular density, defined forα ∈ [0,1]D , is

ρ1(w ) = 1

D

(
D∑

j=1
α j u j

)−1 (
D∏

j=1
α j uD

)(
D∑

j=1

Γ(D −α j )

Γ(1−α j )
u
−α j

j

)
D∏

j=1
w−1

j , w ∈ S1.

�

The following max-stable distribution, the scaled extremal Dirichlet model, is taken from

Belzile and Nešlehová (2017) and encompasses three widely used parametric families of

multivariate extreme value distributions (logistic, negative logistic and Coles–Tawn extremal

Dirichlet). We give its spectral representation, its intensity function λ and its angular density

ρ1.

Example 2.15 (Spectral representation of the scaled extremal Dirichlet max-stable model)

Let a,c > 0 and b 6= 0; if G ∼ Ga(c,1) is Gamma with shape parameter c, we say aG1/b ∼
sGa(a,b,c) has a scaled Gamma distribution with density

f (y ; a,b,c) = |b|
Γ(c)

a−bc ybc−1 exp

{
−

( y

a

)b
}

, y > 0. (2.19)

Consequently, E (Y ) = aΓ(c +1/b)/Γ(c) <∞ when b < −1/c. The scaled Gamma family in-

cludes several well-known distributions as special cases, notably the Gamma when b = 1, the

Weibull when c = 1 and b > 0, the inverse Gamma when b =−1, and the Fréchet when c = 1

and b < 0. When b > 0, the scaled Gamma is the generalized Gamma distribution of Stacy

(1962), albeit in a different parametrization.

Consider the parameter vector α > 0D , ᾱ = ‖α‖1 and κ > −min(α1, . . . ,αD ), κ 6= 0 and inde-

pendent scaled Gamma variables Vi ∼ sGa{1/c(αi ,κ),1/κ,αi } with c(α,κ) = Γ(α+κ)/Γ(α) for

α> 0. If G is a random vector with independent Gamma components, Gi ∼ Ga(αi ,1) then
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2.2. Max-stable processes

for all i = 1, . . . ,D, Vi
d= Gκ

i /c(αi ,κ). Furthermore, ‖G‖ ∼ Ga(ᾱ,1) is independent of G/‖G‖,

which has the same distribution as the Dirichlet vector Dα = (D1, . . . ,DD ). The requirement

that κ>−min(α1, , . . . , ,αD ) ensures that the expectation of Gκ
i is finite for all i ∈ {1, . . . ,D} and

thus that E (V i ) = 1D . For z ∈RD
+ , the exponent measure is

V (z ;κ,α) =E
{

D
max
i=1

Vi

zi

}
=E

[
D

max
i=1

{ Gκ
i

zi c(αi ,κ)

}]
=E

(‖G‖κ)E
[

D
max
i=1

{ Dκ
i

zi c(αi ,κ)

}]
, (2.20)

and E (‖G‖κ) = c(ᾱ,κ). Equation (2.20) implies that the scaled extremal Dirichlet model admits

the de Haan spectral representation (2.8) with W i a sequence of D-vectors with independent

components with distribution Wi j ∼ sGa{1/c(α j ,κ),1/κ,α j } for j = 1, , . . . , ,D .

�

Example 2.16 (Intensity of the scaled extremal Dirichlet distribution)

Using the spectral representation given in Example 2.15, consider independent scaled Gamma

components Zi ∼ sGa{Γ(αi +κ)/Γ(αi ),κ−1,αi }, where ai = Γ(αi +κ)/Γ(αi ), α> 0D and κ≥
−minD

i=1αi . The intensity function of the scaled Dirichlet model is

λ(z) =
Γ

(∑D
j=1α j +κ

)
|κ|D−1

[
D∑

j=1

{
z jΓ(α j +κ)

Γ(α j )

}1/κ
]−∑D

j=1α j−κ D∏
j=1

z
α j /κ−1
j

Γ(α j )

{
Γ(α j )

Γ(α j +κ)

}−α j /κ−1

.

We retrieve the Coles and Tawn Dirichlet model if κ= 1, the logistic model ifα= 1D ,κ ∈ [−1,0)

and the negative logistic model ifα= 1D ,κ> 0 (Belzile and Nešlehová, 2017).
�

Proof

Write ai = Γ(αi +κ)/Γ(αi ); the intensity function is

λ(z) =
∫ ∞

0
|κ|−D

D∏
j=1

a
α j /κ
j

Γ(α j )

(
z j

ζ

)α j /κ−1

exp

{
−ζ−1/κ

D∑
j=1

(
z j

a j

)1/κ
}
ζ−D−2dζ

and making the change of variable ζ−1/κ = u yields

λ(z) = |κ|−D+1
D∏

j=1

a
α j /κ
j

Γ(α j )
z
α j /κ−1
j

∫ ∞

0
u

∑D
j=1α j+κ−1 exp

{
−u

D∑
j=1

(
z j

a j

)1/κ
}

du

= |κ|−D+1
D∏

j=1

a
α j /κ
j

Γ(α j )
z
α j /κ−1
j Γ

(
D∑

j=1
α j +κ

){
D∑

j=1

(
z j

a j

)1/κ
}∑D

j=1α j+κ
,

after recovering a Gamma integral.

�

Example 2.17 (Spectral density of the (scaled) extremal Dirichlet model)

The extremal Dirichlet model of Coles and Tawn (1991) with parametersα> 0D is similarly
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defined in terms of the angular density, with

ρ1(w ) = 1

D

Γ
(
1+∑D

j=1α j

)
∏D

j=1α j w j

(
D∑

j=1
α j w j

)−(D+1) D∏
j=1

α j

D∏
j=1

(
α j w j∑D

k=1αk wk

)α j−1

, w ∈ S1.

This is one of the few models, outside of the asymmetric logistic models, that allows asymmetry.

The scaled extremal Dirichlet model (Belzile and Nešlehová, 2017) introduced in Example 2.15

and whose intensity function is given in Example 2.16 includes the logistic, negative logistic

and extremal Dirichlet models as special cases. For κ > −min(α) and α ∈RD
+ , the angular

density of the scaled extremal Dirichlet model is

ρ1(w ) = Γ(ᾱ+κ)

DκD−1 ∏D
i=1Γ(αi )

〈
{c(α,κ)}1/κ, w 1/κ〉−κ−ᾱ D∏

i=1
{c(αi ,κ)}αi /κwαi /κ−1

i , w ∈ S1,

where c(α,κ) is the D-vector with entries Γ(αi +κ)/Γ(αi ) for i = 1, . . . ,D and 〈a,b〉 = a>b

denotes the inner product between two D-vectors.

When κ= 1, the scaled extremal Dirichlet model becomes the Coles–Tawn Dirichlet extremal

model (Segers, 2012). When α = 1D and κ > 0, the model reduces to the negative logistic

model (Dombry et al., 2016). Similarly, when κ< 0 andα= 1D , the scaled extremal Dirichlet

model becomes the logistic model (cf. Appendix A.2.4 of Dombry et al., 2016).
�

The scaled extremal Dirichlet and multilogistic models have a dependence structure derived

from Dirichlet distributions, and have fewer than one parameter per variable. Alternative

multivariate models derived from elliptical distributions yield more flexibility as they include

potentially one parameter per pair of sites.

Example 2.18 (Hüsler–Reiss distribution)

Provided that the pairwise correlation between variables |ρi j | < for i 6= j , the max-stable

attractor of Gaussian processes is the independence max-stable process, which has D-variate

exponent measure V (z) =∑D
j=1 z−1

j : a different limiting model is obtained if we increase the

dependence between sites with n at a specified rate: the Hüsler–Reiss class of multivariate

extreme value distributions arise as limiting distributions of maxima of normalized triangular

arrays of standardized zero-mean unit variance D-dimensional Gaussian variables whose

correlation matrix Σn satisfies

Λ= lim
n→∞ log(n)(1>

D 1D −Σn) ∈D

where

D =
{

A ∈RD×D
+ : x>Ax < 0 ∀ x ∈RD \ {0} with

D∑
i=1

xi = 0, ai j = a j i , ai i = 0, i , j ∈ {1, . . . ,D}

}
.

The D-dimensional realizations of Brown–Resnick max-stable processes associated to a semi-

variogram γ are Hüsler–Reiss distributed with parameter matrix Λ= [γi j /2)1/2]D
i , j=1 ∈D for
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any D > 2 since the semi-variogram is a negative definite function.

�

2.3 l-Pareto processes and generalizations

Max-stable processes are the functional generalization of the generalized extreme value distri-

bution. The spectral representation in Theorem 2.20 shows that max-stable processes arise

as the pointwise maximum of an infinite collection of random functions ϕi = ζi Wi , where ζi

gives the intensity of the storm and the spectral functions Wi are the profile of the storm over

space (Smith, 1990). The individual events ϕi may be of interest themselves, and we turn to

threshold exceedances for the analysis of ϕi that are extreme in some sense, looking at the

functional equivalent of peaks-over-threshold.

While exceedances are unambiguous in the univariate framework because R+ is ordered,

many possible definitions could be adopted in the multivariate framework due to the lack of

ordering (Barnett, 1976). One could be interested in events consisting of marginal exceedances

at all sites, or for at least one site, or at large cumulated values over the domain. We consider

exceedances defined in terms of a functional l, that may be context-dependent.

Definition 2.25 (Risk functional)

A risk functional is a nonnegative 1-homogeneous continuous functional l: F+ \C 7→ [0,∞),

i.e., l(t f ) = tl( f ) for all t > 0 (Dombry and Ribatet, 2015).

By definition, regular variation means there exists a non-decreasing sequence an > 0 such that

Λn(·) = nP (X/an ∈ ·) w#−→Λ(·), n →∞.

Describing regular variation in terms of weak-hash convergence of measures inMFC
is mathe-

matically accurate, but also amounts to weak convergence of conditional distributions and the

latter is easier to handle (Meinguet and Segers, 2010). We consider sets bounded away from

the closed cone Cl= { f ∈F+ : l( f ) = 0} and threshold exceedances {l(X) ≥ un}, where un is

an nondecreasing sequence of thresholds such that P{l(X) ≥ un} → 0 as n →∞. We restrict the

region of interest to { f ∈F+
C

: l( f ) > 0}: if we have convergence ofΛn toΛ on F+ \C for some

cone C , then applying the continuous mapping theorem with the function T ( f ) = f 1{l( f )>0}

gives convergence of the pushforward on F+ \Cl, where Cl=C ∪ { f ∈F+ : l(x) = 0}.

We consider now a generalized pseudo-polar representation with radial component l(·).

Definition 2.26 (Generalized pseudo-polar transformation)

Let lbe a continuous homogeneous risk functional and let FC be F\ C . The generalized

pseudo-polar transformation considered in Opitz (2013b) and in de Fondeville and Davison

(2018) is the mapping

T : FC → [0,∞)×Sang \ T (C ), T ( f ) = (r,ω) = (l( f ), f /‖ f ‖ang), (2.21)
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over the sphere defined by the angular norm, Sang,l := { f ∈ F : l( f ) > 0,‖ f ‖ang = 1}. This

mapping is an homeomorphism with inverse T −1(r,ω) = r l(ω)−1ωwhen restricted to { f ∈FC :

l( f ) > 0} and, by Corollary 2.14, the pushforward measure is continuous if C is compact (this is

the case, for example, for the cone consisting of the zero element). Suppose f ∈RV(F+
C

, an ,Λ)

and Λ is a homogeneous measure of order −α, with α > 0. By the continuous mapping

theorem, the associated pseudo-polar measure is

Λ◦T −1{d(r,ω)} =αr−α−1Λ{ f ∈FC : l( f ) > 1}drρl,ang(dω),

where (Opitz, 2013b)

ρl,ang(·) := Λ({ f ∈FC : l( f ) > 1, f /‖ f ‖ang ∈ ·})

Λ{ f ∈FC : l( f ) > 1}
(2.22)

on (0,∞)× {ω ∈ Sang : l(ω) > 0}.

Under the generalized pseudo-polar decomposition (2.21), the measure factorises into a prod-

uct measure whose first component decays as a Pareto tail with scaleΛ{ f ∈FC : l( f ) > 1}1/α

and shape α. We can consider regular variation as defined in Definition 2.15 for a generalized

pseudo-polar transformation, conditional on exceedances of the risk functional being large.

Coupling Theorem 2.12 with regular variation gives an alternative characterization ofMFC

convergence in terms of conditional distributions (cf. Hult and Lindskog, 2005, Theorem 4).

Proposition 2.27

Let un = inf{u ≥ 0 : P
(
l(X) > u

) = 1/n}; if { f ∈ FC : l( f ) = 0} = {0} such as when l= ‖ · ‖∞,

maxD
j=1 f (s j ) or |S|−1

∫
SX (s)ds, then the pseudo-polar transformation is an homeomorphism

and regular variation (Definition 2.15) is equivalent to convergence of the conditional distri-

bution (de Fondeville, 2018, Theorem 1.6)

nP
(
l(X) > r un ,X/‖X‖ang ∈ B | l(X) > un

) w#−→ r−αρl,ang(B), n →∞, r > 0, (2.23)

in F0 for B ∈B(Sang,l) such that ρl,ang(∂B) = 0.

With the generalized pseudo-polar representation (2.21), the limiting measure Λ factorise,

a consequence of the fact that Λ is homogeneous of order −α. As in the multivariate case,

the choice of the angular norm is essentially arbitrary (Wadsworth, Tawn, Davison and Elton,

2017; Einmahl and Segers, 2009) and does not affect the convergence result. The choice of

risk functional does not affect the limit measure, but impacts the type of observations that are

used to draw inferences.

If inference is performed with one risk functional l2, it is possible to refer back to the measure

for a different risk functional l1 in cases where l1( f ) > 1 ρl2,l2
-almost everywhere. Using a

common angular norm allows for easier comparisons.

Proposition 2.28 (Change of measure for angular distributions)

Consider two absolutely continuous risk functionals l1, l2 with a common angular norm and
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Λ a −α-homogeneous measure. Then, the measures ρl1,ang and ρl2,ang are related via (Opitz,

2013b)

ρl2,ang(dω) = Λ(Bl1
)

Λ(Bl2
)

{
l2(ω)

l1(ω)

}α
ρl1,ang(dω), (2.24)

where Bl = Λ{ f ∈ F\ Cl : l( f ) ≥ 1} for any ω ∈ {ω ∈ Sang : l2(ω) > 0}, provided {ω ∈ Sang :

l2(ω) > 0} ⊂ {ω ∈ Sang : l1(ω) > 0}.

Proof

For any B ∈B(Sang),

Λ{ f ∈FC : l2( f ) > 1}ρl2,ang(B) =Λ{ f ∈FC : l2( f ) > 1}
∫
Sang

1{y∈B}ρl2,ang(dy)

=
∫
FC

1{x:l2(x)>1}1{x:x/‖x‖ang∈B}Λ(dx)

=
∫
FC

1{x:l1(x)>1}1{x:x/‖x‖ang∈B}

{
l2(x)

l1(x)

}α
Λ(dx)

=Λ{ f ∈FC : l1( f ) > 1}
∫
Sang

1{y∈B}

{
l2(y)

l1(y)

}α
ρl1,ang(dy),

where we make the change of variable x 7→ xl1(x)/l2(x) to go from the second to the third line.

Since l2 is homogeneous of order 1, l2{xl1(x)/l2(x)} = l1(x). The scaling
{
l2(x)/l1(x)

}α arises

from the −α-homogeneity ofΛ. The last line follows from the definition of ρl,ang.

�

2.3.1 l-Pareto processes

The decomposition of the limiting measureΛ in generalized pseudo-polar coordinates justifies

the following definition.

Definition 2.29 (l-Pareto processes)

A l-Pareto process admits the stochastic representation

X= P
S

l(S)
, (2.25)

for P a Pareto random variable with survival function P (P > x) = x−α1{x≥1} and a stochastic

process S, independent of P , with sample paths in Sang := { f ∈F0 : ‖ f ‖ang = 1}.

l-Pareto processes arise as the unique non-degenerate weak limit of conditional threshold

exceedances of l( f ) (Dombry and Ribatet, 2015, Theorem 2).

Proposition 2.30 (Representation of l-Pareto processes)

Let X(S) := {X (s), s ∈S} be a continuous stochastic process with sample paths in F0. Then
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X(S) is an l-Pareto process with tail index α and spectral (probability) measure

ρl,ang(·) =P
(
X/‖X‖ang ∈ ·,l(X) > 1

)
on Sang if any of the following three equivalent statements hold:

1. Constructive definition: (a) l(X) is Pareto distributed on [1,∞) with shape α> 0 and (b)

l(X) and X/‖X‖ang are independent.

2. Homogeneity of the exponent measure: (a) P
(
l(X) > 1

) = 1 and (b) for all u ≥ 1 and

B ⊂ { f ∈F0,l( f ) ≥ 1} measurable, P (X/u ∈ B) = u−αP (X ∈ B).

3. Peaks-over-threshold stability: (a) P
(
l(X) > 1

) > 0 and (b) P
(
u−1X ∈ B | l(X) > u

) =
P (X ∈ B) for all Borel B ∈B(F) and u ≥ 1 such that P

(
l(X) > u

)> 0.

Pareto processes were introduced by Ferreira and de Haan (2014) for the special case l(X) =
sups∈SX (s) but, while mathematically convenient, threshold exceedances induced by risk

functional cannot be determined from a realization of the random field at a finite number of

sites. Pareto processes are functional analogs of the multivariate Pareto distribution (Rootzén

and Tajvidi, 2006; Rootzén, Segers and Wadsworth, 2018), which is the D-variate restriction

with l(X) = maxD
j=1 X (s j ).

In general, there is no closed form for the marginal distribution of a l-Pareto process at a site s j

and the latter must be calculated numerically pointwise through (Thibaud, 2014, pp.115–116)

P
(
X (s j ) > x

)= Λ{X : X (s j ) > x}

Λ{X : l(X) > u}
;

though a notable exception is when the risk functional is the uniform norm ‖ ·‖∞. However,

since the angleΩ(s) lies in Sang and is bounded, by Breiman’s lemma, X (s j ) is tail equivalent

to a Pareto variable with shape α.

It is important to stress that threshold exceedances { f ∈FC : l(X) > un} may not yield point-

wise realizations that are extreme everywhere in the domain S. However, the conditional

distribution at site s j ∈Sabove a marginal threshold u j within the risk region, i.e.,

{X : X (s j ) > u j } ⊆ {X : l(X) > u}

is generalized Pareto distributed. D-dimensional marginal distributions of l-Pareto processes

need not have the same distribution if there is marginalization over the coordinates that create

the exceedance l(X) > u (cf. Rootzén et al., 2018).
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2.3.2 Generalized l-Pareto processes

All the conditional exceedances of l-Pareto processes are tail equivalent to a Pareto distri-

bution with tail index ξ > 0, which is unrealistic in many practical settings. To circumvent

this restriction, it is tempting to transform the data at each site to have, e.g., a unit Pareto

distribution. This has a major disadvantage: the risk region is defined on the standardized

Pareto scale, so events that correspond to exceedances need not be those of interest on the

data scale. Chapter 4 of de Fondeville (2018) proposes a generalization of l-Pareto processes

under the assumption that the shape parameter ξ ∈R is fixed over the domain, extending the

notion of risk exceedances. While it may seem restrictive, this hypothesis excludes processes

where the site with the largest tail index dominates asymptotically. A generalized form of

regular variation follows from the developments described in Remark 2.4.

Proposition 2.31 (Generalized functional regular variation)

Consider the continuous map T (x) equal to (1+ξx)1/ξ if ξ 6= 0 or exp(x) if ξ= 0 and let X be a

stochastic process with sample paths in the Banach space of continuous functions F. We write

X ∈RV(FC ,ξ,an ,bn ,Λ) if, for sequences of continuous scaling functions {ai }∞i=1 ≡ {ai (·)}∞i=1 > 0

and {bi }∞i=1 = {bi (·)}∞i=1, a homogeneous measureΛ of order −1 and ξ ∈R,

nP
(
T

(X−bn

an

)
∈ ·

)
w#−→Λ(·), n →∞

inMFC
, where the scaling functions are chosen so that, for any s ∈Sand x > 0,

lim
n→∞nP

{
X (s)−bn(s)

an(s)
> x

}
=

(1+ξx)−1/ξ
+ , ξ 6= 0,

exp(−x), ξ= 0.

Equipped with the hypothesis of functional regular variation as described in Proposition 2.31,

one can obtain the limiting measure of l-exceedances; see de Fondeville (2018, § 4.3) for

detailed statements of convergence. The unique limiting distribution is that of a generalized

l-Pareto process and follows from the continuous mapping theorem. Rather than present

the convergence statement, we focus on the stochastic representation equivalent to Proposi-

tion 2.30.

Consider the standardized l-Pareto process X, with unit Pareto margins and associated −1-

homogeneous measureΛ, defined on the risk region

Au =
{

X ∈F+
0 : l

(
τ

Xξ−1

ξ
+η

)
≥ u

}
,

with (xξ−1)/ξ understood as log(x) when ξ= 0. Because we consider processes with continu-

ous sample path (with potentially negative components), the notion of risk functional must be

extended: l: F→Rmust be monotone increasing and additional requirements are imposed

to ensure that Au is bounded away from 0 (de Fondeville, 2018, § D.2). The probability mea-
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sure of Z∗ over Au isΛ(·)/Λ{Au}. The stochastic representation of the generalized l-Pareto

vector is

Z=τXξ−1

ξ
+η. (2.26)

If l is a linear risk functional, Z is the product of an angular distribution and a generalized

Pareto distribution (de Fondeville, 2018, Definition 2).

The rescaled process Z=τ(Xξ−1)/ξ+η is conditionally generalized Pareto distributed above

some threshold: for any site s0 ∈Ssuch that {Z (s0) > u} ⊂ l(Z) > u′,

P (Z (s0) > x) ∝
{

1+ξ x −u

σ(s0)

}−1/ξ

+
, x ≥ u,

with σ(s0) = τ(s0)+ ξ{u −η(s0)}. Initial estimates of the pointwise marginal parameters, ξ,

τ(s0) and η(s0) can thus be obtained by maximizing the generalized Pareto likelihood. If the

risk functional satisfies l(X+b) = l(X)+b for b ∈R, then we can consider direct modelling

of X− l(bn); for l(X) = maxD
j=1 X (s j ), this amounts to modelling the threshold exceedances

X (s j )−u j for some threshold u j and setting η(s) = 0 for all s ∈S.

2.4 Conditional extremes

A major drawback of the convergence theory underlying (generalized) l-Pareto processes is

the assumption that each variable grows at the same rate; many models are asymptotically

independent despite exhibiting positive dependence at penultimate levels. One could refine

the standardization by allowing different normalizing constants for each variable to avoid this.

An alternative approach, termed conditional extremes, was proposed by Heffernan and Tawn

(2004) by looking at the behaviour of random vectors when one component is large.

Heffernan and Tawn (2004) propose to use projections as a basis for inference in multivariate

extremes. Specifically, consider a D-random vector X with absolutely continuous margins,

transformed to be exponential-tailed, for example standardized Gumbel or Laplace margins

(Keef et al., 2013); denote the transformed observations by X e. For Xk > uk , Heffernan and

Tawn (2004) assume that there exist normalizing functions a|k (·) :R→RD−1
+ and b|k (·) :R→

RD−1 and a non-degenerate distribution function H , absolutely continuous with respect to

Lebesgue measure, such that

P
(

X −k −b|k (Xk )

a|k (Xk )
≤ x−k , Xk −uk > xk

∣∣∣∣ Xk > uk

)
→ H(x−k )exp(−xk ), xk > 0,uk →∞.

The marginals of H must be such that limx j→∞ H j = 1 for j = 1, . . . ,D, j 6= k; the theory for this

convergence result based on random renormalization by Xk is formalized in Heffernan and

Resnick (2007, § 4); with exponential-tailed variables, the vector functions a and b must be

regularly varying, of index 1 for a and of index ρ < 1 for b, componentwise.
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2.4. Conditional extremes

Heffernan and Tawn (2004) use simple parametric form for the scaling vectors that covers many

copulas, taking a|k (x) = αx and ba|k (x) = xβ for α ∈ [0D−1,1D−1] and β ∈ [0D−1,1D−1) for

Gumbel margins, restricting to positive dependence; negative dependence would correspond

to β j |k < 0 and α j |k = 0 and then α j |k may be on the boundary of the parameter space. If

α j |k = 1 and β j |k = 0, then Xk and X j are asymptotically dependent; otherwise they are

asymptotically independent.

Theoretical assumptions

The underlying theoretical results are given in Heffernan and Resnick (2007), who focus on the

bivariate setting. Suppose without loss of generality that Xk has asymptotically a unit Pareto

tail; this can be achieved using the probability integral transform. Heffernan and Resnick

(2007) assume the existence of a Radon measureΛ such that

tP
(

X −k −b|k (t )

a |k (t )
≤ x−k ,

Xk

t
> xk

)
=Λ{[∞D−1, x−k ]× [xk ,∞)}, x−k ∈RD−1, xk > 0.

Since P (X > x) ∼ x−1 as x →∞,

P
(

X −k −b|k (t )

a |k (t )
≤ x−k

∣∣∣∣ Xk

t
> 1

)
∼ tP

(
X −k −b|k (t )

a |k (t )
≤ x−k ,

Xk

t
> 1

)
→Λ{[∞D−1, x−k ]× [1,∞)}, t →∞.

The measureΛ factorises into a product measure, i.e.,

Λ{[−∞D−1, x−k ]× (x,∞]} = x−1Λ{[−∞D−1, x−k ]× (1,∞]},

provided a j |k ∈RV0 and

lim
t→∞

b j |k (ct )−b j |k (t )

a j |k (t )
= 0.

We can contrast this convergence result with the one underlying l-Pareto processes with

l= X (sk ): if X is regularly varying, then Λ is −1-homogeneous and we recover the same

convergence results, albeit in a slightly different form. The conditional extremes approach

however does not however assume regular variation of X , allowing for modelling of asymptoti-

cally independent processes.

Inference for the conditional extremes model

Inference for the conditional extremes model is performed in two stages. In the first, the

data are transformed to Gumbel margins, so that P (X > x) ∼ exp(−x) as x → ∞; Laplace

margins can be used should one consider the modelling of negative dependence (Keef et al.,

2013), in which case the support of α and β changes and inference is simplified relative to
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Algorithm 2.1 Unconditional simulation from the conditional extremes model given X j > u j ,
(Heffernan and Tawn, 2004)

Require: parameter estimates α̂| j , β̂| j , threshold u j .

1: set ẑ i | j =
{

(x i ,− j − α̂xi , j )/xβ̂i , j

}
i=1,...,nu j

;

2: simulate X j ∼ Exp(1)+u j ;
3: sample Z ∼U

(
ẑ1| j , . . . , ẑnu j | j

)
, i.e. uniformly from (2.27);

4: set X − j ← α̂| j X j +X
β̂| j
j Z ;

5: return X

the form of Heffernan and Tawn (2004). Standardized margins can be obtained through the

probability integral transform, using the empirical distribution or a semi-parametric model

with a generalized Pareto model for tail exceedances (2.29).

In the second stage, the risk regionA is split into mutually disjoint components,

Ak =A∩ {x ∈RD : FXk (xk ) > FX j (x j ), j = 1, . . . ,D, j 6= k}, k = 1, . . . ,D,

and we can write

P (X ∈A) =
D∑

j=1
P (X ∈Ak | Xk > uk )P (Xk > uk ) , uk = inf{xk : x ∈Ak }.

Assuming that the limit distribution holds exactly above Xk > uk , the parameters (α,β) are

estimated under the working assumption that

X −k | Xk = x ∼αx +xβZ , Z ∼NoD−1
{
µ,diag(σ2)

}
,

with nuisance parameters µ ∈RD−1 and σ2 ∈RD−1
+ . The corresponding pseudo-likelihood is

given in Example 2.35. Vectors of residuals can be obtained by using the estimated parameters

α̂ and β̂, setting

ẑi = {(x i ,− j − α̂xi , j )/xβ̂i , j }
nu j

i=1 (2.27)

for the nu j exceedances {X : xi , j > u j , i = 1, . . . ,n}. The empirical distribution of the residuals

Z , or a smoothed version thereof, is used for extrapolation.

Suppose one is interested in estimating the probability of falling inside a risk region A ⊂
tk∈K Ak for K ⊂ {1, . . . ,D}. Using the model, extremes are simulated through Algorithm 2.1 by

first drawing new values of x j ∼ Exp(1)+u j and then by adding residuals drawn uniformly

from the empirical distribution of Z . The probability of falling inAi is obtained empirically as

the fraction of simulated points falling in risk region. New observations can also be obtained

through Algorithm 2.1 by using the probability integral transform and mapping simulated

samples back to the data scale.
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The inferential approach for the conditional extremes is semiparametric and so is subject to

the curse of dimensionality: the empirical distribution ẑ| j may approximate the true residual

poorly in high dimensions. Another major criticism is the lack of self-consistency: the con-

ditional distributions for X1 | X2 > u and X2 | X1 > u typically yield incompatible models for

P (X1, X2 | X1 > u, X2 > u). Liu and Tawn (2014) propose some additional constraints on the pa-

rameters to somewhat salvage the issue, which can also be solved by assuming exchangeability.

Alternatives include averaging over simulation or defining disjoint regions, keeping points

for X1 > u only if they fall in the region {X1 > X2 | X1 > u}; (Lugrin, 2018, § 6.2) consider the

latter approach to only consider points once in the likelihood, resulting in a proper likelihood

model which discontinuous on the boundary X1 = X2.

2.4.1 Conditional spatial extremes

The Heffernan–Tawn conditional extremes model can be extended to the spatial setting (Tawn

et al., 2018). Consider a (intrinsically) stationary spatial process X, a conditioning location

s0 ∈Sand D additional sites s1, . . . , sD ∈Sat which measurements are available. We consider

scaling functions a(x;h) :R→ (0,∞) and b(x,h) :R→R such that b(x,0) = x, both of which

are dependent on the value of X (s0) = x and the distance between sites, h j = s j − s0. The

spatial conditional extremes model assumes that, for any x > 0 and z ∈RD (Wadsworth and

Tawn, 2018),

P
(

X (s0) > x +u,
X (s j )−b{X (s0),h j }

a{X (s0),h j }
≤ z j , j = 1, . . . ,D

)
P{X (s0) > u}

w−→P{Z (s ≤ z)}exp(−x), u →∞.

The residual process Z must satisfy Z (s0) = 0 almost surely for identifiability. If the depen-

dence functions a and b depend on h only through its norm, the joint distribution of pairs is

exchangeable, and this resolves the problem of self-consistency of conditional distributions.

For asymptotically dependent processes, such as X (s0)-Pareto processes, the scaling func-

tions satisfy b(x,h) = x and a(x,h) = 1 for all h and it makes sense to consider b(x,h) ≈ x for

h ≈ 0. Wadsworth and Tawn (2018) propose parametric models for a and b: lag-asymptotic

dependence is obtained by taking b(x,h) = x if ‖h‖ ≤ dmax and b(x,h) decaying monotonically

beyond dmax. For example, if dmax = 0, one could consider as scale function a = xβ(h) for

β(h) ∈ [0,1) with β(0) = 0. The residual vector Z from the multivariate model of Heffernan

and Tawn (2004) is replaced by an (intrinsically) stationary spatial process Z conditioned on

Z (s0) = 0 almost surely, the most natural candidate being a Gaussian process with variogram

γ(h). We refer to § 3 of Wadsworth and Tawn (2018) for more details on specification of the

normalizing functions, the residual process and the marginal transformation.

Estimation of the probability of lying in risk regions beyond the range of the data proceeds

as before through simulation; the second step in Algorithm 2.1 is replaced by sampling inde-

pendently from X (s0) ∼ u +Exp(1) from the Z | Z (s0) = 0. The new observations on the stan-

dardized scale are obtained as X (s j ) = b̂[X (s0), s j − s0]+ â[X (s0), s j − s0]Z (s j ) for j = 1, . . . ,D ,
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where the parameters of the scaling functions a and b are obtained through composite likeli-

hood (Example 2.31). If Z belongs to a location-scale family, the last two steps correspond to

forward sampling in a random location-scale model. Algorithms for simulation are described

in Section 2.5.6.

For generating extremal scenarios, the standardized simulated observations must be mapped

to the data scale; preliminary marginal transformation to standardized margins is standard

in the copula literature, but spatial models are needed to impute the value of the process at

unobserved sites. One benefit of the conditional spatial extremes approach is the ability to

model negative dependence.

There is much flexibility in the potential specification of the components of the model, and

the dependence model becomes fully parametric relative to the multivariate methodology

outlined in Section 2.4 that uses a pseudo-likelihood and only uses the empirical distribution

of scale residuals Z . The spatial model may be expressed as a mixture, which makes it

attractive for further development. Because extreme events are counted multiple times if they

correspond to exceedances of a threshold in more than one variable, approximate Bayesian

inference using composite likelihood would need to be adjusted to account for this multiplicity

(Ribatet et al., 2012).

2.5 Simulation

Conditional and unconditional simulation of max-stable processes, conditional extremes and

generalized l-Pareto processes play a key role in inference, since they can be used to create a

catalogue of extreme events at a set of sites of interest. Goodness-of-fit diagnostics can also be

designed based on the ability to correctly replicate events at holdout sites.

2.5.1 Extremal functions, sub-extremal functions and hitting scenario

The de Haan representation provides a constructive definition of max-stable models and

will serve as a basis for simulations. The functions appearing in the representation Z∗(s) =
maxi∈N+ ζi W (s) can be viewed as points of a marked Poisson point process Φ = {ϕi }i∈N+

whose elements are ϕi ≡ ζi W(S). The points of the Poisson process of intensity ζ−2dζ can be

sampled in decreasing order and are independent of the marks W(S).

Suppose we observe or wish to sample the max-stable process on a compact subset D ⊂S

at D sites s1, . . . , sD . Assuming regularity, the maximum at each location, maxi∈N+ ϕi (s j ),

will almost surely be realized by a unique function. We call the collection of such functions

extremal functions and denote them by ϕ+
s j

. We say ϕ+ ∈ Φ is extremal at s0 if and only if,

for all ϕ ∈ Φ \ {ϕ}, ϕ+(s0) > ϕ(s0). One realization of the point process may contribute to

the max-stable process at a single location or at multiple locations. The partitionΠ, called

the hitting scenario of the set {1, . . . ,D} in Wang and Stoev (2011), encodes the information
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Figure 2.1 – Sub-extremal functions (grey), extremal functions (dark grey) and Brown–Resnick
max-stable process (black) with power variogram γ(h) =σ2‖h‖α2 on [0,1], simulated
using Algorithm 2.3.

about which extremal function contributes at which sites, allowing us to define a collection of

unique extremal functions ϕ+
$ j

with cardinality |Π| = k ≤ D. We shall also need to consider

the collection of sub-extremal functions which do not contribute to the max-stable process at

location s1, . . . , sD . Figure 2.1 shows a simulation from a Brown–Resnick max-stable process

(black), along with the extremal and sub-extremal functions appearing in its construction. To

recapitulate, we have:

• the hitting scenario, that is, the random partitionΠ= ($1, . . . ,$k ). This is such that the

indices of any two distinct locations s j , sk belong to the same component $0 if and

only if ϕ+
s j
=ϕ+

sk
, soΠ accounts for the possible repeated contributions of an extremal

function to the max-stable process;

• the extremal point processΦ+ = {ϕ+
$ j

}k
j=1, the collection of functions that contribute to

the extrema at locations s1, . . . , sD ;

• the sub-extremal point processΦ− =Φ\Φ+, whose points consist of random functions

falling below the realized value of the extremal point process at sites s1, . . . , sD , meaning

that ϕ−(s j ) < Z∗(s j ) for j = 1, . . . ,D .
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Algorithm 2.2 Exact simulation for uniformly bounded processes (Schlather, 2002)

Require: distribution of the spectral functions W, FW , bound C such that W (s) ≤C for any
s ∈S.

1: set Z = 0D

2: simulate ζ−1 ∼ Exp(1);
3: while min Z ≤Cζ do
4: simulate W ∼ FW and E ∼ Exp(1);
5: set Z ← max{Z ,ζW };
6: set ζ−1 ← ζ−1 +E ;

7: return Z .
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Figure 2.2 – Construction of a max-stable process: ordered realizations ζ1 > ζ2 > ·· · from a
Poisson process of intensity ζ−2dζ (left), spectral functions Wi (s) (middle) and the
resulting product Z (s) = max∞i=1 ζWi (s) with the max-stable process bordered in
black (right). Only extremal functions, i.e., those contributing to the max-stable
process, are shown.

2.5.2 Unconditional simulations of max-stable processes

Unconditional simulation of max-stable processes appears daunting because the de Haan

spectral representation presupposes taking pointwise maximum over an infinite collection of

variables. An approximate simulation, based on truncating the spectral representation, would

consist of sampling a large but finite number of replicates, arranging the points ζ in decreasing

order. However, this approach leads to approximate samples if the extremal functions are

unbounded. When W(S) is uniformly bounded over S, meaning W (s) ≤C for any s ∈Sand

C ∈R+ or bounded at s1, . . . , sD , it is possible to simulate exactly using Algorithm 2.2.

Provided that one can simulate from the angular distribution over ρ1,1(·), one can use Algo-

rithm 2.2 with W = DS,S ∼ ρ1(·), as W is bounded by C = D by definition. The algorithm is
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further illustrated in Figure 2.2. Many multivariate spectral distributions on the l1 sphere

admit a representation as transformed Dirichlet mixtures (Boldi, 2009; Belzile and Nešlehová,

2017), so in principle sampling from these is straightforward. If not, an alternative stochastic

representation of the shape of the spectral functions may lead to the desired boundedness

property, as the following example shows.

Example 2.19 (Extremal Student)

Thibaud and Opitz (2015) use Algorithm 2.2 to sample from the extremal Student max-stable

process at D sites, relying on the alternative spectral representation

Z = max
i∈N+

ζk
2π1/2Γ{(ν+D)/2}

Γ{(ν+1)/2}Γ(D/2)
(AU i )ν+,

where A is the Cholesky root of the correlation matrix Σ and U ∼ U
(
{x ∈RD

+ : ‖x‖2 = 1}
)

is a

uniform vector on the l2 sphere, meaning that ‖(AU i )ν+‖∞ ≤ 1 for any i ∈N+ . The bounding

constant C increases with both the tail index ν and the dimension D , so this scheme will work

well in moderate dimensions with more heavy-tailed data. This also provides some insight

as to why it is so hard to sample from the Brown–Resnick process, as it is the limiting model

when ν→∞.
�

Rather than generating a very large number of spectral functions, it is better to focus solely on

generating the extremal functions. If the distribution of the latter is known, recent algorithms

developed by Dombry et al. (2016) allow one to perform exact simulations.

Proposition 2.32 (Distribution of extremal functions at s0)

The random variables Z∗(s0) and ϕ+
s0

/Z∗(s0) are independent and the distribution function

of ϕ+
s0

/Z∗(s0) is (Dombry and Eyi-Minko, 2013, Proposition 4.2)

P
(
ϕ+

s0
/Z∗(s0) ∈ B

)= ∫
F+

0

1{W/W (s0)∈B}W (s0)ν(dW), B ∈B(F+
0 ),

where ν denotes the measure of the spectral functions W.

Proof

Recall that Φ = {ϕ} is a marked point process whose elements are random functions ϕi =
ζi Wi ∈ F+

0 and whose marks are Wi , that Z∗ = maxi∈N+ ϕi has limit measure Λ, and that

Z∗(s0) has a unit Fréchet distribution. The extremal function ϕ+
s0

is equal to Z∗ at s0 and

no other extremal (or sub-extremal) function can be larger at s0. Thus, we can write for any

x ∈R+ and any Borel set B

P
(
Z∗(s0) ≤ x,ϕ+

s0
/Z∗(s0) ∈ B

)=E
( ∑
ϕ∈Φ

1{ϕ+
s0

/ϕ(s0)∈B}1{ϕ+(s0)≤x}1{ϕ+
s0

(s0)>ϕ(s0) ∀ϕ∈Φ\{ϕ+
s0

}}

)

=
∫
F+

0

E (1{ϕ(s0)≤x,Z∗(s0)≥ϕ(s0),ϕ/ϕ(s0)∈B})Λ(dϕ)

=
∫
F+

0

e−1/ϕ(s0)1{ϕ/ϕ(s0)∈B ,ϕ(s0)≤x}Λ(dϕ)
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=E
(∫ ∞

0
e−1/{ζW (s0)}1{ζW (s0)≤x}1{W/W (s0)∈B}ζ−2dζ

)
= e−1/xE (W (s0)1{W/W (s0)∈B}) .

The second line follows from the Slivnyak–Mecke formula (2.2), followed by a change of

variable to pseudo-polar coordinates.

�
For any s0 ∈S, the distribution of the scaled extremal function, ϕ+

s0
/Z∗(s0) is denoted by Ps0

and is supported on the set {ϕ ∈F:ϕ(s0) = 1}.

Consider the sequence of point processesΦ+
k = {ϕ+

s j
}k

j=1 and the associated sub-extremal func-

tions Φ− =Φ \Φ+
k . The sets of extremal functions are nested, since Φ+

k ⊂Φ+
k+1 by definition.

Since an extremal function can contribute to many locations, the point processΦ+
k+1 is either

equal toΦ+
k or else includes a new function. The latter then provides the maximum at sk+1 and

must fall below the other extremal functions at all sampled locations s1, . . . , sk . The new func-

tion ϕ+
k+1 satisfies ϕ+

k+1(s j ) < maxk
l=1ϕ

+
l (s j ) for j = 1, . . . ,k and ϕ+

k+1(sk+1) > maxk
l=1ϕ

+
l (sk+1).

Let

Φ̃k+1 =Φ−
k ∩ {ϕ ∈F+

0 :ϕ(sk+1) > maxΦ+
k (sk+1)}.

The event Φ̃k+1 = ; indicates that no sub-extremal function in Φ−
k exceeds maxΦ+

k at sk+1.

Conditional onΦ+
k , Φ̃k+1 is a Poisson point process on F+

0 with intensity

k∏
j=1

1{ϕ(s j )≤maxφ∈Φk
φ(s j )}1{ϕ(sk+1)>maxφ∈Φk

φ(sk+1)}Λ(dϕ),

and (Dombry et al., 2016, Theorem 2)

ϕ+
sk+1

d= 1{Φ̃k+1 6=;}argmax
ϕ∈Φ̃k+1

ϕ(sk+1)+1{Φ̃k+1=;}argmax
ϕ∈Φ+

k

ϕ(sk+1).

One can sequentially sample the extremal functions at site k from Psk+1 , discarding any

realization that exceedsΦ+
k at s1, . . . , sk ; Algorithm 2.3 summarizes the procedure.

Dombry et al. (2016), who suggested Algorithm 2.3, also derived the distribution of the extremal

function for many commonly used models presented in Sections 2.2.2 and 2.2.3.

Example 2.20 (Brown–Resnick process)

For Brown–Resnick processes, the distribution Ps0 is equal in distribution to the log-Gaussian

process

Y (s) = exp
{

X (s)−X (s0)−γ(s − s0)
}

, s ∈S,

where X (s) is a Gaussian process with variogram γ(·) and stationary increments.
�

Remark 2.6

The alternative expression for the intensity function of the point process in Example 2.6
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Algorithm 2.3 Exact simulation at D sites based on extremal functions (Dombry et al., 2016)

Require: Distribution of extremal functions Ps1 , . . . ,PsD .
1: simulate ζ−1 ∼ Exp(1) and Y ∼ Ps1 ;
2: set Z = ζY ;
3: for j = 2, . . . ,D do
4: simulate ζ−1 ∼ Exp(1);
5: while Z j < ζ do
6: simulate Y j ∼ Ps j ;

7: if max j−1
i=1 ζYi < Zi then

8: set Z ← max{Z ,ζY };

9: simulate E ∼ Exp(1);
10: ζ−1 ← ζ−1 +E ;

11: return Z .

Algorithm 2.4 Sampling from the angular density on the ‖ ·‖1 sphere

Require: Distribution of extremal functions Ps1 , . . . ,PsD .
1: simulate j0 uniformly from {1, . . . ,D};
2: simulate Y ∼ P j0 ;
3: return S ← Y /‖Y ‖1.

follows from the equivalent spectral representation for the Brown–Resnick max-stable process,

Z∗ = max∞i=1 ζi Yi , where ζi is a point process with intensity ζ−2dζ and Yi ∼ Ps0 , so Y (s0) = 1

almost surely (Dombry et al., 2016, Proposition 2 and Remark 1).

Example 2.21 (Extremal Student process)

Consider an extremal Student process with spectral representation (2.16) and correlation

function ρ(·). The distribution Ps0 coincides with that of Tν
+, with T a Student process with

ν+1 degrees of freedom and location function µ(s) = ρ(s0, s) for s ∈ Sand scale function

ρ̃(s j , sk ) = {ρ(s j , sk )−ρ(s0, s j )ρ(s0, sk )}/(ν+1), for s j , sk ∈S.

�

Dombry et al. (2016) note that if one is able to sample from the distribution of the scaled

extremal functions it is easy to simulate from the corresponding spectral density based on the

mixture representation. If the latter is unknown, but the distribution of the extremal function

is known, then Dombry et al. (2016) suggest using Algorithm 2.4. The converse is also true:

given a sample from the spectral density, one can divide the sample by the value of the j0

component so that the latter is almost surely 1, to simulate from Ps0 . Algorithm 2.3 requires

fewer simulations on average than using a combination of Algorithms 2.2 and 2.4; simulations

in Dombry et al. (2016) seem to indicate that the number of simulations for Algorithm 2.3 also

has lower variance.

Recent work focuses on simulation algorithms whose cost does not grow linearly, see, e.g., Liu

et al. (2016) and Oesting et al. (2018), but they appear tailored to specific models and require

implementation of bespoke code. Refined methods exist that use the lack of uniqueness of the
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Figure 2.3 – Exact simulations from Brown–Resnick max-stable processes with power semi-
variogram γ(h) = (‖h‖/λ)α on [0,10]2 with parameters α = 0.7,λ = 1 (top left),
α = 0.7,λ = 3 (top right), α = 1.2,λ = 1 (bottom left) and α = 1.2,λ = 3 (bottom
right). The data were simulated using the R package SpatialExtremes and trans-
formed to Gumbel margins.

processes W(S), giving rise to the same max-stable process family by choosing candidate fam-

ilies suitably. The optimal choice of spectral functions (in the sense of minimizing the number

of simulated candidate functions) is the so-called normalized spectral representation (Oesting,

Schlather and Zhou, 2018). However, it is not known how to simulate from the normalized

spectral representation; likewise the bounding constant appearing in these construction is

often unknown and thus must be estimated.

For spectral functions based on Gaussian processes, the computational bottleneck is typically

due to inversion of the covariance matrix or the Cholesky decomposition, which require O(D3)

flops; see Appendix C.2 for a literature review. More efficient algorithms, notably the circulant

embedding method, can be used for regular grids (Dietrich and Newsam, 1993; Wood and

Chan, 1994). Figures 2.3 and 2.4 show exact simulations for the Brown–Resnick and extremal

Student process on a 100×100 grid of points equally spaced on [0,10]2.
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Figure 2.4 – Exact simulations from extremal Student max-stable processes with ν = 1
(Schlather’s model) with correlation function ρ(h) = exp{−(‖h‖/λ)α} on [0,10]2

with parameters α = 0.75,λ = 1 (top left), α = 1,λ = 1 (top right), α = 1.5,λ = 1
(bottom left) and α= 1,λ= 0.5 (bottom right). The data were simulated using the R
package RandomFields and transformed to Gumbel margins.

2.5.3 Conditional simulation of max-stable processes

Supposing we observe a realization from a simple max-stable random field Z(S) at s1, . . . , sk

and wish to simulate possible trajectories of Z(S) conditional on the observed values Z (s1) =
z1, . . . , Z (sk ) = zk , denoted hereafter Z 1:k = z1:k . Provided thatΛ is regular, one can derive the

conditional distribution of Z(S) | Z 1:k = z1:k using the notions of extremal and sub-extremal

functions discussed on page 110 (Dombry and Eyi-Minko, 2013).

Since the event that a given realization of a max-stable process equals specified values at a

fixed collection of sites is aΛ-null set (cf. Oesting et al., 2015), we treat conditional simulation

in the multivariate framework, working with a predefined finite set of locations S= {s1, . . . , sD }

and conditioning on the k sites in S, without loss of generality the first ones. Algorithm 2.5

can be used to draw samples from the max-stable vector Z (k+1):D conditional on the values

Z 1:k = z1:k .
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Algorithm 2.5 Conditional simulations from max-stable processes (Dombry and Eyi-Minko,
2013)

Require: intensity measureΛ, conditioning set Z 1:k = z1:k .
1: draw a hitting scenarioΠ conditional on Z 1:k = z1:k from P (Π ∈ · | Z 1:k = z1:k );
2: sample the extremal functions Φ+ conditional on the observed values of the process

Z 1:k = z1:k and the partitionΠ from P
(
ϕ+

j ∈ · | Z 1:k = z1:k ,Π=$
)
;

3: sample sub-extremal functions from a Poisson point process with intensity measure
Λ(dφ)

∏k
j=1 1{φ(s j )<z j };

4: set Zi = maxk
j=1ϕ

+
j (si )maxϕ∈Φ−ϕ(si ) for i = k +1, . . . ,D ;

5: return Z (k+1):D .

Conditional distributions and decomposition of max-stable processes

Our exposition follows Dombry et al. (2013) and Dombry et al. (2015). We encode the hitting

scenario Π through a vector of sets: for each partition, $ j denotes the j th component of

$, the set of indices of the locations that appear in the j th hitting scenario component

$ j := {i ∈ {1, . . . ,k} :ϕ+
s i
=ϕ+

$ j
}. We write z$c

j
for the sub-vector whose components are in the

complement of $ j , {1, . . . ,k} \$ j . We use the notation <s to indicate that the inequality holds

pointwise for any s ∈ {s1, . . . , sk } and arguments of the intensity function λ(·) are understood to

be ordered according to the conditioning set. The hitting scenarioΠ | Z 1:k = z has a discrete

distribution on the set PD of all non-empty partitions of {1, . . . ,k}, whose cardinality is the kth

Bell number.

The point processes of extremal and sub-extremal functions conditional on Z 1:k = z ,

Φ− = {ϕ ∈Φ :ϕ(si ) < zi , i = 1, . . . ,k}, Φ+ =
k⋃

i=1
{ϕ ∈Φ :ϕ(si ) = zi },

are independent (Dombry et al., 2013). Since Φ− ⊥⊥ {Π,Φ+} | Z 1:k = z , we can simulate sub-

extremal functions from a Poisson point process with intensity measureΛ(dφ)
∏k

j=1 1{φ(s j )<z j }.

The max-stable vector Z 1:k has distribution

P (Z 1:k ∈ dz) =
∑

$∈PD

P (Π=$, Z 1:k ∈ dz)

=
∑

$∈PD

E
( |$|∏

j=1
1{ϕ+

$ j
∈dz$ j }1{ϕ+

sk
<z$ j ,k∈$c

j }1{maxΦ−<s z}

)

= exp{−V (z)}
∑

$∈PD

{ |$|∏
j=1

∫
1{u j<z$c

j
}λ$ j ,$c

j
(z$ j ,u j )du j

}
dz .

This relation arises from consideration of all possible partitions and the density of extremal

functions. The passage to the last line follows from the Slivnyak–Mecke formula, the inde-

pendence of subextremal functions conditional on the values of Z 1:k and the assumption of

regularity. Each term in the product corresponds to a different extremal function, which must
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attain value z j if it is in the partition $ j at location s j or else fall below the other extremal

functions.

One can find the probability mass function of the hitting scenario conditional on the max-

stable process using the law of total probability (Dombry et al., 2013),

P (Π=$ | Z 1:k = z) =
∏|$|

j=1

∫
1{u j<z$c

j
}λ$ j ,$c

j
(z$ j ,u j )du j∑

$′∈PD

∏|$′|
j=1

∫
1{u j<z$′c

j
}λ$′

j ,$′
j
c (z$′

j
,u j )du j

,

and under the assumption of regularity ofΛ, we can express the intensity function in terms of

the conditional intensity function λ$ j ,$c
j
(z$ j ,u j ) =λ$ j (z$ j )λ$c

j |$ j (u j | z$ j ), yielding

P (Π=$ | Z 1:k = z)
$∝

|$|∏
j=1

w$ j =
|$|∏
j=1

λ$ j (z$ j )
∫

1{u j<z$c
j
}λ$c

j |$ j (u j | z$ j )du j ,

where
$∝ indicates proportionality with respect to $, i.e., the conditional probability mass

function is given up to normalizing constants. Closed-form expressions for the conditional

intensity of Brown–Resnick and extremal Student processes were given in Example 2.5 and

Example 2.7. The extremal functions are conditionally independent given$=$ and (Dombry

et al., 2015, Theorem 1.2.5)

P
(
ϕ+

j (s) ∈ dϕ | Z 1:k = z ,Π=$
)
=Λ{

dϕ |ϕ(si ) = zi , i ∈$ j ,ϕ(s l ) < zl , l ∈$c
j

}
.

The conditional distribution of ϕ+
j (s) is thus obtained from the joint vector, conditioning on

the fact that all other extremal functions must lie below z$ j at sites {sk ,k ∈$ j }. It follows that

the conditional random process Z(S) | Z 1:k is not max-stable (Dombry et al., 2013).

The cardinality of the state space containing the set of partitions Pk is the kth Bell number,

Bk . The integration constant appearing in the conditional distribution of the hitting scenario

is computationally demanding since it requires the calculation of a high-dimensional integral

for each of these Bk combinations. Even for k ≈ 20, it is impossible to store the output in

memory. To circumvent this problem, Dombry et al. (2013) turned to Markov chain Monte

Carlo for inference. A convenient choice to deal with the hitting scenario is to update the

partition to which s j belongs sequentially for j = 1, . . . ,k rather than perform block update

sampling from Pk . Dombry et al. (2013) suggest a random scan Gibbs sampler (Liu, Wong

and Kong, 1995) conditioning on Z 1:k = z and the hitting scenario at all locations but the j th

site. At each iteration of the Gibbs sampler, a location j is selected uniformly at random from

{1, . . . ,k} and the j th location is reassigned to one of the |$| existing clusters (including$) if

the cluster containing site j consisted of the singleton j , or else |$|+1 clusters, potentially

defining a new cluster containing only location s j . A Metropolis–Hastings step is used to

determine whether or not to accept the new move to a partition$′ in which only component

j is reallocated, with acceptance ratio min{1,
∏|$|

i=1 w$i /
∏|$′|

l=1 w$′
l
}. All but four of the weights

w$i cancel. The cost of scanning through these moves is thus linear and for each proposed
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Algorithm 2.6 Accept-reject algorithm

Require: proposal density g (x) with f ¿ g , c ≥ supx∈supp(F ) f (x)/g (x).
1: repeat
2: sample X ∼ g ;
3: sample independently U ∼U(0,1);
4: until cU < f (X )/g (X )
5: return X

move, the most costly part is the evaluation of the integrals giving the weights w$i . The price

to pay for going from block to sequential updates is potentially slower mixing of the Markov

chains.

2.5.4 Unconditional simulation of l-Pareto processes

In principle, simulation from l-Pareto processes is simpler than simulation from the associ-

ated max-stable process, since individual events correspond to particular rescaled spectral

functions. Specifically, realizations from l-Pareto processes consist of points fromΦ= {ϕi },

where ϕi = ζi Wi , falling in the risk region l(ϕ) > u.

The easiest method for simulation is through rejection sampling: suppose that one is interested

in sampling X ∼ F ; if X is difficult to sample from, but has a density f (x) that can be easily

computed, an alternative is to sample proposals G assuming there exists a bound c such that

f (x) ≤ cg (x) for every x ∈ supp(F ); this is summarized in Algorithm 2.6 (cf. Devroye, 1986,

p. 42). The function g must have heavier tails and larger peaks than f and the upper bound of

the likelihood ratio, c, should be as small as possible to maximize the acceptance rate.

Consider two risk functionals, l1 and l2, and suppose we want to simulate from the l1-Pareto

process, but know only how to sample from the l2-Pareto process. For l-Pareto processes, we

rely on the stochastic representation (2.25), PS/l(S) for P a Pareto variable and S a random

function with angular distribution ρl,ang. We can use the change of measure argument in

Proposition 2.28 and simulate from the point process on a large domain that includes the

region of interest, using rejection sampling to retain only points falling in the risk region

(de Fondeville and Davison, 2018). With the densities g (x) and f (x) equal to λ(x)/Λ{x :

l1(x) > u1} and λ(x)/Λ{x : l2(x) > u2} respectively, the bounding constant c in Algorithm 2.6 is

Λ{x : l2(x) > u2}/Λ{x : l1(x) > u1}; the likelihood ratio need not be evaluated, since any point

sampled from g (x) such that l1(x) > u1 is automatically accepted.

Method 2.22 (Rejection sampling for l-Pareto processes)

Suppose one can simulate components ω from an (unnormalized) spectral measure ρ∗
l1,ang

so as to generate from the point process above {x : l2(x) > u2}. Then, provided that l1(x) > 0

ρl2,ang-almost everywhere over a threshold u1, we can generate points from ρ∗
l2,ang and devise

an accept-reject scheme based on Proposition 2.28; the acceptance rate is obtained from
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Equation (2.24).

p(ω) = min

[
1,
Λ( f ∈F\Cl2

: l1( f ) ≥ u1)

Λ( f ∈F\Cl2
: l2( f ) ≥ u2)

{
l2(ω)

l1(ω)

}α]
,

Choosing u1 as large as possible, supu1
{x : l1(x) > u1} ⊆ {x : l2(x) > u2}, leads to higher effi-

ciency.

For some risk functionals, exact simulation from the angular measure is possible. For example,

Algorithm 2.4 shows how to simulate from the sphere associated with the l1 norm ‖ · ‖1 by

drawing S from a balanced mixture of extremal functions Ps1 , . . . ,PsD . This means that we

can simulate from the l1 angular distribution and sample for functionals such as max, min or

l2 = ‖·‖2, with respectively u∗
max = 1,u∗

min = D and u∗
l2
= 1. The acceptance ratio decreases with

D , but is generally large enough to provide fast simulations provided the spatial dependence

is very strong, so that most points are far from the axes.

While simulating from the angular distribution associated to the l1-norm is the most obvious

candidate for an accept-reject sampling algorithm, other choices may be available (cf. Oesting

et al., 2019). The next example illustrates accept-reject for elliptical extremes using samples

from the angular components associated to the Malahanobis norm.

Example 2.23 (Multivariate generalized Pareto with elliptic distributions)

A zero mean elliptic vector admits the stochastic representation X = RAU , where R is a radial

variable, A is the Cholesky root of a correlation matrix Σ= AA> and U ∼U{x ∈RD : x>x = 1} is

a vector sampled uniformly on the `2 sphere. Maxima of multivariate elliptic vectors with a

radial component R which is regularly varying with index ν are attracted to extremal Student

max-stable processes (Example 2.4).

Thibaud and Opitz (2015) show that AU corresponds to samples from the spectral measure

associated to the Mahalanobis norm, ρΣ. Let R ∼ Par(ν). The conditional random vector

Y = RAU
∣∣ maxD

j=1(RAU ) j ≥ 1 follows a multivariate generalized Pareto with elliptic extremal

distribution characterized by the tail index ν, scale Σ and threshold 1D and can be simulated

using an accept-reject scheme. The angular component is then (AU )ν+/max{(AU )ν+}. The

vector sgn(Y )|Y |ν has tail index 1, since Rν is unit Pareto if R is ν-Pareto.

�
Remark 2.7

The accept-reject approach of Opitz (2013b) and Thibaud and Opitz (2015) differs from the

proposal of de Fondeville and Davison (2018) only in the choice of the norm for the angular

measure. The acceptance rate is the ratio of the measure of the sets, which is V (u)/D for

the ρ1 norm and V (u)π−1/2Γ(ν/2+1/2)Γ(D/2){2Γ(D/2+ν/2)}−1 for the ρΣ norm. Simulation

from ρ1 in Example 2.23 is always at least twice as efficient as sampling from the Mahalanobis

angular distribution when ν≥ 2. When ν= 2, the relative acceptance ratio is 2 regardless of D

and the only cases for which using ρΣ is preferable is when ν< 2 and D is large, and even in

this case the ratio of acceptance rates is close to unity.
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Algorithm 2.7 Composition sampling for standard Pareto processes based on l= max

1: sample an index j in {1, . . . ,D} with probability ψi /V (1D ), i = 1, . . . ,D
2: sample a realization w j from the marginal distribution of W j

3: conditional on this value, simulate from P
(
W − j |W − j ≤ w j

)
4: setωmax ← w/w j

5: simulate R ∼Par(1)
6: return Z ← Rωmax.

For most parametric models utilized in the literature, one knows how to simulate from the

spectral distribution Ps0 of the rescaled extremal function φ+(s0)/Z (s0), which corresponds to

an exceedance at site s0 (Dombry et al., 2016). We propose an alternative simulation technique

when the distribution S can be represented as a mixture of extremal functions, as in the case

of Algorithm 2.4. Sampling from the mixture is done in two steps, by first drawing the index

of the mixture component i from {1, . . . ,D}, each with associated weight ψ j and secondly

simulating S ∼ Ps i . The rescaled angular vector is simply S/l(S). Ho (2018) proposed such an

approach for simulating from multivariate generalized Pareto Brown–Resnick processes, but

the procedure is more general and can be applied if the risk functional can be decomposed

via indicators and linear combinations of X (s j ) ( j = 1, . . . ,D); this is the case for weighted

maxima, minima, averages and projections.

Proof

We give the proof of Algorithm 2.7 for the multivariate Pareto distribution, corresponding to

the case l( f ) = maxD
i=1 f (si ), but the case l(X) = minD

j=1 X (s j ) is analogous.

LetΛ be a −1-homogeneous measure that factorises in pseudo-polar and angular components,

Λ(A) =
∫
F

∫ ∞

0
1{ζmaxD

j=1 f (s j )>u}1{ f (s)/‖ f (s)‖ang∈A}ζ−2dζν(d f ).

If we restrict the point process to the set
{

f ∈F: maxD
j=1{ f (s j )} > u

}
, the normalized intensity

defines a probability measure on the latter∫
F

∫ ∞

0
1{ζmaxD

j=1 f (s j )>u}1{ f (s)/‖ f (s)‖ang∈A}ζ−2dζν(d f )

= 1

u

∫
F

D
max

j=1
f (s j )1{ f (s)/‖ f (s)‖ang∈A}ν(d f )

= 1

u

D∑
j=1

∫
F

f (s j )1{ f (s j )> f (s i ),i=1,...,D,i 6= j}1{ f (s)/‖ f (s)‖ang∈A}ν(d f )

= 1

u

D∑
j=1

∫
F

1{ f (s i )<1,i=1,...,D,i 6= j}Ps j (d f ),

since by definition rescaled extremal functions satisfy∫
F

f (s j )1{ f /‖ f ‖ang∈A}ν(d f ) =
∫
F

1{ f /‖ f ‖ang∈A}Ps j (d f )
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and Ps j is supported on the set { f ∈F: f (s j ) = 1}. The normalization constant that makesΛ

a probability measure is V (u1D ), so we must also normalize the remaining integral term to

obtain a conditional probability distribution. The normalizing constant is

ψ j :=
∫
F

1{ f (s i )<1,i=1,...,D,i 6= j}Ps j (d f ).

These are precisely the terms appearing in the calculation of the exponent measure in eq. (2.13).

In particular,
∑D

j=1ψ j /V (u1D ) = 1 so the contribution of ψ j to the likelihood cancels.

�
Algorithm 2.7 requires sampling truncated components W ; this can be achieved for Brown–

Resnick and extremal Student processes using Algorithm 3.2, which is covered in the next

chapter.

The computational bottleneck of Algorithm 2.7 is the calculation of the exponent measure,

which typically involves high-dimensional integrals that need to be evaluated numerically.

However, and contrary to the accept-reject schemes described before, only the set-up cost is

high. For risk regions defined by l(X) = minD
j=1 X (s j ), the composition sampling simulation

algorithm is particularly advantageous. If the mixing weights cannot be derived analytically,

an alternative is to resort to Monte Carlo methods by simulating repeatedly from the scaled

extremal functions and calculating the empirical average for the indicator set.

We provide two examples of computations for the weights of the mixture.

Example 2.24 (Mixture weights for bivariate Brown–Resnick Pareto distribution)

For simplicity, we consider a bivariate Brown–Resnick model; the calculations readily extend

to higher dimensions. The derivations are obtained along the lines of Huser and Davison

(2013).

By construction, the Brown–Resnick process is of the form W (si ) = exp{X (si )−γ(si )} for

i = 1,2 with {X (s)}s∈S intrinsically stationary Gaussian processes with semi-variogram γ with

X (o) = 0. We adopt the shorthand notation Xi = X (si ), etc.

Let X ∼ No2(02,Σ) with Σi i = 2γi (i = 1,2) and Σ1,2 = γ1 +γ2 −γ1,2; we have W1 > W2 if and

only if X1 −γ1 +γ2 > X2 and we can consider the change of variable x∗
2 = x2 − x1 +γ1 −γ2.

Using the law of iterated expectation and variance, the marginal distribution of X ∗
2 is Gaussian

with expectation

E
(
X ∗

2

)=EX1

(
EX2|X1

(
X2 −X1 +γ1 −γ2

))=EX1

(
γ1 +γ2 −γ1,2

2γ1
X1 −X1

)
+γ1 −γ2 = γ1 −γ2,

and variance

Var
(
X ∗

2

)=VarX1

(
EX2|X1

(
X2 −X1 +γ1 −γ2

))+EX1

(
VarX2|X1

(
X2 −X1 +γ1 −γ2

))
= (−γ1 +γ2 −γ1,2)2

(2γ1)2 VarX1 (X1)+2γ2 −
(γ1 +γ2 −γ1,2)2

2γ1
= 2γ1,2,
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and thus

P (W1 >W2) =P
(
X ∗

2 < 0
)=Φ{

− γ1 −γ2

(2γ1,2)1/2

}
.

If γ1 = γ2, each component is maximal with probability 1/2.
�

Example 2.25 (Scaled extremal Dirichlet model)

Consider the setup of Example 2.15; for the maxD
i=1 risk functional, the simplest way to ob-

tain the weights w is to use Monte Carlo methods, sampling D ∼ Dir(α) and returning the

index of the component-maximum for Dκ
j /c(α j ,κ), i.e., 1{ j∈{1,...,D}:Dκ

j /c(α j ,κ)=maxD
i=1 Dκ

i /c(αi ,κ)}.

The mixing weights can be obtained cheaply at any desired level of accuracy. Since the ex-

tremal profiles are independent, it suffices to simulate marginal components from the scaled

Gamma distribution in the second step and to use an accept-reject algorithm to truncate the

components below unity.

�

Method 2.26 (Markov chain Monte Carlo methods for Pareto process simulation)

Dombry and Ribatet (2015) propose a Markov chain Monte Carlo procedure for sampling from

a l-Pareto process, by simulating from the spectral functions W (x) and running a Metropolis–

Hastings algorithm. Sample W 1 and set Y 1 =W 1 and accept new proposals with probability

min({l(W n)/l(Y n−1)}ν,1). The sequence of D-vectors for the random fields {Y i /‖Y i‖ang}i∈N+

is a reversible Markov chain whose stationary distribution is ρl,ang. This scheme is also

proposed in Rootzén et al. (2018) for the max risk functional and by Oesting et al. (2019).

2.5.5 Unconditional simulation of generalized l-Pareto processes

We can use representation (2.26) to derive an accept-reject algorithm (Algorithm 2.8) and

obtain unconditional simulations from a given parametric family of generalized l-Pareto

processes with potentially different shape parameters ξ ∈RD , provided the distribution of the

extremal function, Ps0 , is known. To this effect, we need u′ such that{
y ∈F0 : l

(
τ

yξ−1D

ξ
+η

)
> u

}
⊂ {

y ∈F0 : ‖y‖1 > u′} . (2.28)

For example, if l is maxD
j=1, u′ = minD

j=1{1+ ξ j (u − η j )/τ j }1/ξ j , whereas we can take u′ =∑D
j=1{1+ξ j (u −η j )/τ j }1/ξ j if l(x) = minD

j=1 x j . If we condition on exceedances at a single site

s0, we can directly sample W from Ps0 and a Pareto variable above u′ = {1+ξ j (u −η j )/τ j }1/ξ j ,

in which case the acceptance rate is unity.

Example 2.27 (Bounds for generalized l-Pareto processes with sum risk functional)

The choice of threshold for eq. (2.28) when l(X ) = ∑D
j=1 X j is not straightforward and the

geometry depends on ξ, which we assume may be unequal. The trivial bound is u′ = D , which
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is an option if for example u −∑D
j=1η j < 0. If ξ> 0D , then

y ≥ 1D :
D∑

j=1

τ j

‖τ‖1

y
ξ j

j −1

ξ j
>

u −∑D
j=1η j

‖τ‖1

⊂
y ≥ 1D :

D
max

j=1

y
ξ j

j −1

ξ j
>

u −∑D
j=1η j

‖τ‖1


⊂

{
y ≥ 1D :

D
max

j=1
y
ξ j

j > 1+
D

min
j=1

ξ j

u −∑D
j=1η j

‖τ‖1

}
,

so we can take

u′ =
(

1+
D

min
j=1

ξ j

u −∑D
j=1η j

‖τ‖1

)minD
j=1 ξ

−1
j

.

Similar calculations for ξ< 0D givey ≥ 1D :
D∑

j=1

τ j

‖τ‖1

y
ξ j

j −1

ξ j
>

u −∑D
j=1η j

‖τ‖1


⊂

{
y ≥ 1D : 1−

D
min
j=1

y
−|ξ j |
j >

D
min
j=1

|ξ j |
u −∑D

j=1η j

‖τ‖1

}

⊂
{

y ≥ 1D :
D

max
j=1

y
−|ξ j |
j < 1−

D
min
j=1

|ξ j |
u −∑D

j=1η j

‖τ‖1

}

⊂

y ≥ 1D :
D

min
j=1

y j >
(

1−
D

min
j=1

|ξ j |
u −∑D

j=1η j

‖τ‖1

)minD
j=1 |ξ− j |

+

 ,

yielding the bound

u′ = D

(
1−

D
min
j=1

|ξ j |
u −∑D

j=1η j

‖τ‖1

)minD
j=1 |ξ−1

j |

+
.

If ξ= 0D , we can use the relationship between geometric and arithmetic means to get{
y ≥ 1D :

D∑
j=1

τ j log(y j )+η j > u

}
=

{
y ≥ 1D :

D∏
j=1

y
τ j /‖τ‖1

j > exp

(
u −∑D

j=1η j

‖τ‖1

)}

⊂
y ≥ 1D :

(
D∏

j=1
y j

)1/D

> exp

(
u −∑D

j=1η j

‖τ‖1

)1/D
⊂

y ≥ 1D :
D∑

j=1
y j > D exp

(
u −∑D

j=1η j

‖τ‖1

)1/D ,

but the bound is not tight. If ξ contains both positive and negative components, we can adapt
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Algorithm 2.8 Accept-reject algorithm for generalized l-Pareto processes (de Fondeville,
2018, p. 104)

Require: thresholds u, u′ satisfying eq. (2.28).
1: initialize Y ← 0D

2: while l(Y ) < u′ do
3: simulate R/u ∼Par(1)
4: simulate W from the ‖ ·‖1 spectral density (Algorithm 2.4)
5: Y ←τ{(RW )ξ−1D }/ξ+η
6: return Y

the first bound:{
y ≥ 1D :

D∑
j=1

τ j log(y j )+η j > u

}

⊂
{

y ≥ 1D : max

{
2− max

j :ξ j<0
y
ξ j

j , max
k:ξk>0

yξk

j

}
> 1+

D
min
j=1

|ξ j |
u −∑D

j=1η j

‖τ‖1

}

⊂
{

y ≥ 1D :
D

max
j=1

y
|ξ j |
j > 1+

D
min
j=1

|ξ j |
u −∑D

j=1η j

‖τ‖1

}
,

given that 2 ≤ y−|ξ|+ y |ξ| for y ≥ 1 and the function is increasing in y ; as a result

u′ =
(

1+
D

min
j=1

|ξ j |
u −∑D

j=1η j

‖τ‖1

)minD
j=1 |ξ j |−1

.

�

Conditional simulation of l-Pareto processes is unexplored, but is intimately related to the

conditional intensity of the normalized point process and depends on the parametric model

employed for the extremal profile W(S). For Brown–Resnick and extremal Student processes,

the conditional distributions are log-Gaussian and Student and we can leverage properties of

conditional elliptical distributions (cf. Proposition C.2 and Proposition C.3) for simulating

from the latter. As for unconditional simulations, simulated points are kept only if they fall in

the risk region defined by l.

2.5.6 Unconditional simulation from the conditional extremes model

The distribution corresponding to the conditional model for X | X (s0) > u0 is denoted Q0(u0).

Should one be interested in simulating extreme events corresponding to extremes at a given

site, i.e., {X (s)}s∈S | maxD
j=1 X (s j )/u j > 1, it is possible to use the mixture representation. Keef

et al. (2013) propose to use empirical proportions to estimate the probability of a component

being largest, but an undesirable feature of this approach that no extreme event is ever

simulated at a site if no exceedance was observed there. We propose a novel alternative based
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Figure 2.5 – Unconditional simulation from a generalized l-Pareto Brown–Resnick process with
power semivariogram γ(h) = (‖h‖/4)0.7 and location and scale parameters η,τ
satisfying E

(
η
)= 26,E (τ) = 9 and ξ= 0.1 over canton Zürich. The risk functional are

l(Z ) = maxD
j=1 Z (s j ) (left) and l(Z ) = Z (s0) (right), both with a functional threshold

of u = 50 units.

on a decomposition slightly different than that proposed in Wadsworth and Tawn (2018), who

suggest importance sampling.

We allow for potentially different thresholds u j , since events of a given intensity on the data

scale may be mapped to different quantiles on the standardized scale. We can decompose the

event

πk =P
(

X (sk )

uk
= D

max
j=1

{
X (s j )

u j

}∣∣∣∣ D
max

j=1

{
X (s j )

u j

}
> 1

)

=
D∑

i=1
P

(
X (sk )

uk
= D

max
j=1

{
X (s j )

u j

}
,

D
max

j=1

{
X (s j )

u j

}
> 1

∣∣∣∣ X (si )

ui
> 1

) P (X (si ) > ui )

P
(
maxD

j=1

{
X (s j )/u j

}> 1
)

∝
D∑

i=1
P

(
X (sk )

uk
= D

max
j=1

{
X (s j )

u j

}∣∣∣∣ X (si )

ui
> 1

)
P (X (si ) > ui )

using the law of total probability; the term P
{

maxD
j=1 X (s j )/u j > 1

}
needs not be evaluated

as it is common to every πk . We can estimate P (X (si ) > ui ) through the marginal survival

function. The conditional probability P
(
X (sk )/uk = maxD

j=1 X (s j )/u j
)

can be estimated by
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Algorithm 2.9 Unconditional simulation from the conditional extremes model given
maxD

j=1 X (s j )/u j > 1

Require: θ̂, thresholds u j , marginal distribution functions F̃ j for j = 1, . . . ,D .
1: function CONDITIONAL SIMULATION(Qk (u j ))
2: sample X (sk ) ∼ Exp(1)+uk ;
3: sample {X (s j )} j=1,...,D, j 6=k | X (s j ) ≤ X (sk ), where

X (s j ) = b̂[X (sk ), s j − sk ]+ â[X (sk ), s j − sk ]Z (s j );

4: initializeπ← 0D ;
5: for j = 1, . . . ,D do
6: sample B replications X b ∼Q j (u j ) at sites s1, . . . , sD ;

πk ←πk + {1− F̃ j (u j )}B−1
B∑

b=1
1{Xb (sk )/uk=maxD

j=1 Xb (s j )/u j };

7: setπ←π/‖π‖1;
8: sample k ∼Mult(π);
9: return {X (s j )}D

j=1 ∼Qk (u j ):

simulating unconditionally from the model for X (sk ) > uk a large number of realizations

and calculating the proportion of samples in which X (sk ) is largest; this is formalized in

Algorithm 2.9.

Note that, if Z is a Gaussian process, we can easily simulate from X −k | X −k ≤ Xk , Xk > u j :

suppose {Z (s j )}D
j=1 ≡ Z ∼NoD (µ,Σ) unconditionally. We can easily obtain the distribution

of Z −k | Zk = 0 ∼ NoD−1(µ|k ,Σ|k ), say, through Proposition C.2. The Gaussian distribution

is a location-scale family, hence for a |k and b|k vectors corresponding to a(Xk , s j − sk ) for

j = 1, . . . ,D, j 6= k, etc., X −k = b|k +a |k Z −k is also multivariate Gaussian and we can perform

conditional simulations subject to X −k | X −k ≤ Xk using an efficient accept-reject algorithm

based on the minimax exponential tilting algorithm of Botev (2017).

An algorithm to perform conditional simulations is described in Wadsworth and Tawn (2018),

§ 5.3, assuming a common marginal model, the parameters of which are incorporated in the

composite likelihood through the probability integral transform and estimated together with

θ.

2.6 Likelihoods and estimating functions

The different extreme value paradigms are most easily reconciled using the Poisson point

process formulation outlined in Section 2.5.1. We follow Huser et al. (2016) and restrict

attention to the D-variate case, even if observations are understood to arise from spatial

processes.

124



2.6. Likelihoods and estimating functions

2.6.1 Max-stable process likelihood

We derive first the likelihood of a max-stable random vector. The exponent measure can be

expressed as

V (z) =Λ([0D , z]c) =
∫ ∞

0
P

(
ζW � z

)
ζ−2dζ, z ∈R+

D \ {0D }.

This probability can be re-expressed using the inclusion-exclusion formula (cf. Wadsworth

and Tawn, 2014). AssumingΛ is regular and making the change of variable r = ζ−1, we obtain

by taking partial derivatives on both sides the formula

−V1:D (z) =λ(z) =
∫ ∞

0
r D fW (r z)dr, z ∈R+

D \ {0D }.

The likelihood for a simple max-stable process Z can be obtained by differentiating the

distribution function exp{−V (z)} with respect to each z1, . . . , zD , yielding

L (z) =−exp{−V (z)}
∑

$∈PD

|$|∏
j=1

VI j (z),

where PD is the power set of all non-empty subsets of {1, . . . ,D} and I j is the set of indices in

the j th set of the partition $. The number of terms in the likelihood is the Dth Bell number,

BD =∑D
k=1 S(D,k) where S(D,k), the Stirling numbers of the second kind, give the numbers

of partitions of D elements into k parts. In dimension D = 10, there are B10 = 115975 distinct

likelihood contributions and the calculations are prohibitive.

The likelihood of the max-stable likelihood is complicated because it incorporates the sum of

all possible hitting scenarios. Knowledge of the hitting scenario simplifies considerably the

likelihood, since then

P (Π=$, Z ∈ dz) = exp{−V (z)}

{ |$|∏
j=1

∫
1{u j<z$c

j
}λ(z$ j ,u j )du j

}
dz

and one avoids the costly marginalization. This idea was proposed in Stephenson and Tawn

(2005), who suggest incorporating the information about the partition if occurrence times

are recorded; the joint distribution of the empirical partition Πn and the component-wise

maxima M n as n →∞ is

L (z) =−exp{−V (z)}
|$n |∏
j=1

VI j (z).

With λ(z) =−∂DV (z)/
∏D

j=1∂z j , we can see that, for regular models, the partial derivatives of
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the exponent measure satisfy (Huser et al., 2019)

− ∂|$|V (z)∏
l∈$ j

∂zl
=

∫
1{u j<z$c

j
}λ(z$ j ,u j )du j ;

we thus obtain the expression in Stephenson and Tawn (2005).

In practice, we replace the limiting partition with the empirical one. The likelihood is biased

unless n À D since the empirical partition also needs to converge to the limiting hitting

scenario; for weakly dependent processes, use of the observed partition may induce bias.

Wadsworth (2015) shows that this is due to the lack of convergence of the empirical partition

Πn to the asymptotic partitionΠ and points out that the bias is stronger if D is large relative to

n and if dependence is weak, suggesting an alternative bias-corrected likelihood that includes a

second order bias correction. Thibaud and Opitz (2015) propose to impute the partition using a

Gibbs sampler, while Huser et al. (2019) use a stochastic expectation-maximisation algorithm;

the E-step for the missing partition uses a Monte-Carlo estimator, where approximate draws

are obtained from the Gibbs sampler of Dombry et al. (2013).

2.6.2 Likelihood for l-Pareto processes and generalizations

In order to be able to obtain the likelihood of the l-Pareto process in a multivariate context,

we need the condition l(X ) > u to be determined by the finite D-dimensional distributions,

excluding de facto risk functionals such as l(X) = sups∈SX (s). Threshold exceedances are

defined on the risk region Al,u = {y ∈RD
+ \ {0D } : l(y) > u} and the empirical point process

of l-exceedances converges in distribution to a Poisson process with intensity function λ(x)

on Al,u . Likelihoods for threshold exceedances combine the intensity function of the point

process, λ(x), a normalizing constant giving the measure of the risk region Al,u and the

Jacobian for the marginal transformation of the observations to the unit Pareto scale. One

can use the likelihood of the limiting Poisson process model for exceedances in a region

Au , exp{−Λ(Au)}
∏Nu

j=1λ(xi ). If we consider the conditional density of the l-exceedance

instead, the Poisson contribution vanishes. One can include a likelihood contribution for

the (random) number extreme observations Nu out of n exceeding u independent of the

conditional distribution if we observe the number of observations falling outside the risk

region, either Poisson (Wadsworth and Tawn, 2014) or binomial (Thibaud and Opitz, 2015). The

Fisher information is then a direct sum of the contribution for Nu and that of the exceedances

conditional on Nu (Huser et al., 2016); see Example 2.29 for an illustration.

Proposition 2.33 (Likelihood of the generalized l-Pareto process)

Assuming data are observed at a finite collection of sites s1, . . . , sD , the likelihood of the

generalized l-Pareto process for one exceedance {X i : l(X i ) ≥ u} is

f l
u (x i ) =

λ
{(

1+ξ x i−η
τ

)1/ξ
}

Λ
{

Z ∈RD
+ : l{τ(Z ξ−1)/ξ+η} ≥ u

} D∏
j=1

τ−1(si )

{
1+ξxi j −η(si )

τ(si )

}1/ξ−1

.
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The likelihood corresponds to the intensity renormalized by the measure of the risk region

plus a Jacobian term.

Remark 2.8 (Identifiability)

The l-Pareto process likelihood is identifiable only up to a scale multiple. If we define the

scale ς= κτ for κ> 0, then (
1+ξx −η

ς

)1/ξ

= κ−1/ξ
(
1+ξx −φ

τ

)1/ξ

,

whereφ=η+ς(1/κ−1)/ξ. SinceΛ(·) is a −1-homogeneous measure,

κ1/ξΛ
{
Z ∈F0 : l{τ(Zξ−1)/ξ+φ} ≥ u

}
=Λ

{
Z ∈F0 : l{ς(Zξ−1)/ξ+η} ≥ u

}
.

if l is a positive homogeneous functional. Since we assume the existence of derivatives

of orders 1 < k ≤ D, λ1:k is −(1+k)-homogeneous and the constant κ1/ξ cancels with the

contribution from the Jacobian. Fixing one of the marginal parameters (whether location or

scale) restores identifiability.

Suppose τ= 1D and η= 0D : the multivariate generalized Pareto distribution (Rootzén and

Tajvidi, 2006) is an important special case of the l-Pareto process with l(X ) = maxD
j=1 Xi .

Proposition 2.34 (Likelihood of the multivariate generalized Pareto)

Let q(y) = (
1+ ξy/σ

)1/ξ
+ for Nu exceedances. The distribution function of a multivariate

generalized Pareto distribution for a given exponent measure V (·), threshold u and marginal

parameters ξ ∈RD ,σ ∈RD
+ , is

F (y) = V [min{q(y), q(u1D )}]−V {q(y)}

V {q(u1D )}
, y �u,

and the density is

f (y) = −V1:D {q(y)}

V {q(u)}

Nu∏
j=1

σ−1
j

(
1+ξ yi

σ j

)1/ξ−1

+
y �u.

This is the conditional density given that observations y lie in the set [0,u]c. The normalization

constant in the denominator is therefore the measure of the set [0,u]c.

Most of the results presented so far follow from Definition 2.15, whereby the limit measure

is −1-homogeneous. This implies that the exceedances are tail equivalent to a unit Pareto

random variable and the scale varies with the threshold, but is linked to the unknown scaling

function an . We have also presented a generalization, whereby normalized variables have

limit measure Λ as given Remark 2.4. The model for W is thus derived on the standardized

scale and the intensity is simply given by the compositionΛ◦T .

We may wish to derive the max-stable attractor of a particular parametric model. For exam-

ple, with a scale mixture model of the form R X , where R ∈ RV(ξ−1) and ξ > 0, the limiting
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distribution follows from an application of Breiman’s lemma (Ho, 2018). Rootzén et al. (2018)

use the same argument as in Remark 2.4 for the D-variate case, but model V
d= σ/ξW ξ for

ξ> 0D , leading to the so-called R representation of the multivariate generalized Pareto vector,

V ζ−ξ− σ̃/ξ.

An appealing choice of risk functional for the l-Pareto process is the l1 norm, since for

AΣ,u = {y ∈ RD
+ \ {0D } : ‖y/u‖1 > 1}, Λ(AΣ,u) = ‖1D /u‖1, which is model independent and

simplifies to D/u when u = u1D . The name ‘spectral likelihood’ is sometimes attached to the

associated likelihood (cf. Engelke et al., 2015). Unfortunately, no such results exist for the

generalized l-Pareto processes when ξ 6= 1.

Extremal Student processes have mass on the boundary of AΣ,u and transformation of the

observations to the unit Pareto scale ensures that all of them exceed 1D , which is inconsis-

tent with the fact that some components have been truncated to zero. Thibaud and Opitz

(2015) propose the use of a censored likelihood to reduce the bias inherent to this marginal

transformation.

2.6.3 Censored likelihoods

In practice, and since the limiting model may be a poor approximation if not all components

are large, censoring is advised. Censored likelihoods are obtained by integrating the intensity

function with respect to the components which are censored. We provide examples for

specific families for which explicit expressions exist. For intrinsically stationary fields, one

can condition on the set of observations at any site for which the process is observed and is

uncensored.

Example 2.28 (Censored likelihood for Brown–Resnick model based on projections (1))

Asadi et al. (2015) give the density of the censored Brown–Resnick Pareto process associated

to the projection Ps0 , satisfying Y (s0) > u0, assuming the data are unit Pareto distributed.

Suppose that Xi > ui for i ∈ A ⊆ {1, . . . ,D} \; and Xi < ui for i ∈ A c. Assume without loss

of generality that the variables X are reordered so that the k = |A | exceedances are labelled

1:k and that we condition on X1. Let φl (·;Σ) andΦl (·;Σ) denote the density and distribution

functions of a Gaussian variable with mean 0l and covariance matrix Σ, with the convention

that φ0 = 1,Φ0 = 1. The censored likelihood is then

LA (x) = x−1
1

(
k∏

i=1
x−1

i

)
φk−1(x̃1:k−1;0k−1Σ1:k−1,1:k−1)ΦD−k

(
0k−1;µA Q−1

k:D−1,k:D−1

)
,

where x̃i = log(xi+1/x1)+2λ2
i+1,1 (i = 1, . . . ,D −1) and ũi = log(ui+1/x1)+2λ2

i+1,1. The condi-

tional mean and variance are

µA = ũk:D−1 −Q−1
k:D−1,k:D−1Qk:D−1,1:k−1x̃1:k−1

= ũk:D−1 +Σk:D−1,1:k−1Σ
−1
1:k−1,1:k−1x̃1:k−1
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and the covariance matrix is

Σ=Q−1 =
{

2
(
λ2

i ,1 +λ2
j ,1 −λ2

i , j

)}D

i , j=2
.

The expression for the conditional mean is incorrectly reported in eq. 29 of Asadi et al. (2015).
�

Example 2.29 (Censored likelihood of Brown–Resnick model (2))

An alternative formulation based on the Poisson process was proposed by Wadsworth and

Tawn (2014), who use l= maxD
j=1. Wadsworth and Tawn (2014) base their inference on the

covariance matrix of the (non)-stationary random field characterized by the covariance func-

tion C as in where Σi , j =C (si , s j ); recall that the semivariogram and the covariance function

are linked via the relation γ(si , s j ) =C (si , si )+C (s j , s j )−2C (si , s j ) under weak stationarity. If

in addition the process is stationary, C (s, s) =σ for any s ∈Sand γ(si , s j ) =σ2{1−ρ(h)} for a

correlation function ρ.

Let Σ be the D ×D covariance matrix and σ= diag(Σ) the vector of site-wise variance. The

likelihood contribution for a partly censored observation is

−V1:k (x1:k ,u(k+1):D ) =
ΦD−k

(
log(u(k+1):D )−µk ,Γk

)∣∣Σ−1
1:k

∣∣1/2

(2π)(k−1)/2(1>
kΣ

−1
1:k 1k )1/2 ∏k

i=1 xi

×exp

{
−1

2

(
1

4
σ>

k Akσk +
σ>

kΣ
−1
1:k 1k −1

1>
kΣ

−1
1:k 1k

)}

×exp

[
−1

2

{
log(x1:k )>Ak log(x1:k )+ log(x1:k )>

(
2Σ−1

1:k 1k

1>
kΣ

−1
1:k 1k

+Akσk

)}]
,

where

Ak =Σ−1
1:k −

Σ−1
1:k 1k 1>

kΣ
−1
1:k

1>
kΣ

−1
1:k 1k

, Γ−1
k = K>

01Σ
−1K01,

µk =−Γ
(

K>
01AD K10 log(x1:k )+K>

01
Σ−11D

1>
DΣ

−11D

)
.

The intensity is −VIi (xc
i )/V (u) for threshold exceedances with partly censored observations

and the likelihood of the Poisson process is (Wadsworth and Tawn, 2014)

LWT ∝ exp{−nV (u)}
Nu∏
i=1

−VIi (xcens,∗
i )

D∏
j=1

1{xi , j>u j }
∣∣J p

t (xi , j )
∣∣ ,

where xcens,∗
i , j = max{x∗

i , j ,u j } or

xcens,∗
i , j =

x∗
i , j , x∗

i , j > u∗
j

u∗
j , x∗

i , j ≤ u∗
j

( j = 1, . . . ,D).

Since the Poisson component for Nu exceedances is exp{−V (u)}V (u)Nu /Nu !, the term V (u)Nu
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cancels from the density. The remaining contribution is from observations in (0,u], which

gives a factor of exp{−(n −Nu)V (u)}.

Asadi et al. (2015) use the censored likelihood of Thibaud and Opitz (2015) with a binomial

contribution for the number of exceedances Nu (provided u is large enough that V (u) < 1):

LAE ∝ {1−V (u)}n−Nu

Nu∏
i=1

−VIi

(
xcens,∗

i

) D∏
j=1

1{xi , j>u j }
∣∣J p

t (xi , j )
∣∣ .

By the Poisson approximation to the binomial distribution, the two contributions are nearly

equivalent.
�

2.6.4 Estimating functions

In practice, it is customary to use a two-stage approach: fit marginal parameters first using

the independence likelihood and transform the observations to a standardized scale, then fit

the dependence model. This simplifies the calculation by breaking the optimization into two

problems, each with fewer parameters. Practitioners often use the independence likelihood as

a working model to fit the marginals of multiple sites simultaneously, imposing smoothness

restrictions through priors on the shape or fixing it to be constant over the domain. In appli-

cations the observations are not standardized and will need to be transformed to a common

scale, for example unit Fréchet or Pareto, in which case observations are replaced by stan-

dardized one. This technique is also popular in the copula literature because margins can be

estimated nonparametrically using the empirical distribution function F̃ (x) = rank(x)/(n +1)

for a sample of size n. An alternative in larger samples is to use a semi-parametric estimate, fit-

ting a generalized Pareto GP(τ j ,ξ j ) to marginal exceedances above u j and using the estimated

distribution (Coles and Tawn, 1994, § 2.1)

F̌ j (x) =
F̃ j (x), x ≤ u j ,

1− {1− F̃ j (u j )}
{

1+ ξ̂
(

x−u j

τ̂ j

)}−1/ξ̂ j

+
, x > u j .

(2.29)

Two-stage estimation leads to incorrect uncertainty assessment and erroneous statistical

inference unless uncertainty is properly accounted for.

If we assume that the threshold exceedance X j −u j follows approximately a generalized

Pareto distribution with parameters η j ,ξ j and λ j = P
(
X j > u j

)
, then the Jacobian of the

transformation from generalized Pareto to unit Fréchet (t f) or unit Pareto (t p) variates is

Jf
j (x j ) =

λv
1+ξ j

j

η j (1−λ j v j ) log2(1−λ j v j )
, Jp

j (x j ) =
v
ξ j−1
j

η jλ j
, j = 1, . . . ,D,

with v j = {1+ξ(x j −u j )/η j }−1/ξ j .
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Composite likelihoods

Composite likelihoods enjoy many properties of likelihoods, though not asymptotic optimality.

Let X 1, . . . , X n be a random sample an unknown multivariate distribution with continuous

univariate margins that is in the maximum domain of attraction of a multivariate extreme-

value distribution H .

A popular choice for modelling multivariate block maxima or threshold exceedances is the

pairwise composite log-likelihood lC (Padoan et al., 2010). The multivariate tail model for

threshold exceedances can be fitted using the censored likelihood L (X ;θ) =∏n
i=1 Li (X i ;θ),

where

Li (X i ;u,θ) = ∂mi exp{−V (y)}

∂y j1 · · ·∂y jmi

∣∣∣∣∣
y=t f{max(X i ,u)}

mi∏
k=1

Jf
jk

(Xi jk ), i = 1, . . . ,n. (2.30)

In this expression, the indices j1, . . . , jmi are those of the components of X i exceeding the

thresholds u and for x ≥ u, t f(x) = (t f
1(x1), . . . , t f

D (xD )), where t f
j (x j ) =−1/log{F̃ j (x j ;θ j )} and

Jf
j (x j ) = ν j

σ j

(
1+ξ j

(x j −u j )

σ j

)−ξ j−1 1

[log{F̃ j (x j ;σ j ,ξ j )}]2F̃ j (x j ;σ j ,ξ j )
, j = 1, . . . ,D. (2.31)

When D is large, one can also maximize the likelihood in Smith et al. (1997) that uses the tail

approximation F̄ (x) ≈ 1−V (x). In either case, V (x) and the higher-order partial derivatives of

V (x) need to be computed. Ledford and Tawn (1996) use the bivariate max-stable likelihood

for threshold exceedances,

`C (θ) =
n∑

i=1

D−1∑
j=1

D∑
k= j+1

(
log

[
g {t j (xi j ), tk (xi k );θ, t j (u j ), tk (uk )}

]
+1{xi j>u j } log{J j (xi j )}+1{xi k>uk } log{Jk (xi k )}

)
,

where, with V j = ∂V (y j , yk )/∂y j , etc. and t j and J j as in eq. (2.31), we have, for all j = 1, . . . ,D ,

g (y j , yk ;θ,u j ,uk ) =



exp{−V (u j ,uk )}, y j ≤ u j , yk ≤ uk ,

−V j (y j ,uk )exp{−V (y j ,uk )}, y j > u j , yk ≤ uk ,

−Vk (u j , yk )exp{−V (u j , yk )}, y j ≤ u j , yk > uk ,{
V j (y j , yk )Vk (y j , yk )−V j k (y j , yk )

}
exp{−V (y j , yk )}, y j > u j , yk > uk .

Ledford and Tawn (1996) motivate the choice of copula by the lower bias of the estimator in the

case of near-independent variables, but the model cannot readily be extended to higher-order

composite likelihood without a combinatorial explosion of the number of terms.

Uncertainty assessment is performed in the same way as for general estimating equations

(White, 1982). Let h(θ) denote an unbiased estimating function and define the variability
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matrix J, the sensitivity matrix H and the Godambe information matrix G, as

J =E
(
∂h(θ)

∂θ

∂h(θ)

∂θ

>)
, H =−E

(
∂2h(θ)

∂θ∂θ>

)
, G = HJ−1H. (2.32)

The maximum composite likelihood estimator is strongly consistent and asymptotically nor-

mal, centered at the true parameter θ with covariance matrix G−1. The composite likelihood

information criterion must be adjusted to account for model specification and is the Takeuchi

information criterion, defined as

CLIC=−2`c (θ̂)+2tr(JH−1).

Davison and Gholamrezaee (2011) propose scaling the latter, yielding CLIC∗ = cCLIC, to make

it comparable to the value of the Akaike information criterion for independent observations.

The constant c will depend on the dimension of the likelihood; it is (n −1)−1 for pairwise

likelihood. Further adjustments are needed in case of missing values.

Hypothesis testing proceeds in the usual way. Suppose we are interested in testing for a

particular value of a parameter of interest ψ. Specifically, partitioning θ = (ψ,λ) into a q-

dimensional parameter of interestψ and a (p −q)-dimensional nuisance parameter λ, along

with the corresponding partitions H, J and G. Let θ̂C = (ψ̂C ,λ̂C ) denote the maximum com-

posite likelihood parameter estimates and θ̂ψ0 = (ψ0,λ̂ψ0
) the restricted parameter estimates

under the hypothesis that the restricted model is adequate. The asymptotic distribution

of the composite likelihood ratio test statistic 2{`C (θ̂C )−`C (θ̂0)} is that of c1Z1 +·· ·+ cq Zq ,

where Z1, . . . , Zq are independent χ2
1 variables and ci are the eigenvalues of the q ×q matrix

(Hψψ−H
ψλ

H−1
λλ

H
λψ

)G−1
ψψ (Kent, 1982). Alternatively, one could also use a curvature adjust-

ment (Ribatet et al., 2012, § 2.2) and modify the statistic so that its asymptotic distribution

is χ2. Specifically, the composite log-likelihood is evaluated at θ̂c +M−1(θ̂0)MG(θ̂0)(θ̂0 − θ̂),

where M(θ)>M(θ) = H(θ) and MG(θ)>MG(θ) = G(θ). The matrices MG and M can be retrieved

using singular value decomposition.

The sensitivity matrix H is obtained from the Hessian matrix at the maximum composite

likelihood estimate. The variability matrix J can be estimated directly, cf. Padoan et al. (2010, p.

266), but often it is preferable to estimate G−1 by the empirical covariance of B nonparametric

bootstrap replicates and compute J through eq. (2.32). Varin (2008) and Varin et al. (2011)

survey composite likelihood inference.

Example 2.30 (Composite likelihood for river flow on the Isar)

The following appeared in Belzile and Nešlehová (2017). We illustrate the use of censored

likelihood estimation for peaks-over-threshold by fitting the scaled extremal Dirichlet model

on a trivariate sample of daily river flows of the river Isar in southern Germany; this dataset

is a subset of that analyzed in Asadi et al. (2015). We selected data measured at Lenggries

(upstream), Pappinger Au (in the middle) and Munich (downstream). To ensure stationarity of

the series and as the most extreme events occur during the summer, we restricted our attention

to June, July and August. Since the sites measure the flow of the same river, dependence at
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σ1 σ2 σ3 ξ1 ξ2 ξ3

Scaled Dirichlet 123 7 84 5 68 4 0.05 0.04 −0.03 0.04 0.02 0.04

Neg. logistic 117 7 86 5 70 4 0.08 0.04 −0.05 0.04 0 0.04

Logistic 117 7 87 5 70 4 0.08 0.04 −0.05 0.04 0 0.04

Coles–Tawn 114 7 84 5 68 4 0.12 0.04 −0.02 0.04 0.04 0.04

Marginal 129 14 95 11 76 9 −0.01 0.08 −0.15 0.08 −0.08 0.08

Table 2.1 – Generalized Pareto parameter estimates and standard errors (subscripts) for Ex-
ample 2.30 using pairwise composite likelihood estimation for five models (scaled
Dirichlet, logistic, negative logistic, Coles–Tawn and independence likelihood).

α1 α2 α3 κ

Scaled Dirichlet 0.8 0.3 1.6 0.8 2 1.2 −0.3 0.1

Neg. logistic 1 1 1 0.36 0.02

Logistic 1 1 1 −0.28 0.01

Coles–Tawn 3.3 0.5 10 3 13 4 1

Table 2.2 – Dependence parameters estimates and standard errors (subscripts) for Example 2.30
using pairwise composite likelihood estimation for four models (scaled Dirichlet,
logistic, negative logistic, Coles–Tawn).

extreme levels is likely to be present. Directionality of the river may lead to asymmetry in the

asymptotic dependence structure, suggesting that the scaled extremal Dirichlet model may

be well-suited for these data. Furthermore, as the Coles–Tawn, logistic and negative logistic

models are nested within this family, their adequacy can be assessed through likelihood

ratio tests. We used the changepoint score test of Northrop and Coleman (2014) and the

simultaneous parameter stability plot of Wadsworth (2016) (not shown here) to select the

thresholds u = (u1,u2,u3), set at the 92% marginal percentile of each series. River flows

exhibit temporal dependence and clusters of extreme values; we estimated the extremal

index using the weighted least square and maximum likelihood estimator of Süveges (2007),

suggesting values between 0.5 and 0.3. As such, we used the runs estimator of O’Brien (1987)

with r = 3; since the series are multivariate, we keep only the cluster maxima for running

windows of overlapping days. Set θ = (σ,ξ,α,κ), where σ and ξ are the marginal parameters

of the generalized Pareto distribution and κ andα are the parameters of the scaled extremal

Dirichlet model. To estimate θ, we employed the pairwise composite log-likelihood lC in

Section 2.6.4 and fitted the scaled extremal Dirichlet model (cf. Example 2.17) as well as

the logistic, negative logistic and Coles–Tawn extremal Dirichlet models to cluster maxima.

The estimates of the marginal generalized Pareto parameters σ and ξ are given in Table 2.1.

As the estimates were obtained by maximizing `C , their values depend on the fitted model;

site-wise quantile-quantile plots indicate good marginal fit of the scaled extremal Dirichlet

model (Belzile and Nešlehová, 2017).

The estimates of the dependence parameters α and κ are given in Table 2.2. Whether the
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asymmetry is significant can be assessed through composite likelihood ratio tests. To this

end, consider a partition of θ = (ψ,λ) into a q dimensional parameter of interest ψ and

a 3d + 1− q dimensional nuisance parameter λ, and the corresponding partitions of the

sensibility, variability and Godambe information matrices H, J and G. Since the Coles–Tawn

extremal Dirichlet, negative logistic and logistic models are nested within the scaled extremal

Dirichlet family, we test for a restriction to these simpler models: the respective approximate

P-values of 0.003, 0.74 and 0.78 suggest that while the Coles–Tawn extremal Dirichlet model is

clearly not suitable, there is insufficient evidence to discard the logistic and negative logistic

models. The effects of possible model misspecification are visible for the Coles–Tawn extremal

Dirichlet model, as the values ofα1,α2 andα3 reported in the last line of Table 2.2 are very large

and the shape parameter estimates in Table 2.1 are significantly larger than those obtained for

the independence likelihood.

�
Example 2.31 (Composite likelihood for conditional spatial extremes)

Parameter estimates can be obtained through the composite likelihood for standardized data

X observed at sites s j , j = 1, . . . ,D with fZ the density function of Z; denoting the parameters

of the normalizing functions and the residual process by θ, we have

L (θ; x) =
D∏

j=1

n∏
i=1

fZ

({
x i ,− j −b(xi , j , sk − s j )

a(xi , j , sk − s j )

}
k 6= j

)
D∏

j 6=k
k=1

a(xi , j , sk − s j )−11{xi , j>ui }.

An observation vector may correspond to an exceedance at multiple sites concurrently, so

would contribute multiple times to the likelihood.
�

Gradient score

Other estimating equations could be used to circumvent the calculation of V (x) and its

partial derivatives. An interesting alternative in the framework of proper scoring rules is the

gradient score of Hyvärinen (Hyvärinen, 2005), adapted for peaks-over-threshold inference by

de Fondeville and Davison (2018). The gradient score is

δw (x) =
D∑

i=1

(
2wi (x)

∂wi (x)

∂xi

∂ logh(x)

∂xi
+w2

i (x)

[
∂2 logh(x)

∂x2
i

+ 1

2

{
∂ logh(x)

∂xi

}2
])

,

for a differentiable weighting function w(x), unit Pareto observations x and density h(x).

The parameter estimates are obtained as the solution to argmaxθ∈Θ
∑n

i=1δw (x i )1{l(x i /u)>1},

where θ is the vector of parameters of the model and l is a differentiable risk functional,

usually the `p norm for some p ∈N+ . Although the gradient score is not asymptotically the

most efficient estimating equation, this makes little practical difference in high-dimensional

settings in which the number of parameters is small relative to the number of sites. The

weighting function w(x) can be chosen to reproduce approximate censoring (de Fondeville

and Davison, 2018).
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Example 2.32 (Gradient score for the Brown–Resnick process)

Assuming unit Pareto margins and using the intensity function of the Poisson point process in

Wadsworth and Tawn (2014), de Fondeville and Davison (2018) derived the gradient score

∇x logλ(x) =−A log(x)¯x−1 −x−1 ¯
(
Σ−11D

1>
DΣ

−11D

+1D + A−1σ

2

)
, (2.33)

where A =Σ−1 −Σ−11D 1D
>Σ−1/1D

>Σ−11D and σ= diag(Σ) as in Example 2.29 and where ¯
denotes the Hadamard product (entrywise product) between two matrices. The diagonal

terms of the Hessian matrix H with entries Hi i = ∂2 logλ(x)/∂x2
i , are

diag(H) =−diag(A)
[{

1− log(x)
}

x−2]+ [
{A−diag(A)} log(x)

]¯x−2

+
(

x−2

2

)
¯

(
2Σ−11D

1>
DΣ

−11D

+21D +A−1σ

)

=−diag(A)¯x−2 +{
A log(x)

}¯x−2 +
(

x−2

2

)
¯

(
2Σ−11D

1>
DΣ

−11D

+21D +A−1σ

)
.

�

Example 2.33 (Gradient score for the extremal Student process)

With the notation of Example 2.7 and assuming again that the marginal parameters are known,

we suppose without loss of generality that the components of the vector of observations x are

ordered from largest to smallest and consider first the case where some components of x are

truncated at zero, so that x1:k > 0k , x (k+1):D = 0D−k }. Recall the intensity of the D-dimensional

process,

logλ+(x)
x∝−

(
ν+D

2

)
log

{
x1/ν

1:k
>
Σ−1x1/ν

1:k

}
+ 1−ν

ν
log(x1:k )>1D + log

{
StD+ν(x1/ν

(k+1):D ;ηk ,Ωk )
}
.

The last term is the distribution function of a (D −k)-dimensional Studen variable whose

location vector ηk and scale matrixΩk are both functions of x1:k . For the (D −k)-dimensional

censored component, the score is easily seen to be zero by the chain rule. However, the contri-

bution of the (D −k) dimensional distribution function term is non-zero for the components

x1:k and must be evaluated numerically by Monte Carlo methods. If x ∈RD
+ has only strictly

positive components, the score is

∇x logλ(x) =− (ν+D)Σ−1x1/ν¯x1/ν−1

νa(ν, x)
+ 1−ν

ν
x−1,

where a(ν, x) = x1/ν>
Σ−1x1/ν. The diagonal elements of the Hessian are

diag(H1:k ) =−ν+D

ν

[( 2
ν −1

)
diag(Σ−1)¯x2/ν−2 + ( 1

ν −1
){
Σ−1 −diag(Σ−1)

}
x1/ν¯x1/ν−2

a(ν, x)

]

+ 2(ν+D)

ν2a(ν, x)2Σ
−1x1/ν¯Σ−1x1/ν¯x2/ν−2 − 1−ν

ν
x−2.
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�
Example 2.34 (Gradient score of scaled extremal Dirichlet family)

Consider the intensity function of the scaled extremal Dirichlet max-stable vector given in

Example 2.16 with unit Fréchet observations. Straightforward calculations give the gradient

and the diagonal terms of the Hessian for the gradient score.

∂ log{λ(x)}

∂xi
=−

(ᾱ+κ)c(αi ,κ)1/κx1/κ−1
i

κ
∑D

j=1{c(α j ,κ)x j }1/κ
+

(αi

κ
−1

) 1

xi
,

∂2 log{λ(x)}

∂x2
i

=
(ᾱ+κ)c(αi ,κ)1/κx1/κ−1

i

κ
∑D

j=1{c(α j ,κ)x j }1/κ

[
(κ−1)

κxi
+

c(αi ,κ)1/κx1/κ−1
i

κ
∑D

j=1{c(α j ,κ)x j }1/κ

]
− αi −κ

κx2
i

,

where c(α,κ) = Γ(α+κ)/Γ(α). These expressions can be inserted into eq. (2.33) with a suitable

weighting function.
�

Pseudo-likelihood

In the Heffernan and Tawn conditional extremes model, the model parameters are estimated

under the working assumption that the residual vector follows a NoD (µ,diag{σ2}) distribution.

Example 2.35 (Pseudo-likelihood for the conditional extremes model)

Consider the Heffernan–Tawn conditional extremes model presented in Section 2.4. The

pseudo maximum likelihood estimator can be obtained from the empirical data through

constrained optimization using the estimating function

L (α|k ,β|k ,µ|k ,σ|k ; xg) =
n∏

i=1

D∏
j=1
j 6=k

φ

(
xg

i , j −a j |k (xg
i ,k )−b j |k (xg

i ,k )µ j |k

b j |k (xg
i ,k )σ j |k

)1{xg
i ,k>uk }

.

�

2.6.5 Nonparametric estimation of the angular measure

In low dimensions, empirical estimation of the angular measure given in Equation (2.22) is

an interesting avenue for inference. Consider a collection of independent and identically

distributed vectors X with continuous marginal distributions that are in the max-domain of

attraction of a max-stable distribution. One can transform the observations X i to the unit

Pareto scale X p using the probability integral transform, whereby ui j = {1−rank(xi j )/(n+1)}−1,

or else using the semi-parametric estimator of eq. (2.29). Once a vector X p
i has been obtained,

we can form pseudo-angles by taking ri =
∑D

j=1 xp
i j and wi j = xp

i j /ri for i = 1, . . . ,D −1.

The angular distribution ρ1(dw ) given in eq. (2.11) asymptotically satisfies the moment con-

straint
∫
S1
ω jρ1(dω) = 1/D for j = 1, . . . ,D ; this constraint can be imposed through empirical

likelihood (Einmahl and Segers, 2009). We propose a novel extension that allows for estimation
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of the angular measure (2.22) of l-Pareto processes.

Let lbe a homogeneous risk functional; the collection of angles {w i }N
i=1 for which l(X p) > u

should be approximately distributed according to the angular distribution ρl,ang of eq. (2.22);

we can use the change of measure formula (2.24) with α= 1 to derive weights {ai }N
i=1 with ai =

l(w i ) to adjust for the fact that inference is performed using observations that approximately

follow ρ1.

The corresponding maximum empirical likelihood estimator of the spectral measure ρl,1(dw )

solves

max
p∈[0,1]k

n∏
j=1

a j p j

(
n∑

i=1
ai pi

)−1

,
N∑

i=1
pi = 1,

N∑
i=1

pi w i = D−1.

The empirical probabilities p̂ j associated to the unique observations w j ∈ S1 can be obtained

through the Lagrange multiplier method for an arbitrary known weighting function ai ,

L=
n∑

j=1
log(a j p j )−n log

(
n∑

j=1
a j p j

)
+nγ

(
n∑

j=1
p j −1

)
+nλ>

(
n∑

i=1
p j w j −D−1

)
,

where γ,λ are Lagrange multiplier coefficients. The solution of the Lagrangian yields γ =
−λ>D−1 and

pk = s

nak

1

1+κ>(w k −D−1)/ak
,

where s = ∑n
i=1 ai pi and κ = −λs is a dummy variable. If we let bk = (w k −D−1)/ak , the

constraints are such that

1 =
n∑

i=1
pi =

s

n

n∑
i=1

1

ai

1

1+κ>bi
, D−1 =

n∑
i=1

pi w i =
s

n

n∑
i=1

w k

ai

1

1+κ>bi
,

from which we deduce that

s = n∑n
i=1 a−1

i (1+κ>bi )−1
.

The vector κ solves the optimization problem

n∑
i=1

bi

1+κ>bi
= 0,

which is the gradient with respect to κ of

f (κ) =
n∑

i=1
log

(
1+κ>bi

)
. (2.34)

It thus remains to find the minimum of eq. (2.34). As − f is convex over the set {κ ∈RD : 1+

137



Chapter 2. A panorama of spatial extremes

κbi > 0, i = 1, . . . ,n}, the optimum solution will be found via iterated least-squares, replacing

log by a self-concordant quartic approximation that will guarantee convergence to the global

minimum provided that D−1 lies in the convex hull of {w i } (Owen, 2013).

de Carvalho et al. (2013) proposes to use Euclidean likelihood to calculate the optimal weights

subject to a mean constraint. They use the objective function −∑N
i=1(N pi −1)2/2 subject to

the constraints
∑N

i=1 pi = 1 and
∑N

i=1 pi w i = D−11D , the main benefit of which compared to

empirical likelihood is the existence of a closed-form solution that can be obtained by least

squares. A drawback is that the weights pi could be negative, even if this is rare in practice.

Consider a set of unique observations w j ∈ S1, each weighted by a known function a(w j );

the objective function of the Euclidean likelihood is
∏n

j=1 a j p j /
(∑n

i=1 ai pi
)

with constraints

p j ≥ 0,
∑n

j=1 p j = 1 and
∑n

j=1 p j w j = D−1. The Lagrange function is

L=
n∑

j=1
log(a j p j )−n log

(
n∑

j=1
a j p j

)
+nγ

(
n∑

j=1
p j −1

)
+nλ>

(
n∑

i=1
p j w j −D−1

)
.

Define qi = ai pi , s =∑n
i=1 qi and r =∑n

i=1 q2
i ; differentiating the Lagrangean with respect to

p j and setting the result to zero gives deduce γ=λ>d−1 and substituting this value yields

n∑
i=1

(nqi − s)(Ii= j s −qi ) = nq j s −nr =− s3

a j n
λ>(w j −d−1)

and so

q j =
r

s
− s2

a j n2λ
>(w j −d−1),

where s is the solution of the cubic equation

s3
n∑

i=1

λ>(w i −d−1)

ai n2 + s2 − r n = 0.

The constraints for the mean and the sum of the weights yield

n∑
j=1

r

sa j
(w j −d−1)−

n∑
j=1

s2

n2a2
j

(w j −d−1)λ>(w j −d−1) = 0.

These derivations show that the solution of the Euclidean likelihood for weighted observations

cannot be found by ordinary least squares.

A nonparametric estimator of the spectral measure (2.22) is Ĥ(w) =∑N
i=1 p̂i I{wi ≤ w}, where

p̂i solves either the empirical or Euclidean likelihood problems with a mean constraint (de Car-

valho et al., 2013; Einmahl and Segers, 2009). Since the resulting spectral distribution is discrete

(which is problematic in simulations), de Carvalho et al. (2013) suggest fitting a Dirichlet kernel

to observations, with parameters νw i (i = 1, . . . ,D) subject to the constraint ‖νw i‖1 = 1. The
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“bandwidth” tuning parameter ν is chosen via cross-validation as the solution of (personal

communication with Michał Warchoł)

argmax
ν∈R

n∑
i=1

log


n∑

k=1
k 6=i

pk,−i f (w i ;νw k )

 ,

where f is the density of the Dirichlet distribution, pk,−i is the Euclidean weight obtained

from estimating the Euclidean likelihood problem without observation i , so
∑n

k=1,k 6=i pk,−i = 1.

A drawback of this approach is that there is no closed-form expression for the leave-one-out

procedure and one needs to perform n distinct optimizations.

2.7 Dependence measures and diagnostics

We focus here on some (typically bivariate) summaries of dependence that are used as

goodness-of-fit diagnostics. Since the focus of this work is on parametric modelling of spatial

extremes, we will be interested in the ability of the fitted model to reproduce the dependence

structure and empirical estimates of the dependence measures can be used as diagnostics of

model adequacy and goodness-of-fit.

2.7.1 Coefficients of tail dependence

To classify processes according to their tail behaviour, we consider the following notion.

Definition 2.35 (Tail correlation coefficient and asymptotic independence)

For a D-dimensional absolutely continuous random vector X with distribution function F

and marginal distribution functions Fi (i = 1, . . . ,D), the tail correlation coefficient χ is

χ≡ lim
v→1

χ(v) = lim
v→1

P{F−1
1 (X1) > v, . . . ,F−1

D (XD ) > v}

1− v
.

The tail correlation coefficient χ lies in [0,1]; the upper bound is achieved by the comonotonic

copula C (v) = min(v), whereas the lower bound is reached in the bivariate case by counter-

monotonic vectors, whose copula is C (v) = max{0,u1 +u2 −1}. In the case of independence,

χ(v) = (1− v)D−1. If χ> 0, the survival copula decays to zero at the same rate as the marginal

survivor function and we say that X is asymptotically dependent and, if χ= 0, asymptotically

independent.

We consider empirical estimators of the tail correlation coefficient introduced in Defini-

tion 2.35. Let C denote the copula of X , C (v) = F {F−1
1 (v1), . . . ,F−1

D (vD )}; the bivariate coeffi-

cient of upper tail dependence is (Coles et al., 1999)

χ= lim
v→1

P{F1(X1) > v | F2(X2) > v} = lim
v→1

P{F1(X1) > v | F2(X2) > v}

P{F2(X2) > v}
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= lim
v→1

P[mini {Fi (Xi ) > v}]

1− v
(2.35)

= 2− lim
v→1

1−C (v, v)

1− v
.

The bivariate empirical estimator is usually defined as 2− log{C (v12}/ log(v) by making the

approximation 1− v ∼− log(v),1−C (v, v) ∼− log{C (v, v)} for v ¿ 1. The resulting estimand is

constant for bivariate extreme value distributions.

We can estimate the D-variate coefficient of upper tail dependence through Equation (2.35).

Suppose that an n-sample from X is available, denoted by the n ×D matrix X with (i , j )th

entry xi , j . An estimator of χ(v) is obtained by replacing the probability of exceedances of the

structure variable pv =P[minD
j=1{F j (X j ) > v}] by its empirical counterpart

p̂v = n−1
n∑

i=1
1{minD

j=1{rank(xi j )/(n+1)}>v},

where rank(xi j ) =∑n
k=1 1{xi j≥xk j }. Assuming absolute continuity, 1{mini {Fi (Xi )}>v} ∼ Bin(n, pv )

and an estimator of the variance of χ̂(v) = p̂v /(1− v) can be obtained by the delta-method as

n−1p̂v (1− p̂v )/(1−v)2. Alternatively, any empirical estimator of the survival copula, such as

the beta copula (Segers et al., 2017),

Ĉβ(v ) = n−1
n∑

i=1

D∏
j=1

n∑
s=rank(xi j )

(
n

s

)
v s

j (1− v j )n−s , (2.36)

could be employed.

If we transform the marginal distributions to unit Pareto, with X p
i = {1−Fi (Xi )}−1 and x = (1−

v)−1, then P
(

minD
j=1 X p

j > x
)∼χ/x. While χ= 0 for any asymptotically independent process,

such processes may exhibit different penultimate tail behaviour; Gaussian random vectors

with correlation matrix different from 1D 1>
D are examples of asymptotically independent

processes.

If χ= 0, the tail correlation coefficient says nothing about the rate of decay of dependence. To

better characterize the joint rate of decay of the survivor function, write

P
(

D
min
j=1

X p
j > x

)
= L(x)x−1/η, η ∈ (0,1],

with L(x) ∈ RV0 a slowly varying function, meaning limx→∞ L(t x)/L(x) = 1 for any t > 0

(Ledford and Tawn, 1996, § 5). When χ> 0, L(x) → χ as x →∞ and η= 1. The coefficient of

tail dependence, η, takes values in (0,D−1) if the variables are negatively associated, η= D−1

for independent variables and η ∈ (D−1,1] if the variables exhibit positive association. In the

multivariate setting, the coefficients ηC for subsets C ⊂ {1, . . . ,D} satisfy ηC ≤ η.

With unit Pareto margins, the structural variable T p = minD
j=1 X p

j is such that, for large u
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(Ledford and Tawn, 1996, eq. 5.6),

P
(
T p > u + t | T p > u

)∼ L(u + t )

L(u)
(1+ t/u)−1/η,

so we can estimate η by fitting a generalized Pareto distribution with shape η and scale ηu

to exceedances of T p above u. If we transform the data to exponential margins instead and

define T e = minD
j=1 X e

j , then

P
(
T e > u + t | T e > u

)≈ exp(−t/η), u →∞,

and the maximum likelihood estimator of the scale parameter η coincides with the Hill

estimator,

η̂e = n−1
u

n∑
i=1

(
D

min
j=1

xe
i j −u

)
, nu = #

{
i :

D
min
j=1

xe
i j > u

}
.

It is enlightening to consider marginal transformation of the data, as illustrated in Figure 2.6:

with unit Pareto margins, extrapolation is done on rays from the origin and the probability

of lying in the set r A (grey hashed) can be estimated based on the relation P
(
Y p ∈ r A

) ∼
r−1/ηP

(
Y p ∈ A

)
for an extreme set A. The right plot shows the same data transformed to

exponential margins, where now P
(
Y e ∈ r + A

) ∼ exp(−r /η)P
(
Y e ∈ A

)
and extrapolation is

done by translating the set A along the 45◦ degree line. In both cases, the probability of the

less extreme set A can be estimated empirically.

Alternative estimators of the tail dependence coefficient η reviewed in § 9.5.2 of Beirlant et al.

(2004) may work better when convergence of the ratio L(u + t )/L(u) → 1 is slow.

One drawback of the Ledford and Tawn approach is that both components must decay at

the same rate. Wadsworth and Tawn (2013) propose to look at different extrapolation paths

by replacing the multivariate regular variation by a collection of univariate regular variation

assumptions, assuming that for β ∈RD
+ \ {0D },

P
(
Y e >β log(t )

)= t−κ(β)L(t ;β), t →∞,

where L(t ;β) is a slowly varying function and κ is a non-decreasing homogeneous function

of order 1, termed the angular dependence function, that depends on β through the angle

ω = β/‖β‖1 ∈ S1. Extrapolation can be performed as before upon rays at angles ω. Under

positive quadrant dependence, κ is convex and pointwise estimates can be obtained by

ignoring the slowly-varying function and estimating the tail index, with Y e/β as input data.

Further properties of the angular dependence function, given in Wadsworth and Tawn (2013),

can be exploited to obtain more efficient estimates across a range of angles but the slowly-

varying function changes withω and this is likely to impact estimators of κ.

Another widely used tail dependence coefficient is χ̄= 2η−1, which gives χ̄ ∈ (−1,1] (Coles
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Figure 2.6 – Empirical extrapolation of the tail probability based on hidden regular variation in
Pareto margins (left) and exponential margins (right).

et al., 1999). An estimator of the latter is χ̄(v) = 2log(1− v)/ log{C̄ (v1D )}−1 for v ∈ (0,1) and

C̄ an estimator of the survival copula. For the empirical estimator, we obtain approximate

pointwise standard errors through the delta-method.

Example 2.36 (Detection of asymptotic dependence and extrapolation)

Figure 2.7 shows empirical estimates of η andχ for daily summer rainfall measurements at four

weather stations in canton Zürich (Zürich Fluntern, Zürich Kloten, Dietikon and Effretikon)

for the period 1962–2012. The pairwise distance between stations is less than 25 km. Rainfall

extremes tend to be due to mixture of events (large scale depression systems), but are often

localized as the intensity increases. The empirical coefficient of tail dependence η̂ is stable

below 0.8. This is contrast with estimates obtained through Hill or maximum likelihood

estimates of η (not shown), which are unstable and tend to one. The estimate of χ decreases

towards zero, incompatible with asymptotic dependence and typical in applications.

�

2.7.2 Extremogram

Davis and Mikosch (2009) discuss an analog of the correlogram designed for extremes, the

so-called extremogram, based on the tail empirical process. For sets A,B ⊂Rm bounded away

from the origin,

%AB (h) = lim
x→∞P (Z (h) ∈ xB | Z (o) ∈ x A) , h ∈Rm .

142



2.7. Dependence measures and diagnostics

0.80 0.85 0.90 0.95 1.00

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

v

η

---------------------------------------

---------------------------------------

0.80 0.85 0.90 0.95 1.00

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

v
χ

----------------------------------
-
-
--

-

---------------------------------------

Figure 2.7 – Empirical tail dependence (left) and tail correlation coefficients estimated using
the Beta copula (2.36), with pointwise asymptotic 95% confidence intervals. The
dashed line at 0.25 in the left panel indicates the theoretical η for independence.

In the unidimensional setting with m = 1 and with sets of the form A = B = (z,∞), the ex-

tremogram reduces to the pairwise χ coefficient of Ledford and Tawn (1996). Max-stable

processes have positive pairwise dependence, i.e., χ(h) ≥ 0. The function χ(h) for sites s j , sk

at lag distance h and Z∗(S) a simple max-stable process is

χ(h) = lim
z→∞P

(
Z∗(s j ) > z | Z∗(sk ) > z

)
.

Proposition 2.36 (Extremal coefficient for l-Pareto processes)

de Fondeville and Davison (2018) proposed a variant of χ that targets risk exceedances of the

form

%(v ; s j , sk ,l) =P
(
Y ∗(s j ) > v | Y ∗(sk ) > v,l{Z∗(S)} > u

)
.

Whenever Au := {Y ∗ : l(Y ) > u} ⊆ {Y ∗ : Y ∗(s j ) > v,Y ∗(sk ) > v}, then %(v ; s j , sk ,l) = 2 −
θ(s j , sk ).

Proof

Consider a pairwise vector Y ∗ with unit Pareto margins defined over the risk region Au , since

P
(
Y ∗(sk ) > v,l{Y∗(S)} > u

)= 1/{vΛ(Au)}. We have

%(v ;l) = P
(
Y ∗(s j ) > v,Y ∗(sk ) > v,l{Y∗(S)} > u

)
P

(
Y ∗(sk ) > v,l{Y∗(S)} > u

)
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= vΛ(Au)
{
P

(
Y ∗(s j ) > v

)+P
(
Y ∗(sk ) > v

)−P
(
Y ∗(s j ) ≤ v,Y ∗(sk ) ≤ v

)}
= vΛ(Au)

[
2{vΛ(Au)}−1 −

V j k (v12)

Λ(Au)

]
,

using the −1-homogeneity of V , which givesΛ{z : z ∈ [0, v12)c} =V j k (v12).

�

An empirical estimator is obtained by thresholding the data at a large quantile, for example

u j = F−1
s j

(1− p), and calculating the fraction of points falling in the region defined by the

marginal thresholds and the functional threshold u associated to the risk functional l,

%̂(s j , sk ,l) =
∑n

i=1 1{l(y i )>u}1{yi j>u j }1{yi k>uk }∑n
i=1 1{l(y i )>u}1{yi j>u j }

;

the ratio estimator %̂(s j , sk ,l) provides empirical estimates of the probability of joint marginal

and risk exceedances. Davis et al. (2012) advocate the use of a stationary block bootstrap

procedure for uncertainty assessment of the extremogram.

2.7.3 Extremal coefficient

The extremal coefficient is the exponent measure evaluated at 1D , θ1:D :=V (1D ). If Z ∗ is a D-

dimensional simple max-stable vector, P (Z ∗ < z1D ) = exp(−θ1:D /z) for any z ∈R, owing to ho-

mogeneity of V and χi j = 2−θi j . The extremal coefficient was introduced by Buishand (1984)

in the multivariate setting and in Smith (1990),Coles (1993) and Schlather and Tawn (2003) for

max-stable processes. If C is the extreme value copula of Z ∗, then θ = log{C (u1D )}/ log(u) for

any u ∈ (0,1) and we can use this as a diagnostic of max-stability, replacing C by an empirical

estimator of the copula and checking whether or not the estimator is constant over u ∈ (0,1).

The range of admissible values for the extremal coefficient at D sites is [1,D], with 1 corre-

sponding to comonotonicity and D to independence; this led Schlather and Tawn (2003) to

say that the extremal coefficient measures the “effective number of independent variables”.

For a subset C ⊂ {1, . . . ,D}, the extremal coefficient is

θC =
∫
S1

max
i∈C

wiρ1(dw ).

The bivariate extremal function θ(s1, s2) = θ(h) for h = s1 − s2 is the most used summary

of spatial extremal dependence. The dependence between sites can usually be expected to

weaken as the distance between them increases. If Z∗ is a stationary max-stable process, then

2−θ(h) is positive definite, is nondifferentiable at the origin (unless θ(h) is constant and equal

to 1), has at most one jump (at the origin) in dimension D ≥ 2 and is continuous elsewhere

(Schlather and Tawn 2003, Theorem 3). For isotropic processes, θ(h) reduces to a univariate

function θ(‖h‖) : R→ [1,2]. The positive-definitiveness of 2−θ(h) allows one to use it as
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a covariance function. In the spatial setting, further conditions are derived by Cooley et al.

(2006) using properties of the variogram, since 2−θ(h) must be a positive definite function.

The extremal coefficient function θ(h) satisfies the constraints

1. θ(h1 +h2) ≤ θ(h1)θ(h2);

2. θ(h1 +h2)τ ≤ θ(h1)τ+θ(h2)τ−1, 0 ≤ τ≤ 1;

3. θ(h1 +h2)τ ≥ θ(h1)τ+θ(h2)τ−1, τ≤ 0.

Example 2.37 (Extremal coefficient of the Brown–Resnick process)

The pairwise extremal coefficient θ(h) is 2Φ({γ(h)}1/2) for a semivariogram function γ(·) (En-

gelke et al., 2015). For the Smith storm process, the semivariogram is replaced by the Mala-

hanobis distance and γ(h) = 2Φ({h>Σ−1h/2}1/2).

�

Example 2.38 (Extremal coefficient of the extremal Student process)

The pairwise extremal coefficient of the extremal Student process with ν degrees of freedom

and correlation function ρ(·) is (Ribatet, 2013, p. 130)

θ(h) = 2St
([

(ν+1){1−ρ(h)}

1+ρ(h)

]1/2

;ν+1

)
≤ 2St

{
(ν+1)1/2;ν+1

}
, (2.37)

where St(·;ν) denotes the Student distribution function with ν degrees of freedom.

�

Proposition 2.37 (Schlather’s estimator of the extremal coefficient)

Suppose the data matrix consists of D-variate random vectors which are assumed to be

distributed according to a unit Fréchet distribution. For any collection C ⊂ {1, . . . ,D}, the

variable max j∈C Z j is in the max domain of attraction of a Fréchet variable with survival

function H(z) = 1− exp(−θC/z); assuming this holds exactly for large observations above

a threshold u, Schlather and Tawn (2003) propose a censored likelihood estimator. The

contribution to the likelihood for observations falling below u is G(u), while that of the nu

exceedances zi , i = 1, . . . ,nu is g (zi ). The Schlather and Tawn likelihood is

`C(θC; z) = card

{
i : max

j∈C
{z̃i , j } > u

}
log(θC)−θC

n∑
i=1

(
max

{
u,max

j∈C
z̃i , j

})−1

,

where z̃i , j = zi , j n−1 ∑n
i=1 1/zi , j are the Fréchet observations rescaled by the component-wise

harmonic mean. The so-called Schlather estimator corresponds to the maximum likelihood

estimator θ̂C. Thibaud and Opitz (2015) propose an alternative estimator of θ(h) for l-Pareto

processes with max-risk functional in § 2 of the Supplementary Material.

The extremal coefficients satisfy certain ordering properties: let PD be the collection of all

non-empty subsets of the indices {1, . . . ,D} and let CD be any subset of {1, . . . ,D}. For any
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1 < m ≤ D , the extremal coefficient satisfies the inequalities

max

 ∑
C∈Pm \{Cm }

c⊆C

(−1)|C\c|θC

≤ θCm ≤ min

 ∑
C∈Pm \{Cm }

c⊆C

(−1)|C\c|+1θC

 .

These bounds are sharp. Ensuring self-consistency of the estimator translates into a linear

program which is costly to solve except in low dimensions. A simpler constraint applies

for bivariate diagnostics. The pairwise extremal coefficients {θ j k }, j ,k ∈ {1, . . . ,D} are self-

consistent whenever the matrix with entries 1−2(θ j k −1)2 is positive definite.

If observations arise from a stationary isotropic max-stable random field, the Schlather esti-

mator can be plotted against distance to form the analog of the sample variogram cloud. A

function θ̂(h) is obtained by taking

θ̂(h) = 1∨
∑

( j ,k)∈Bh
(card{T j ∩Tk })1/2θ̂ j k∑

( j ,k)∈Bh
(card{T j ∩Tk })1/2

∧2,

where T j is the index set of data for the j th site, θ̂ j k is estimated using complete pairs and Bh

is a bin of width 2ε, defined as

Bh := {( j ,k) : ‖s j − sk‖ ∈ [h −ε,h +ε],card{T j ∩Tk } > 1}.

This smoothing procedure for the binned observations allows one to deal with missing values

and handle the unequal variances due to the different numbers of pairs per bin. It also reduces

the level of noise in the cloud of points.

Proposition 2.38 (Smith’s estimator of the extremal coefficient)

A simpler estimator of the extremal coefficient is obtained by noting that, if Z ∗ has unit Fréchet

margins, the extremal coefficient θ(s1, . . . , sD ) is the scale parameter of 1/max{maxD
j=1 Z∗(s j )} ∼

Exp(θ(s1, . . . , sD )). An estimator of the pairwise extremal coefficient is therefore the reciprocal

arithmetic mean of the observations (Smith, 1990; Coles et al., 1999; Erhardt and Smith, 2012),

θ̂C = n∑n
i=1 min j∈C z∗

i
−1(s j )

,

which is equivalent to the Schlather estimator without reweighting and a zero threshold.

Proposition 2.39 (F -madogram estimator of the extremal coefficient)

Let Fi be the marginal distribution at site si and define the F -madogram as

νF (s j , sk ) = 1

2
E

[∣∣F j {Z (s j )}−Fk {Z (sk )}
∣∣] .

Assuming that the data arise from an isotropic stationary max-stable process, one can write
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νF as a univariate function in h = ‖s j − sk‖, and simple calculations yield

θ(h) = 1+2νF (h)

1−2νF (h)
. (2.38)

A natural estimator of νF for n complete pairs of observations is the rank-based statistic

ν̂F (s j , sk ) = 1

2n2

n∑
i=1

∣∣rank(xi j )− rank(xi k )
∣∣ ,

where rank(xi j =
∑n

l=1 1{xi j≥xl j }. The estimator ν̂F (s j , sk ) ∈ [1,3] by construction, pairwise ex-

tremal coefficients larger than 2 indicating negative dependence between pairs. Alternatively,

one could use the empirical distributions F̃ j , F̃k estimated using all observations, set

ν̃F (s j , sk ) = 1

2n

n∑
i=1

∣∣F̃ j (xi j )− F̃k (xi k )
∣∣ ,

and estimate θ̃(si , s j ) based on eq. (2.38), truncating the pairwise estimates to fall in the

interval [1,3]. Due to its simplicity, the F -madogram based extremal coefficient estimator is a

widely used diagnostic that has superseded the competing estimators.

Example 2.39 (Swiss daily rainfall)

We compute the extremal coefficient for a rainfall dataset from MeteoSwiss which contains

daily cumulated rainfall records from 1863 until 2016 at 163 stations over Switzerland. Esti-

mates for the three different methods, based on yearly maxima, are displayed in Figure 2.8.

The Schlather–Tawn estimator is highly sensitive to the choice of threshold, with higher values

leading to stronger dependence estimates because of the censoring scheme. All estimates

broadly indicate a decrease of dependence with distance, but it is hard to conclude whether

events become asymptotically independent as h increases, due to the small size of the domain.

�
Proposition 2.40 (λ-madogram estimator)

An extension proposed in Naveau et al. (2009) gives different weight to the pairs. The λ-

madogram is defined for λ ∈ (0,1) as

νF (h,λ) = 1

2
E

(∣∣∣Fλ
j (Z (s j ))−F 1−λ

k (Z (sk ))
∣∣∣) .

If the data are in the max-domain of attraction of a simple multivariate extreme value distribu-

tion, then

νF (h,λ) = Vh(λ,1−λ)

1+Vh(λ,1−λ)
− 3

2(1+λ)(2−λ)
.

Naveau et al. (2009) propose the empirical estimator

ν̂F (s j , sk ,λ) = 1

2n

n∑
i=1

∣∣∣F̃λ
j (xi j )− F̃ 1−λ

k (xi k )
∣∣∣ ,

147



Chapter 2. A panorama of spatial extremes

1.0

1.5

2.0

0 100 200 300

E
xt

re
m

al
co

ef
fi

ci
en

t
θ(
h
)

Smith

1.0

1.5

2.0

0 100 200 300

F -madogram

1.0

1.5

2.0

0 100 200 300

distance h (in km)

0

60

120

180

240

300
frequency

Schlather–Tawn

Figure 2.8 – Empirical extremal coefficient cloud for the Swiss rainfall data, calculated using
Smith’s estimator (left), the F -madogram (middle) and Schlather’s estimator thresh-
olded at the 50% percentile displayed alongside the binned estimate average curve
in white (right).

along with a boundary-corrected estimator. The λ-madogram provides a non-parametric

estimator of the exponent measure V and allows one to consider directions other than v1D ,

similar in spirit to Wadsworth and Tawn (2013).

2.7.4 Extremal concurrence probability

Concurrence of extreme events arises naturally in the spectral construction of max-stable pro-

cesses for which all the information is observed. Dombry et al. (2018) introduced the extremal

concurrence probability p(s1, . . . , sD ) as the limiting probability of the sample concurrent

probability at fixed locations s1, . . . , sD ∈Sas n →∞. Extremal concurrence corresponds to

the hitting scenario Π= {$}, where $= {1, . . . ,D}; this means that all the values of the max-

stable process stem from a single extremal function. Recall that the marked point process has

elements ϕi = ζi W i and the max-stable process Z ∗ = maxi≥1ϕi ; we thus have

p(s1, . . . , sD ) =P
(∃i ∈N+ :ϕ(i )(s j ) = Z∗(s j ), j = 1, . . . ,D

)
.

The pairwise extremal concurrence probability shares strong connections with the extremal

coefficient and many properties of θ(·) exist in a similar form for p(·), see the Corollary in

Dombry et al. (2018). We can obtain a diagnostic plot akin to the variogram cloud by mapping

the pairwise extremal concurrence probability against the pairwise distance h = ‖s1 − s2‖ for

p(h) ∈ [0,1]; the bounds correspond respectively to independence and comonotonicity. The

extremal concurrence probability can be used to estimate the spatial dependence relative to a

site of interest, or else integrated over a domain to estimate the area of a concurrence cell.

Remarkably, the bivariate extremal concurrence probability p(h) equals Kendall’s τ for max-

stable vectors and an estimate of the latter can be obtained in O{n log(n)} operations (Chris-
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Figure 2.9 – Empirical tail dependence coefficient cloud, η(h) for the Aar basin rainfall data,
calculated using the empirical estimator for η based on observations for the months
of May to September (left). Empirical concurrence probability p(h) estimated using
Kendall’s τ based on yearly maxima for the same series, with superimposed line
giving average for binned estimates based on 30 bins (right).

tensen, 2005). Unfortunately, analytical expressions for p(h) are difficult to obtain for most

processes of interest and one may need to resort to Monte Carlo methods.

Example 2.40 (Extremal concurrence probability of Brown–Resnick process)

Generally, we can relate the exponent measure to the extremal concurrence probability via

p(s1, . . . , sk ) =EY ∗
(
{V (Y ∗)}−1) ,

where Y ∗ is an independent vector identically distributed as Y .

The pairwise extremal concurrence probability function is (Dombry et al., 2018)

p(o,h) =E
((
Φ(Z )+exp

[
γ(h)− {2γ(h)}1/2Z

]
Φ

[
{2γ(h)}1/2 −Z

])−1
)

,

where Z ∼ No(0,1) with associated distribution function Φ. One can approximate this by

Monte Carlo integration, possibly using antithetic variables to reduce the variability of the

estimate.
�

Example 2.41 (Extremal dependence for rainfall)

We consider spatial estimates of the tail dependence coefficient η(h) and extremal concor-

dance probability p(h) for 105 stations located in the Aar watershed, reported in Figure 2.9.

The measurements are daily cumulated rainfall over the period May 1930–October 2014. As

the distance between sites increases, there is a clear decrease in dependence and the estimated

concordance probability drops sharply. Both measures suggest asymptotic independence at

large lags.
�
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Figure 2.10 – Tukey’s probability-probability plot for the test of max-stability with nonparamet-
ric bootstrap 99% confidence region for the null hypothesis. The plot show the
discrepancy between estimated and theoretical probability p̂ −p as a function of
the percentile p. Statistic for D = 10 sites of the Swiss rainfall data based on 103
yearly maxima (left) and test for simulated 10-dimensional Gaussian data with
covariance In +1D 1>

D /2 and logistic max-stable model with α= 0.5 (right).

2.8 Model assessment and diagnostics

Most model diagnostics rely on projections of the data onto univariate summaries using

functionals. For example, Kiriliouk et al. (2019) suggest the use of a quantile-quantile plot for

the multivariate generalized Pareto distribution based on aggregated data; the pseudo-polar

decomposition gives a radial variable that is generalized Pareto distributed.

Proposition 2.41 (Projection of multivariate generalized Pareto)

If X ∼ MGP(σ,ξ1D ,Λ), then for a ∈ [0D ,∞D ), the conditional distribution a X | a X > 0 ∼
GP(a>σ,ξ) (Rootzén et al., 2018, prop. 9.1).

Example 2.42 (Test of max-stability)

If Z is a max-stable process with standard Gumbel margins, with distribution function G(z) =
exp[−V {exp(z)}], then for any subset of size J ⊆ {1, . . . ,D}, the variable ZJ = max j∈J Z (s j )

has distribution function HJ (z) = exp{−exp(z −µJ )}, where µJ = log{VJ (1)|J |)} and 0 ≤ µJ ≤
log(|J |). This follows from the homogeneity of the exponent measure. Gabda et al. (2012)

propose a probability-probability plot based on fitting µJ through maximum likelihood with

the parameter constraints for each set of |J | stations. The data are obtained by pooling

replications of the max-stable field and selecting all subsets of size |J | if
(D
|J |

)
is small, or else a

limited number of stations among those that display the higher dependence so as to maximize

the power of the test (independence being a special case of max-stability). Uncertainty

quantification is performed using a nonparametric bootstrap, as shown in Figure 2.10.
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�

The two main methods for comparing models from different parametric families are informa-

tion criteria based and score based; we review the latter.

2.8.1 Proper scoring rules

Scoring rules (Gneiting and Raftery, 2007) are functionals that assign a penalty based on

the predictive performance of a forecast distribution G ∈ F for an observation y ∼ F , viz.

S(G , y) : F × supp(F ) 7→R∪ {∞}.

A scoring rule S is proper if, for Y ∼ F if EF {S(F,Y )} ≤EF {S(G ,Y )} for all F,G ∈F ; the score is

strictly proper if equality holds only if F =G ; in particular, this implies faithfulness, meaning

the forecaster couldn’t improve his score by deviating from the data generating mechanism

should he know the latter. By convention, smaller values of the scoring rule indicate better

predictive distributions (the latter is said to be negatively oriented); the numerical value is

only useful for comparisons between models.

Popular choices of proper scoring rule for continuous random variables are the log score,

S(G , y) =− log{g (y)} where g = ∂G(x)/∂x is the density associated to G , and the continuous

ranked probability score (CRPS),

S(G , y) =
∫
R

[G(z)−1{y≥z}]2 dz.

For categorical outcomes with K categories, alternatives are the Brier score
∑K

k=1[G(zk )−
1{y=zk }]2 or the quantile score 2[1{y<q̂(τ)}−τ]{q̂(τ)−τ} where q̂(τ) is the estimate of the τth

quantile. The CRPS is the integral of the Brier scores for binary indicators of exceedance.

It may seem natural to consider weighting scoring rules to focus on particular regions of

interest of the forecast distribution, but this can result in improper scoring rules: for example,

if w(z) = 1{z>r }, the score is not proper unless the predictive density is strictly positive (Lerch

et al., 2017). Threshold-weighted versions exist, such as

StwCRPS(G , y) =−
∫
R

w(z) log |G(z)−1{y>z}|dz.

Scores are normally evaluated on hold-out data, and expectations are replaced by averages. If

the data generating mechanism is known, the ideal forecast can be computed but otherwise

one resorts to climatological forecasts for benchmarking, where the latter are typically based

on empirical distributions of the quantity of interest (Gneiting et al., 2007).

While calculation of scores is performed using point estimates in frequentist inference, the

output of Bayesian inference procedures is usually draws from the posterior, from which

posterior predictive samples can be obtained and there are alternative ways to compute scores.

One could estimate the density of the posterior predictive draws and smooth these values, or
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instead use the mixture-of-parameters distribution,

F0(x | y) =
∫
Θ

Fp (x | θ)dp(θ | y),

where p(θ | y) is the posterior distribution and Fp the conditional predictive distribution.

Krüger et al. (2017) recommend using the mixture-of-parameters distribution.

2.9 Summary

This chapter reviews functional extremes, with a focus on spatial parametric extreme value

models. Under the assumption of regular variation, we obtain weak convergence of point-

wise maxima or exceedances of some risk functional to a non-degenerate distribution on

regions bounded away from cones. The point process representation unifies the different

models under a common umbrella, connecting max-stable processes, conditional extremes

and generalized l-Pareto processes and extends the univariate convergence results presented

in Chapter 1. The spectral representation of max-stable processes, given by the de Haan

representation, allows us to derive the intensity function associated toΛ under the assump-

tion of absolute continuity. The derivation of extremal functions proves a fruitful avenue

for simulation algorithms and for likelihood based inference. We have also reviewed some

commonly used diagnostic tools.

The main new contribution is the mev package (Belzile et al., 2019), in which most of the

features listed in this chapter are implemented (Appendix D). Other original material includes

derivations for the scaled extremal Dirichlet model (Examples 2.15 and 2.16), a comparison of

the accept-reject methods for extremal Student (Remark 2.7), the remark about composition

sampling (Algorithm 2.7) and the use of minimax exponential tilting algorithm (Section 3.2.2)

for elliptical models and the use of Monte Carlo algorithms to compute the weights, the bounds

for accept-reject algorithm for the generalized sum-Pareto risk functionals of Example 2.27,

the alternative unconditional simulation algorithm for the spatial conditional extremes model

in Algorithm 2.9, derivation of the gradient score in Examples 2.33 and 2.34 and the weighted

nonparametric estimators of the angular measure for min and max risk functionals using

empirical and Euclidean likelihood in Section 2.6.5.

Many of the ideas in this chapter have been incorporated in the mev package, including

algorithms for simulating l-Pareto processes, in conjunction with simulation algorithms for

conditional Gaussian and Student vectors presented in Chapter 3. Semi-parametric modelling

of low-dimensional extremes based on the pseudo-polar decomposition for arbitrary regions,

using empirical likelihood methods is also implemented.

The assumption of regular variation is key for inference since it is the basis for extrapolation,

but cannot easily be verified in practice. The conditional extremes model of Heffernan–Tawn

is based on weaker assumptions than the l-Pareto processes, but the lack of self-consistency

has prevented its wider use. The spatial extension is very interesting, and the new formulation
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based on mixtures could provide a theoretically-justified but tractable model. Because it is

based on weaker assumptions and can model negative dependence, the need for inferential

censoring is less prominent. Extensions of the methodology seem a fruitful avenue for future

research.

The field of spatial extremes has been undergoing rapid development in recent years, yet

much remains to be done. Max-stable processes, which were among the first models to be

considered, are of limited practical interest because the events they describe are not often

the ones of interest; counterexamples include invasive species outbreaks (Thibaud et al.,

2016). Threshold models are gaining traction in the literature because they can describe

single events, but inference remains challenging because observations are often far from

being extreme in every component. Few parametric models exist for extremes; we have

focused on two families that are derived from elliptical model, namely the Brown–Resnick and

extremal Student models. Extensions that account for skewness exist (Beranger et al., 2017),

but parameter estimation for such models is challenging. The main computational bottleneck

in all cases is due to censoring, and workarounds are needed should one wish to truly tackle

high-dimensional datasets like those encountered in other areas of spatial statistics. Pairwise

composite likelihoods are among the most widely used tools for inference, because of the

high computational cost associated with censored likelihood estimation. Development of

alternative methods, such as the gradient score, require preliminary marginal transformation

and further work is needed to obtain proper uncertainty quantification, often through a

bootstrap. This problem is not unique to gradient scoring, as most estimation methods rely on

multi-stage approaches. In the next chapter, we attempt to quantify this uncertainty from a

likelihood-based perspective, looking at both censored and uncensored likelihood estimation

for max-Pareto processes within Bayesian hierarchical models.

153





3 Bayesian hierarchical modelling of
generalized l-Pareto processes

Multidimensional inference for exceedances has only recently become prominent in the

literature (de Fondeville and Davison, 2018; Rootzén et al., 2018) and few papers concern

applications. Kiriliouk et al. (2019) fit a multivariate generalized Pareto model with struc-

tured components to model rainfall accumulation to study landslides, whereas de Fondeville

(2018) use a two-step approach to fit a spatio-temporal model to storms over Europe. The

class of generalized l-Pareto processes comprises the only non-degenerate limits for func-

tional threshold exceedances under the assumption of generalized regular variation. Their

form is simpler than that of the corresponding max-stable processes, but their use is less

widespread, notably due to the lack of closed-form expressions for the marginal distributions,

which precludes semi-parametric inference based on copulas. The marginal distribution of

a generalized l-Pareto process can be expressed in terms of the measure of risk sets, which

must be evaluated numerically using the limiting intensity measure of the point process and

generalized l-Pareto processes are threshold stable.

Due to the lack of ordering of extremes in dimension D > 2 (Barnett, 1976), there is no unique

definition of what constitutes an extreme. We define exceedances as observations that are

large in the sense that a scalar functional exceeds a high threshold. This means that some of

its components may be small (or even zero in the case of rainfall), leading to a discrepancy

between the asymptotic model for threshold exceedances and the observed realizations. A

common way to resolve this is to marginally censor any observation falling below a threshold,

as the limiting generalized Pareto process distribution is a poor approximation to these points.

The drawback of this approach is that the likelihood contribution of the censored compo-

nents often involves calculation of high-dimensional integrals of elliptical distributions. We

review the most commonly used Monte Carlo method for estimating these integrals, namely

separation of variables, and compare it with an alternative based on minimax exponential

tilting. The latter is more efficient for rare event estimation, but requires solving a linear

program; simulations indicate that for one-tailed regions, minimax exponential tilting is not

competitive. The algorithm is however useful for conditional simulations, which arise in data

augmentation schemes.

For threshold exceedances, the main computational bottleneck is due to censoring. Since
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most spatial models are based on elliptical distributions, difficulties in calculating high-

dimensional elliptical distribution functions hinder large-scale applications and Bayesian

models. Moreover, the spatial extent of some natural phenomena, such as rainfall episodes,

can become very localized as the intensity of the event increases; use of l-Pareto processes

has been criticized because the models are threshold-stable and cannot accommodate this

behaviour (Tawn et al., 2018), even if they can capture independence at large distances.

Proposals based on scale mixture models have been used to accommodate both regimes

(Yuen and Guttorp, 2014; Huser et al., 2017; Huser and Wadsworth, 2019); the tail behaviour

of such models can be derived using Breiman’s lemma. There are drawbacks to using scale

mixture models: the dependence structure must be the same everywhere, inference for

marginal parameters is decoupled from the dependence structure (using copulas or estimating

marginal parameters in a preliminary step), and use of scale mixtures requires evaluation of

high-dimensional integrals to marginalize over the random scale in the presence of censoring,

which limits their applicability. In the Bayesian framework, the scale parameter can be imputed

with the censored observations, but the percentage of censoring in extreme value problems is

higher than in classical settings, since most observations have components that fall below their

marginal thresholds. Imputation of censored observations, conditional on current parameter

values, is possible in elliptical models but leads to slow mixing for Markov chain Monte Carlo

methods because it affects the curvature of the likelihood.

With a generalized l-Pareto process, different scale parameters can lead to very few ex-

ceedances site-wise, so having a marginal threshold equal to the functional threshold leads to

few, or even no, marginal threshold exceedances. Since there are potentially 2D +1 marginal

parameters to estimate assuming a common shape parameter, designing efficient proposals

for the location and scale parameters is tricky in the absence of information about the gradient

of the log-likelihood with respect to the parameters. Another difficulty is the support con-

straints, which are problematic if ξ< 0. Recall the stochastic representation of the generalized

l-Pareto process given in Equation (2.26),

Z=τXξ−1

ξ
+η,

where η is a vector of location parameters, τ is a vector of scale parameters and ξ is the shape

parameter. If we consider the shifted process Z−u and censor observations falling below zero,

the marginal scale parameters now correspond to σ=τ+ξ(u −η) and coincide with those of

the generalized Pareto distributions for marginal exceedances above u.

The generalized l-Pareto process arises from exceedances of {X − l(bn)}/l(an), so each site

has different marginal location and scale parameters asymptotically. For generalized max-

Pareto processes with a common shape parameter, an homogeneous risk functional such as

l(X) = maxD
j=1 X (s j ) leads to modelling the process X−bn . The parameter bn is a threshold

function, and we then set the functional threshold to zero and η= 0D ; this avoids situations in

which most exceedances occur at a single site, because the location parameter is much larger.

156



-15 -10 -5 0 5

-4
-3

-2
-1

0

location parameter

p
ro

fi
le

lo
g-

lik
el

ih
o

o
d

ra
ti

o

0.5 1.0 1.5 2.0

-4
-3

-2
-1

0

scale parameter

p
ro

fi
le

lo
g-

lik
el

ih
o

o
d

ra
ti

o
Figure 3.1 – Profile log-likelihood ratio for the location (left) and scale (right) parameters for a

sample of size n = 200 from a D = 20 dimensional logistic max-Pareto process, with
η= 0D ,τ= 1D , ξ= 0.11D , α= 0.7. Full likelihood (dashed grey line) and censored
likelihood (solid), inferentially censoring observations falling below their marginal
20 percentile (black).

The location parameter (effectively a marginal threshold) is fixed at a pointwise quantile of

the process, much like in the univariate setting. This has two consequences: its uncertainty is

ignored and interpolation will be necessary to extrapolate at other sites where the quantile

level is not observed. While this may seem unsatisfactory, it also remove the identifiability

constraint discussed in Remark 2.8, simplifies the support constraints and reduces the number

of parameters by at least D−1. Moreover, it is unclear whether the location parameter could be

estimated solely based on the censored observations: Figure 3.1 shows the profile likelihoods

for η and τ for a sample of size n = 200 in dimension D = 20 with a common location and scale

parameter for exceedances over u = 40 for a logistic max-Pareto process model. The profile

likelihood ratio for the location parameter shows that the range of potential values is quite

broad even when observations are censored marginally at their 20th percentile; in contrast,

the full likelihood for the uncensored data is much more peaked.

We propose a Bayesian hierarchical model formulation to model threshold exceedances based

on generalized l-Pareto processes. Two-stage estimation for the parameters of the latter is

customary, yet ignores the marginal uncertainty. The study illustrates challenges related to

inferential censoring and demonstrates that, while data augmentation schemes could be

envisioned for commonly used parametric models, they are unlikely to succeed given the high

proportion of non-extreme points. Pseudo-marginal Metropolis–Hastings algorithms are used

to speed up computations and make inference feasible. The method is illustrated on rainfall

extremes in Switzerland: our data application shows evidence of model misspecification,

which appears when performing joint estimation of marginal and dependence parameters,
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despite flexible models being employed for the latter. We compare the added uncertainty

associated with marginal parameters with results from two-stage estimation and report results

from simulation studies with a logistic model.

Our aim is threefold. First, we compare the efficiency of different methods for estimating

the likelihood. Second, we look at the loss of information resulting from censoring and

the relative efficiency of the censored and full likelihoods for multivariate generalized Pareto

distributions. Third, we construct a joint model using the pseudo-marginal method to estimate

all parameters simultaneously and compare this approach with the two-step method used by

Thibaud (2014).

3.1 Basics of Markov chain Monte Carlo methods

We begin with a review of Markov chain Monte Carlo methods. Most of the notions presented

are standard and can be found in Gelman et al. (2013), Robert and Casella (2005) and Brooks

et al. (2011). In Bayesian statistics, the target of inference is the posterior distribution

p(θ | y) ∝ p(y | θ)p(θ)∫
Θ p(y | θ)p(θ)dθ

, (3.1)

where p(y | θ) is the likelihood function and p(θ) the prior; we denote the unnormalized

posterior by π(θ) = p(y | θ)p(θ). The normalizing constant of the posterior distribution, the

denominator on the right-hand side of eq. (3.1), is typically intractable, and numerical schemes

that circumvent its calculation are needed. Markov chain Monte Carlo (MCMC) methods

proceed by simulating states from a Markov chain whose stationary distribution is the posterior

distribution of interest. New values for the parameters of the Markov chain, termed proposals,

are generated according to a transition kernel; the decision rule for accepting a proposal does

not depend on the (unknown) normalizing constant, making these schemes attractive. The

samples from the posterior, which are autocorrelated, can be used to compute expectations of

functionals of interest.

The simplest approach to simulating Markov chain proposals is the Metropolis–Hastings

algorithm (cf. Robert and Casella, 2005, Chapter 7). Starting from a current value of the Markov

chain θ(b), a proposal θ∗ is drawn from a transition kernel q
(
θ∗;θ(b)) chosen to ensure that the

Markov chain is irreducible, aperiodic and reversible. A proposal is accepted with probability

min(1,α), where

α= π
(
θ∗

)
π
(
θ(b)) q

(
θ(b);θ∗

)
q
(
θ∗;θ(b)) ,

so proposed states that lead to higher posterior densities are systematically accepted. If the

proposal is rejected, we set θ(b+1) = θ(b) and otherwise θ(b+1) = θ∗. The most common choices

of kernel are symmetric kernels, such as q
(
θ∗;θ(b)) ∼ No(θ(b),Σ), in which case the kernel

density ratio cancels from the acceptance ratio α and the algorithm is termed a Metropolis
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algorithm. An alternative is to use state-dependent proposals: if we sample the proposal from

a kernel centred at θ(b), the algorithm accomplishes a random walk that allows the chain to

explore the state space. One could also consider a proposal based on a discretization of the

Langevin diffusion equation: the Metropolis adjusted Langevin algorithm (MALA) kernel uses

information about the gradient of the unnormalized log-posterior log{π(θ)}, using (Brooks

et al., 2011, p. 99)

q
(
θ∗;θ(b))∼No

(
θ(b) +0.5Σ∇θ log{π(θ)},Σ

)
. (3.2)

A drawback of this kernel is that the curvature of the proposal does not adapt to the state

and that it requires analytical knowledge of the gradient. The choice of the covariance matrix

(often the identity or an empirical estimate of the covariance matrix obtained from the history

of the chain) is open.

Suppose we can split the state vector θ into components θi and θ−i , and furthermore as-

sume that one can simulate from the conditional distribution π(θi | θ−i ). The Gibbs sampler

takes the transition kernel q(θ∗i ;θ(b)
i ) = π(θ∗i | θ−i ), in which case the Metropolis–Hastings

acceptance ratio at step b is

α=
π
(
θ(b)
−i

)
π
(
θ∗i | θ(b)

−i

)
π(θ(b)

−i )π(θ(b)
i | θ(b)

−i )

π(θ(b)
i | θ(b)

−i )

π(θ∗i | θ(b)
−i )

= 1

and every proposal is accepted.

Gibbs sampling requires the user to be able to simulate from each conditional distribution

π(θi | θ−i ). Markov chain Monte Carlo algorithms in which components are updated one

at a time or in block using Metropolis–Hastings and Gibbs sampling are termed Metropolis-

within-Gibbs; compared to simultaneous updates, they often yield Markov chains with better

mixing properties and higher acceptance rates, even if the correlation between posterior draws

increases and exploration of the state space is slow.

The choice of the proposal covariance matrix Σ for the transition kernel of a D-dimensional

parameter vector is crucial. The adaptive random walk Metropolis–Hastings algorithm uses

as transition kernel No(0D ,Σ), where the proposal is θp ∼ No(θc ,kΣ+ εI) at each step; in

the long run, adaptation decreases with iterations and, provided that the chain converges

to its stationary distribution, the empirical covariance Σ=Cov
(
{θ(b)}B

b=1

)
with ridge penalty

εI added is a sensible choice (Haario et al., 2001). The proposal covariance matrix Σ is

typically multiplied by the scaling factor k = 2.382/D, which is optimal for certain classes of

Gaussian models. One problem with using the empirical covariance in high dimensions is

that adaptation is slow, so mixing is often poor because the chain must make small steps. The

burn-in phase consists of an initial stretch of the iterations that is not used for inference, but

rather to allow convergence to the stationary distribution.

If parameters are constrained, any proposal outside the admissible region would be rejected
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Algorithm 3.1 Metropolis–Hastings algorithm

1: Initialize θ(0)

2: for b = 1, . . . ,B do
3: simulate θ∗ ∼ q(θ∗;θ(b−1))
4: compute α=π(

θ∗
)
q
(
θ(b−1);θ∗

){
π
(
θ(b−1))q

(
θ∗;θ(b−1))}−1

5: sample U ∼U(0,1)
6: if log(U ) < log(α) then
7: set θ(b) ← θ∗

8: else
9: set θ(b) ← θ(b−1)

10: return {θ(b)}B
b=1

by the sampler. This is however inefficient; one could instead sample the parameters θ(b)

on an unconstrained space and include a Jacobian for the transformation or use truncated

proposals for marginal constraints.

Rue and Held (2005) suggest expanding the (conditional) log-posterior `(θ) for single parame-

ters in a second-order Taylor series around θ0 and taking the transition kernel for the proposal

in a Metropolis–Hastings algorithm to be

q(θ∗;θ0) ∼No
(
θ0 −ω

`′(θ0)

`′′(θ0)
,− 1

`′′(θ0)

)
, ω≤ 1, (3.3)

provided that the Hessian `′′(θ) is negative definite at θ0. The mean of the transition ker-

nel of the proposal θ∗ corresponds to a Newton step, so the mean should converge to the

mode of the posterior if the objective function is roughly quadratic. The Metropolis ratio

includes the transition kernel q(θ∗;θ0) ∼No
(
θ0−ω`′(θ0)/`′′(θ0),−1/`′′(θ0)

)
, so it also requires

a Laplace approximation of the (unnormalized) conditional log-posterior density function at

the proposal, viz. q(θ0 | θ∗) ∼No
(
θ∗−ω`′(θ∗)/`′′(θ∗),−1/`′′(θ∗)

)
.

3.1.1 Data augmentation and pseudo-marginal methods

In many problems, the likelihood p(y ;θ) is intractable or costly to evaluate and auxiliary vari-

ables are introduced to simplify calculations, as in the expectation-maximization algorithm.

The Bayesian analog is data augmentation (cf. Tanner and Wong, 1987), which we present

succinctly: let θ ∈Θ be a vector of parameters and consider auxiliary variables u ∈Rk such

that
∫
Rk p(u,θ; y)du = p(θ; y), i.e., the marginal distribution is that of interest, but evaluation

of p(u,θ; y) is cheaper. The data augmentation algorithm consists in running a Markov chain

on the augmented state space (Θ,Rk ), simulating in turn from the conditionals p(u;θ, y)

and p(θ;u, y) with new variables chosen to simplify the likelihood. If simulation from the

conditionals is straightforward, we can use data augmentation to speed up calculations or

improve mixing. For more details, see Chapter 10 of Brooks et al. (2011).
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Extreme value models for extremes are doubly intractable: the normalizing constant for the

posterior is unknown, but the likelihood derived using the point process often involves the

exponent measure V (u) or the measure of the risk region Λ(Au) which must be estimated

using Monte Carlo.

Andrieu and Roberts (2009) show that, when only an unbiased estimator of the likelihood is

available, a Markov chain Monte Carlo algorithm can nevertheless be constructed that targets

the posterior of interest; this approach is termed pseudo-marginal and can be viewed as a

data augmentation scheme: let θ denote the parameter vector, let p(u) denote the marginal

distribution of the auxiliary variables and let p̂(θ | u; y) stand for the (Monte Carlo) likelihood

estimator. The acceptance probability in the Metropolis–Hastings algorithm with transition

kernel q(θ;θ(b−1))p(u) from θ(b−1) is min{1,α}, where α is the posterior ratio

α= p̂(θ∗ | u∗; y)p(u∗)p(θ∗)

p̂(θ(b−1) | u(b−1);y )p(θ(b−1))p(u(b−1))

q(θ(b−1);θ∗)p(u(b−1))

q(θ∗;θ(b−1))p(u∗)

= p̂(θ∗ | u∗; y)p(θ∗)

p̂(θ(b−1) | u(b−1);y )p(θ(b−1))

q(θ(b−1);θ∗)

q(θ∗;θ(b−1))
;

if the proposal is accepted, the new value for the chain is {θ∗, p̂(θ∗ | u∗; y)}, so the value of the

estimated likelihood function is stored from one iteration to the next. If
∫

u p(θ∗ | u; y)p(u)du =
p(θ∗; y), i.e., the marginal distribution after integrating out the auxiliary variables is the target

of interest, the pseudo-marginal Markov chain Monte Carlo will produce draws from the

correct stationary distribution asymptotically as b →∞. This happens if the estimator of the

likelihood is unbiased.

The Monte Carlo sample size, or the size of the auxiliary variable, determines the precision of

the estimator p̂. If the latter is too large, the mixing of the Markov chain will be poorer, but the

alternative is costly updates. Doucet et al. (2015) investigate the inefficiency of the scheme

under additive Gaussian noise and suggest taking a standard deviation of about 1.68, but their

derivations require stringent theoretical assumptions.

3.1.2 Hamiltonian Monte Carlo

In high dimensions, random walk Metropolis–Hastings is ineffective because the number of

potential directions for the proposals to explore grows exponentially in the dimension, but

the posterior mass is typically concentrated on a small region. The gradient of the posterior

is not parametrization-invariant and thus, to efficiently explore the state-space, sampling

algorithms must account for the geometry of the posterior π(θ).

Hamiltonian Monte Carlo, introduced in Duane et al. (1987), is an auxiliary variable method: a

so-called momentum particle u ∈Rp is introduced and a Markov chain is run for (θ,u) with

joint density p(θ)p(u | θ) ∝ exp{−H(θ,u)}, where H(·, ·) is termed the Hamiltonian function.

The deterministic evolution of the parameters over time is described by the partial derivatives
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of H ,

dθi

dt
= ∂H

∂ui
,

dui

dt
=−∂H

∂θi
, i = 1, . . . , p. (3.4)

The Hamiltonian equations (3.4) leaves the Hamiltonian invariant (Neal, 2011, § 5.2.2.2), so

only level sets {(θ,u) : H(θ,u) = H(θ∗,u∗)} are explored. Perturbations of the momentum at

random times are introduced to resolve this.

The conditional density p(u | θ) is arbitrary, but is usually taken to be Gaussian with covari-

ance M, often diagonal. There is no closed-form solution for the Hamiltonian equations,

so numerical integration is used. Euler’s method is inadequate because the trajectories it

generates diverge from the exact solution, since error accumulates as the integration period

increases (Neal, 2011, § 5.2.3.1). An efficient alternative in the context of Hamiltonian Monte

Carlo is the Verlet integrator, or leapfrog method. With p(u | θ) ∼No(0,M), the Hamiltonian

equations are dθ/dt = M−1u and du/dt =∇p(θ) and the leapfrog steps are

u(t+ε/2) = u(t ) +ε∇p(θ(t ))/2,

θ(t+ε/2) = θ(t ) +εM−1u(t+ε/2), (3.5)

u(t+ε) = u(t+ε/2) +ε∇p(θ(t+ε))/2.

The leapfrog method does L consecutive updates of size ε, starting and finishing with a half-

update of the momentum using the new values simulated along the trajectory to compute

the Hamiltonian equations and the first two steps of eq. (3.5) yield a Langevin move (3.2).

Leapfrog steps are usually stable, but may also diverge in regions of high curvature; since

they diverge quickly towards infinity, this behaviour can be easily diagnosed and can be used

for troubleshooting. The final value (θ(t+Lε),u(t+Lε)) is accepted using a Metropolis–Hastings

step that corrects for the approximation error. The divergence of the vector field defined

by the Hamiltonian equations (3.4) is zero, so the Hamiltonian equations (3.4) are volume-

preserving. This implies that the determinant of the Jacobian of the transformation is unity, so

we do not need to account for changes in the Metropolis–Hastings step. Other key properties

are symplecticness and reversibility of the chain, both of which are useful for deriving the

validity of the algorithm. Other than the matrix M, the parameters L and ε must be tuned to

ensure good properties. The NUTS algorithm (Homan and Gelman, 2014) implemented in

Carpenter et al. (2017) removes the need for manual tuning of these parameters. Neal (2011)

and Betancourt (2017) provide comprehensive explanations of Hamiltonian Monte Carlo.

3.1.3 Monitoring convergence and measures of efficiency

An important (and difficult) question for practical Bayesian inference is to assess convergence

of a Markov chain Monte Carlo algorithm. Despite theoretical guarantees of convergence to

the stationary distribution, samplers may be slow, may fail to explore the space or else be

too inefficient for the output to be usable. If we assume that the Markov chain has reached
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stationarity, then we would prefer samplers with good mixing properties: too large a proposal

variance will lead to sticky Markov chains and the sampler will have a low acceptance rate

because of the inefficient proposals, whereas too small a variance leads to slow exploration of

the space; this is a Goldilocks principle, where we want the variance to be just right, not too

small nor too large. Performance indicators for the Markov chain can be monitored graphically,

for example through trace plots and running mean plots.

Measures of efficiency of a sampler should quantify information available in the posterior

draws and how well the sampler explores the target distribution. Under stationarity, the draws

{θ(b)} are autocorrelated samples from π: based on a central limit theorem for Markov chains,

an estimator of the variance of the average of some functional g (θ) is

Var
(

B−1
B∑

b=1
g (θ(b))

)
≈ B−1Varπ

(
g (θ)

)
τg ,

where τg , the integrated autocorrelation time, is

τg = 1+2
∞∑

i=1
Cor{g (θ0), g (θ(i ))}.

The default estimation method for τg is to fit an autoregressive model using the Yule–Walker

equations to sample autocorrelation, with the order of the AR process selected via AIC. A

correlogram can serve as a graphical diagnostic: geometric decay indicates that samples are

approximately independent when the autocorrelation reaches zero.

A quantitative measure of the quality of the sample is the effective sample size, ESS= B/τ̂g ,

where B is the number of MCMC runs and τ̂ is the estimated integrated autocorrelation time

(Rosenthal, 2011, p. 95). A better way to compare methods is computational efficiency, which

is the effective sample size divided by the total computing time needed to obtain B samples.

The speed at which the Markov chain explores the state space gives another indication of qual-

ity, with faster mixing chains being preferred. The jumping distance is (B −1)−1 ∑B−1
b=1 ‖θ(b+1) −

θ(b)‖2, where θ(b) is the value of the chain at iteration b. If the moves are not accepted, the

values of the chain are repeated and, likewise, small moves lead to small jumps.

Another way to assess convergence of a MCMC sample is to run parallel chains from different

starting values, much like for optimization routines where we want to ensure convergence to a

global mode in cases with multimodal objective functions. While this approach is wasteful (in

the sense that each chain must be run for sufficiently long to allow it to reach stationarity),

it is nevertheless helpful for diagnostics of (lack of) convergence, as evidenced by different

empirical summaries. The potential scale reduction factor of Gelman and Rubin (1992),

denoted R̂, compares the variability within and between chains: if M parallel chains are run

for B iterations and we denote by θ(b,m) the bth iteration of the mth chain (cf. Gelman et al.,
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2013, p.284), then

θ̄m = B−1
B∑

b=1
θ(b,m), θ̄ = M−1

M∑
m=1

θ̄m ,

S2
w = M−1

M∑
m=1

(B −1)−1
B∑

b=1
(θ(b,m) − θ̄m)2, S2

b = B(M −1)−1
M∑

m=1
(θ̄m − θ̄)2,

where θ̄m is the mean in chain m, θ̄ is the global mean, S2
w is the within-chain variance and

and S2
b is the between-chains variance. A total variance σ2 can be estimated consistently as

B →∞ using σ̂2 = {(B −1)S2
w+S2

b}/B and the potential scale reduction factor is R̂ = (σ̂2/S2
w)1/2.

If the chains have all reached stationarity, the ratio of the estimated variance to the within-

variance should be 1. The scale reduction factor requires finite variance, and fails to capture

scenarios where the means differ while the variance is equal; Vehtari et al. (2019) suggest a

more robust version using rankits in place of observations. A comparative review of diagnostics

of convergence for Markov chain Monte Carlo algorithms can be found in Cowles and Carlin

(1996).

3.1.4 Adaptive Markov chain Monte Carlo

The efficiency of the Metropolis–Hastings algorithm, or a variant thereof, depends largely on

the choice of the covariance matrix of the proposal Σ. This can be specified based on prelimi-

nary optimization as the negative inverse Hessian of posterior distribution, but optimization

may not be straightforward in high-dimensional hierarchical models.

An alternative is to update the Σ on the fly during the burn-in period, using the history of

the chain to select a covariance matrix that leads to a good acceptance rate and has lower

asymptotic variance. Intuitively, if the chains have converged to their stationary distribution,

then Monte Carlo estimators of the moments can be used to tuneΣ. Special care must be taken

to ensure that the adapted chain converges to the posterior distribution, but also to avoid

being stuck in local modes or regions of the state space with low posterior mass. Under the

hypothesis of diminishing adaptation and containment (cf. Rosenthal, 2011, p.104), ergodicity

is guaranteed. Diminishing adaptation can be obtained by any scheme in which adaptation

reduces (for example if one uses the empirical covariance of the chain as proposal), or if we

stop adapting. Comprehensive reviews can be found in Andrieu and Thoms (2008) and in

Rosenthal (2011).

3.2 Numerical evaluation of elliptical distribution functions

Censored likelihoods for the extremal Student and the Brown–Resnick processes include

the conditional intensities presented in Examples 2.6 and 2.7, which both contain high-
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Figure 3.2 – Number of non-censored components per observation for a random subsample of
size 2000 of the Swiss rainfall data at 25 sites.

dimensional distribution functions of Gaussian and Student-t vectors. The censoring pattern

changes for each observation and the main computational bottleneck for estimation of the

likelihood is the numerical evaluation of these distribution functions, hence the need to obtain

efficient Monte Carlo estimators. For example, on the Zürich rainfall dataset with 42 sites and

keeping 1142 exceedances, the average time for one evaluation of the censored likelihood

is 53.5 seconds, of which 2.5 seconds is for the exponent measure. In high dimensions, this

problem is exacerbated because more components are censored: Figure 3.2 shows the number

of exceedances for 2000 observations at a subset of D = 25 sites from the Swiss rainfall data

described in Section 3.6. The number of exceedances decreases roughly exponentially in the

dimension, so most observations have only a few non-censored components.

Although the Monte Carlo estimator for V (u) is unbiased, V (u)−1 and exp{−V (u)} are biased

and so is the likelihood estimator (de Fondeville and Davison, 2018). In such cases, the pseudo-

marginal algorithm targets a biased version of the posterior distribution. Since in practice the

bias is small and the precision can be increased, we disregard this. Thibaud et al. (2016) report

numerical evidence indicating that the effect of the bias is negligible.

3.2.1 Separation of variables

The Gaussian distribution function must be evaluated numerically. Efficient algorithms based

on Monte-Carlo methods are available for this purpose; we consider below only the case where

the covariance matrix Σ is of full rank. Consider the integral

ΦD (a,b;µ,Σ) :=
∫

Ia≤x≤bφD (x ;µ,Σ)dx .

165



Chapter 3. Bayesian hierarchical modelling of generalized l-Pareto processes

We may assume without loss of generality that the distribution is centred, sinceΦD (a,b;µ,Σ) =
ΦD (a −µ,b −µ;0D ,Σ). Let Σ= LL> be the Cholesky decomposition of the covariance matrix,

with L lower triangular. Making the change of variables x 7→ Ly , so that Y ∼ NoD (0D ,ID ),

reduces the problem to calculation of P (a ≤ LY ≤ b). The triangular system of equations leads

to a sequential decomposition of the region of integration,

ãi := L−1
11 a1 ≤ y1 ≤ L−1

11 b1 =: b̃i ,

ã j :=
a j −

∑ j−1
i=1 L j i yi

L j j
≤ y j ≤

b j −
∑ j−1

i=1 L j i yi

L j j
=: b̃ j , j = 2, . . . ,D.

If instead we start with a precision matrix Q =Σ−1 and let TT> = Q, with T lower triangular, we

can represent the joint distribution of X using an inhomogeneous autoregressive process (Rue

and Held, 2005, Theorem 2.7),

X j | X j+1:D = x j+1:D ∼No

(
−T −1

j j

D∑
i= j+1

Ti j x j ,T −2
j j

)
.

Let η j = T −1
j j

∑D
i= j+1 Ti j x j /Ti i ; the Cholesky decomposition of the precision matrix leads to

the backward triangular system of equations

T j j a j +
D∑

i= j+1
Ti j (xi −ηi )/Ti i ≤ x j ≤ T j j b j +

D∑
i= j+1

Ti j (xi −ηi )/Ti i , j = D −1, . . . ,1. (3.6)

and TDD aD ≤ xD ≤ bD TDD , where xi ∼ TNo(ai ,bi ;−ηi /Ti i ,T −2
i i ), a truncated Gaussian vari-

able, can be simulated by generating first zi ∼ TNo(Ti i ai +ηi ,Ti i bi +ηi ;0,1) then setting

xi = (zi −ηi )/Ti i . If furthermore the process is Markovian, some of the entries Ti j will be zero

and dedicated routines for sparse matrices can be used to accelerate the calculations.

We can represent a Student t variable as a Gaussian scale mixture, Z
d= ν1/2X /R ∼ St(ν,µ,Σ),

where ν> 0 is the degrees of freedom parameter and R2 ∼ χ2
ν is an independent chi-square

variable. This yields a decomposition equivalent to eq. (3.6), conditional on R = r , obtained by

replacing ai by ai rν−1/2 and bi by bi rν−1/2.

Writing

ΦD (a,b,0D ,Σ) =
∫ ∞

0

∫ b̃i

ãi

· · ·
∫ b̃D

ãD

φD (0,ID )dy fR (r )dr

suggests that a sensible Monte Carlo estimator can be obtained by sequential importance

sampling upon making a change of variable yi =Φ−1(ui ) (Genz and Bretz, 2009). Consider the

importance sampling density

gsov(r, y) = fR (r ) f (y1 | r )
D∏

j=1
f (y j | r, y1, . . . , y j−1) = fR (r )

D∏
j=1

φ(y j )1{ã j≤y j≤b̃ j }

Φ(b̃ j )−Φ(ã j )
.
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Algorithm 3.2 Accept-reject algorithm for truncated Student vectors (Botev and L’Écuyer,
2017, Alg. 2)

Require: Cholesky lower root L, bounds a, b, r∗, y∗;µ̂, η̂
1: repeat
2: sample R ∼ TNo(η̂,1;0,∞);
3: for j = 1, . . . ,D do
4: sample Xi ∼ TNo(µ̂i ,1; ãi , b̃i );

5: sample independently U ∼U(0,1);
6: until U < exp{ψ(R, X ; η̂,µ̂)−ψ(r∗, y∗;µ̂, η̂)}
7: return

p
νX /R.

The Geweke–Hajivassiliou–Keane estimator of the integral, commonly referred to as the

separation of variables (SOV) estimator, is T −1 ∑T
t=1

∏D
j=1{Φ(b̃(t )

j )−Φ(ã(t )
j )}. The separation of

variables algorithm is described on p. 50 of Genz and Bretz (2009) using a randomized quasi-

Monte Carlo procedure with points simulated from randomized and periodized Kronecker

sequence of the form {KN = i v mod 1, i = 1, . . . , N } with v taken to be the Richtmyer point set

vi = p1/2
i , where pi is the i th prime number.

3.2.2 Minimax exponential tilting

Botev (2017) and Botev and L’Écuyer (2017) propose an exponential tilted version of the

sequential importance sampling density gsov,

gmet(r, y ;η,µ) = φ(r −η)

Φ(η)

D∏
j=1

φ(y j −µ j )1{ã j≤y j≤b̃ j }

Φ(b̃ j −µ j )−Φ(ã j −µ j )
,

i.e., conditional on the previous one, each variable is truncated Gaussian with mean µ j and

the radial parameter R ∼ TNo(η,1;0,∞), see Algorithm 3.2. The tilting parameters (µ,η) are

chosen to minimize the worst-case scenario, solving the saddlepoint program

inf
η,µ

sup
(r,y):r a≤Ly≤r b

ψ(r, y ;η,µ), (3.7)

where ψ(r, y ;η,µ) = log{ fR (r )φD (y)/gmet(r, y ;η,µ)} is the log likelihood ratio of the truncated

Gaussian density relative to the minimax exponential tilting proposal gmet. With this choice of

importance sampling density, the optimal pair η,µ can be found via a convex optimization

program with 2D −1 parameters. For Gaussian samples, R = 1 almost surely and a similar,

albeit simplified, version of the likelihood ratio and of the convex program can be run (Botev,

2017, § 3.1 and Algorithm 2); Algorithm 3.2 is modified accordingly by removing R,ν and η.

The value of ψ evaluated at the solution of eq. (3.7), denoted c =ψ(r∗, y∗;µ̂, η̂), provides a

upper bound of the likelihood ratio that can be used to design a very efficient accept-reject

algorithm in dimension D ≤ 100, based on sequential sampling from gmet.
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For the Gaussian case, the minimax exponential tilting (MET) estimator has good theoretical

guarantees for its variance in the rare-event scenario (Theorem 1 Botev, 2017). For the Student

distribution, minimax exponential tilting is superior to separation of variables when the

correlation is negative, but its benefit is less clear when the dependence is strong.

3.2.3 Variable reordering

Several heuristic strategies can be used to improve the precision or reduce the computing

time of the integrals. Gibson et al. (1994) suggest a greedy reordering algorithm that aims to

minimize the variance of the integral, i.e.,

∫ 1D

0D

D∏
j=1

[
Φ

{
b̃ j (u1:( j−1)

}−Φ{
ã j (u1:( j−1)))

}]2
du −ΦD (a,b,0D ,Σ)2.

Variables are reordered so that the innermost variable (whose expectation is computed condi-

tionally on all the other variables) is largest; in particular, any index for which ai =−∞, bi =∞
should be moved outermost and marginalized over. The algorithm builds the permutation

vectorπ and the lower triangular Cholesky root L sequentially. There are two options for the

objective function: the first is to minimize the average expectation in the innermost loop,

as advocated by Gibson et al. (1994). The second is to minimize the average variance of the

truncated Gaussian in the innermost loop, as advocated in Genz and Bretz (2009). These

strategies are not available for precision matrices unless we invert them. If the precision is

sparse, it is computationally advantageous to reorder the entries to induce sparsity in the

Cholesky factor T. For example, Bolin and Lindgren (2015) use the CAMD approximate mini-

mum degree ordering of Amestoy et al. (1996); the reordering gives a two or three-fold increase

in the speed of the calculations when the dimension of the precision matrix D ≈ 2500. The

variable reordering presented in Algorithm 3.3, in contrast, aims at minimizing variance for a

fixed number of simulations.

An estimator of the variance of the (quasi) Monte-Carlo estimators can be obtained by running

the procedure M times. If IN ,i denotes the estimate from batch i obtained from N , then

IM = M−1 ∑M
i=1 IN ,i with squared standard error estimator

σ̂2
M = 1

M(M −1)

M∑
i=1

(IN ,i − IM )2.

Genz and Bretz (2009) recommend multiplying σ̂M byΦ−1(0.99) to obtain a robust estimator.

There is no theoretical justification of this ad-hoc inflation and simulation studies have shown

that estimates of σ̂2
M can be very small even when the true error is large (Botev, 2017). The

SOV estimator performs adequately for strongly correlated variables.

Example 3.1 (Comparison of algorithms for multivariate Gaussian distribution function)

We consider the accuracy, bias, variable and the execution time of four numerical estimators

of the multivariate Gaussian distribution function that are available in R . The first is from
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3.2. Numerical evaluation of elliptical distribution functions

Algorithm 3.3 Variable reordering (Genz and Bretz, 2009, § 4.1.3)

Require: lower bound a, upper bound b, covariance matrix Σ.
1: function EXPECTATION OF TNo(0,1; a,b)

E(a,b) := φ(a)−φ(b)

Φ(b)−Φ(a)

2: function VARIANCE OF TNo(0,1; a,b)

V(a,b) := 1+ aφ(a)−bφ(b)

Φ(b)−Φ(a)
−

(
φ(a)−φ(b)

Φ(b)−Φ(a)

)2

3: a ← a diag(Σ)−1/2, b ← b diag(Σ)−1/2

4: π← 1 : D
5: m = mini∈1:D V(ai ,bi ) or m = mini∈1:D {Φ(bi )−Φ(ai )}
6: swap(πm ,π1)
7: L1,· ←Σ·,π1Σ

−1/2
π1π1

8: swap(L1,·,Lπ1,·)
9: L1,1 =Σ1/2

π1,π1

10: for j ∈ 2, . . . ,D do
11: µ j−1 ←E(ãπ j−1 , b̃π j−1 )
12: for k ∈ j +1, . . . ,D do
13: uk ← (Σπk ,πk −Lk,1: j L>

k,1: j )−1(bπk −L>
k,1:kµ1: j )

14: lk ← (Σπk ,πk −Lk,1: j L>
k,1: j )−1(aπk −L>

k,1:kµ1: j )

15: m = mink∈( j+1):D V(ak ,bk ) or m = mink∈( j+1):D {Φ(bk )−Φ(ak )}
16: L j , j =Σπm ,πm −L j ,1:( j−1)L>

j ,1:( j−1)
17: for k ∈ j +1, . . . ,D do

18: Lk, j = L−1
j , j

(
Σπk ,πm −L j ,1:( j−1)L>

πk ,1:( j−1)

)

the mvtnorm package and relies on Fortran routines and quasi Monte Carlo integration with

a randomized Korobov lattice rule v(h) = {hi mod p}k−1
i=0 , for a prime p, given value 1 ≤

h ≤ bp/2c and k an integer that depends on the prime p (Genz and Bretz, 2009, p. 47) with

scrambling achieved through a baker transform and antithetic variables. The function is

hardcoded to use 25000 variables with an absolute tolerance of 10−3. The second, coded in

C++ and provided in the mvPot package, also uses the separation of variables estimator with

quasi Monte Carlo integration, but the lattice rule is different (Nuyens and Cools, 2006). The

last two procedures, from the TruncatedNormal package, are implemented in pure R and are

based on the minimax exponential tilting algorithms of Botev and L’Ecuyer (2015), using quasi

Monte Carlo (with a digital net using Sobol sequences) or Monte Carlo.

We consider a Gaussian process with power variogram γ(h) = (‖h‖2/2)3/2 with D = 64 sites

defined on a regular grid, {1, . . . ,8}2. We condition on a site, say the kth component, to get a

mean vectorγ(si −sk ) and a covariance matrixΣ(k) with entriesΣ(k)
i j = γi ,k +γ j ,k −γi , j for i , j ∈

{1, . . . ,D} \ {k}. We assess the performance of minimax exponential tilting versus that of separa-
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D 10 15 20 30 50 100 200 400

mvtnorm 0.98 1.36 1.22 1.16 1.32 1.48 1.58 1.64
MET (QMC) 2.40 2.68 2.54 2.72 3.08 3.44 3.78 4.20

MET (MC) 1.82 1.92 1.84 1.98 2.36 3.08 3.66 4.40

Table 3.1 – Execution time for an evaluation of the Gaussian distribution functionΦD relative to
the execution time of mvPot routine for varying D .

tion of variables by computing the 63-dimensional integralΦD−1{0D−1,Σ(k);−∞D−1,µ(k),Σ(k)}.

We consider numbers of replicates from 500 to 5000 in increments of 500, rounded down to

the nearest prime number, because the method in mvPot requires prime numbers; the point

estimate is the average of 12 replicates, on which the standard error of the mean is based.

We consider the relative estimator error associated to the 63-dimensional integration as a

function of the number of Monte Carlo samples used to approximate the integral.

The relative error for each procedure is reported in Figure 3.3; the entries labelled MET refer

to the functions in the TruncatedNormal package. In this low-dimensional context, the quasi

Monte Carlo methods have a relative error of roughly a third of the Monte Carlo minimax

exponential tilting estimator. The estimated standard error for the latter is extremely small,

even when the estimated probabilities have a higher relative error, which decays at rate

O(n−1/2). The theoretical upper bound for the error of the sample randomized quasi Monte

Carlo mean estimator is O{log(n)D /n}, but in practice the average appears to be much lower

and quasi Monte Carlo estimation is competitive for moderate dimensions.

We also report the computing time relative to that of the function in mvPot in Table 3.1.

The minimax exponential tilting is slower by a factor of about three relative to the mvtnorm
implementation because it is programmed in R and involves solving a preliminary convex

optimization problem (eq. (3.7)).

We consider next the estimation of P (X ≤ 0D ) for X ∼NoD (0D ,0.5diag(1D )+0.51D 1>
D ); this

has value 1/(D +1). The minimax exponential tilting estimator offers theoretical guarantees

on the upper bound of the error, however, and is more accurate in high dimensions, as it

is designed to deal with rare event estimation. The relative bias of the various estimators,

displayed in Figure 3.4, shows that the separation of variables relative bias increases with the

dimension.

�

The integrals we solve when computing the exponent measure of l-Pareto processes are

right-truncated and separation of variables remains competitive for the dimensions under

consideration, i.e., D ≈ 20. Moreover, the current implementation of minimax exponential

tilting is not competitive, as it is coded on R code, but could be as fast if coded in C++ .
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Figure 3.3 – Relative error of (quasi) Monte Carlo estimators as a function of the number of
replicates. Separation of variables estimator from the mvPot package (left) and
minimax exponential tilting quasi Monte-Carlo (middle) and Monte Carlo (right)
estimators from the TruncatedNormal package, based on 1000 replications. The
relative error of the Monte Carlo minimax exponential tilting estimator is more
than three times that of the two quasi Monte Carlo estimators and its uncertainty
decreases at rate n−1/2.

3.3 Penultimate models for extremes based on scale mixtures

Pareto processes are not the only models that have been considered in recent years for mod-

elling threshold exceedances: Gaussian scale mixtures have also gained traction. Elliptical

random fields admit the stochastic representation RW, where R ∼ FR is a positive radial vari-

able and W, independent of R, is a Gaussian process with zero mean. If the tail index of R is

ξ≤ 0, then the limiting dependence model for threshold exceedances will be independence,

and otherwise RW will be asymptotically dependent by Breiman’s lemma (Lemma 2.17). Mo-

tivated by the desire to obtain models that can accommodate both asymptotic dependence

and independence, Huser et al. (2017) considered Gaussian scale mixtures. Earlier attempts

include Yuen and Guttorp (2014), who considered Gaussian scale mixture model with a gen-

eralized Pareto radius and Opitz (2016), who considered Laplace random fields to model

asymptotically independence. Choosing a radial variable different from Pareto may allow

more flexibility, but in the end models are either asymptotically dependent or asymptotically

independent for a given FR .

Consider t = 1, . . . ,T independent temporal replications of a spatial process at D sites {s j }D
j=1 at

which at least one component exceeds a predetermined threshold. We label the observations

on the original scale yt j , for j = 1, . . . ,D. To each site, we associate a marginal threshold u j
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Figure 3.4 – Box-and-whiskers plots of the relative bias of (quasi) Monte Carlo estimators as a
function of the dimension of the integral, D , for the integration problem P (X ≤ 0D )
with X ∼NoD (0D ,0.5diag(1D )+0.51D 1>

D ), based on 1000 replications. The MET es-
timators refer to minimax exponential tilting implemented in the TruncatedNormal
package.

above which observations are extreme and let the marginal probability of exceedance of this

threshold be ζu j LetAt = { j ∈ 1, . . . ,D : yt j > u j } andUt = { j ∈ 1, . . . ,D : yt j ≤ u j } denote the set

of observations above and under the threshold, respectively. The N −T observation vectors

y ≤ u are fully censored.

The drawback of using scale mixture models is the same as for Pareto processes if we use

censored likelihood estimation. The density of the D-variate Gaussian scale mixture is is easily

derived (cf. Fang et al., 1990, § 2.2.3): for a Gaussian random vector W t with covariance matrix

Σ and precision matrix Q , the likelihood contribution given that variables inAt are observed

is

∂|At |

∂wAt

∫ ∞

0
ΦD (w/r,Q−1) fR (r )dr

=
∫ ∞

0
Φ|Ut |(wUt /r +Q−1

Ut
QUt ,At

wAt /r,Q−1
Ut

)φ|At |(wAt /r,ΣAt )r−|At | fR (r )dr.

The integrand contains aUt -dimensional distribution function that has to be calculated for

each t and each observation may have a different censoring pattern, so the marginal precision

matrix may need to be derived for each of the T observations. The conditional distribution

W Ut |W At is best expressed using the precision matrix, while the marginal W At has precision

given by the Schur complement of QUt
, namely Σ−1

Ut
= QAt

−QAt ,Ut
Q−1
Ut

QUt ,At
. It is best to
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3.3. Penultimate models for extremes based on scale mixtures

resort to Markov chain Monte Carlo methods for inference using a data augmentation scheme.

To avoid having to test for asymptotic independence on the boundary of the parameter space,

Huser and Wadsworth (2019) propose using a model arising as the power transform of a scale

mixture of Gaussian of the form RδW1−δ, where R ∼GP(1,ξ) and W is a log-Gaussian process.

Since RδW 1−δ has the same copula as δ log(R)+ (1−δ) log(W ), Huser and Wadsworth adopt a

semi-parametric approach, using the empirical distribution for the margins and estimating

the dependence parameters using the mixture representation; δ= 1/2 represents the boundary

between asymptotic dependence and independence and so a test for asymptotic indepen-

dence is easy to derive. The censored likelihood estimation of the dependence parameter for

the Gaussian model is as expensive to implement as alternatives.

Gaussian scale mixture models are expensive to fit and their dependence structure is com-

plicated by the introduction of the scale. Since the latent radial variable can be viewed as

auxiliary, it is easily handled in a Bayesian model. This does not resolve the issue of censoring.

Based on the Huser et al. (2017) model, Shaby proposed a partial augmentation scheme in-

corporating a nugget term. The benefit of his construction is that it incorporates a marginal

transformation. Let D denote the number of spatial locations and T the number of time

points. Using the peaks-over-threshold method, we model Y ∗
j ,t ∼GP(σ j ,ξ j ) and transform

these observations to be marginally distributed according to the Gaussian scale mixture,

whose marginal distribution and density functions are respectively

FSM(y) =
∫ ∞

0
Φ(y/r ) fR (r )dr, fSM(y) =

∫ ∞

0
φ(y/r )r−1 fR (r )dr.

The observed data on the transformed scale is Y j ,t = max{Z j ,t , v∗
j }, where v∗

j = F−1
SM(1−ζ j ),

Z j ,t = F−1
SM{FGP j

(Y ∗
j ,t )} and ζ j =P(Y ∗

j ,t > u j ) is the marginal site-wise probability of exceeding

the threshold. We denote censoring byC j ,t = 1{Y j ,t<u j }.

The process Z is modelled as a latent Gaussian process with an additional nugget component.

The hierarchical spatial linear model is

Z j ,t =β0 +µ j ,t +ε j ,t , ( j = 1, . . . ,D), µt ∼NoD (0D ,σ2
t ,µRκ,φ),

ε j ,t
iid∼No(0,σ2

ε), σ2
ε ∼ IG(aε,bε), σt ,µ ∼ FR (θR ),

where R is a correlation matrix associated to the random effect and κ,φ,θR are assigned prior

distributions. By choosing a distribution FR for the random scale of the Gaussian process, one

can bridge asymptotic independence and asymptotic dependence.

A data augmentation scheme for (Z j ,t ,C j ,t = 1) allows one to fully exploit the structure of

the Gaussian scale mixture model without having to compute a high-dimensional Gaussian

integral. Indeed, Z j ,t is conditionally a scalar truncated Gaussian variable, which is easily
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sampled. The conditional posterior for the censored observations is

Z j ,t |µ j ,t ,β0,C j ,t = 1 ∼ TNo(β0 +µ j ,t ,σ2
ε; v j ),

σ2
ε | Z ,µ,β0 ∼ IG(DT /2+aε,‖vec(Z )−vec(µ)−β01DT ‖2/2+bε),

µ,t | Z ,t ,β0,φ,κ,σ2
ε,σ2

µt
∼NoD

(
Ξ−1σ−2

ε (Z,t −β01D ),Ξ−1) ,

whereΞ−1 :=σ−2
µt

R−1
κ,φ+σ−2

ε ID . Gibbs sampling is thus straightforward for the variables Z j ,t ,σ2
ε

and µ,t . The update for µ is simply a conjugate update for the Gaussian linear model. Without

loss of generality, suppose that the kt censored observations are stored as the first elements

of the vector µt and denote the kt subvector by µt a . Then, conditional on the uncensored

observations, we get

µt a ∼Nokt

(
Ξ−1σ−2

ε (y a −αa),Ξ−1) ,

where Ξ=Φ>
aΦa +D−1

a and αt i = log(Rt )−γ(si )/2−σ2
ε/2. Moving the mean components to

the process level µt would instead give

µt a ∼Nokt

(
Ξ−1Φ>

a

{
Φa(y a −αa)−Φb(µb − y b +αb)

}
,Ξ−1) .

For the uncensored variables, log(Zt i ) = log(Rt )+µt i , so the latter are determined once Rt is

fixed. This means that the update for µt should be done conditional on those values. For the

censored variables, we have

Yt i | · ∼No(log(Rt )+µt i −γ(si )/2−σ2
ε/2,σ2

ε), µt ∼NoD (0D ,Cθ).

Shaby’s construction, which includes both an intercept and a nugget, has two awkward

features: each temporal replication has a random scale σ2
t ∼ FR , and the distribution of

Z j ,t , the censored variable, also depends on the parameters of the FR model. Consider the

transformation g j (x) = F−1
GP j

◦FSM(x) and assume that Z j ,t is fully observed. The density of

Y ∗
,t = g (Z ,t ) = (g1(Z1,t ), . . . , gd (ZD,t )) for Y ∗

,t > u is obtained after a change of variable as

fY ∗
,t

(y∗
,t ) = fZ ,t {g−1(y∗

,t )}
D∏

j=1

∣∣∣∣∣∂g−1(y∗
j ,t )

∂y∗
j ,t

∣∣∣∣∣ .

Since the Z j ,t are conditionally independent given µ,σ2
ε,β0, the joint density is simply the

product over all temporal and spatial replicates with fZ ,t =
∏D

j=1σεφ{(z j ,t −β0−µ j ,t )/σε}. The

likelihood contribution is therefore

` j ,t (y∗
j ,t ) =


Φ

F−1
SM(ζ j )−β0 −µ j ,t

σε

 , C j ,t = 1,

1

σε
φ

{
g−1(y∗

j ,t )−β0 −µ j ,t

σε

}
fGP j

(y∗
j ,t )

fSM(g−1(y∗
j ,t ))

, C j ,t = 0.
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Updating the parameters of the random scale FR changes the observations Y and the thresh-

olds on the transformed scale, which becomes ν j = F−1
SM(u j ). It is possible that imputed

observations (Zs,t ,Cs,t = 1) fall above the threshold after updating the parameters of the FR

model. This mismatch is due to the incompatibility between the marginal of Z ,which follows

a scale mixture model, and the conditional distribution of Z given the random effect µ, which

is Gaussian. Rather than performing censoring, Shaby’s construction jitters censored vari-

ables, truncating them to ensure they fall below the threshold. The nugget thus successfully

approximates censoring provided that its variance σ2
ε is large, and this choice also improves

the mixing of the Markov chain. One unsatisfying feature of this hierarchical construction is

that the observations above the threshold are measured with large error with the nugget, so

the resulting field is rough. We do not pursue this approach further.

3.4 Bayesian linear model

In the rest of this thesis, we focus exclusively on generalized max-Pareto processes. Since data

are collected only at a finite number of sites, spatial regression models with random effects

can serve to interpolate estimates of the parameters of the generalized Pareto distribution of

threshold exceedances. Such an approach was pioneered in the extreme value literature by

Casson and Coles (1999), who used regression surfaces with the Poisson process likelihood.

Cooley et al. (2007) combined generalized Pareto margins with Gaussian process priors for

the scale, shape and exceedance rate, using distance between sites in a climate space, based

on mean precipitation and elevation. These covariates must be available at every location for

which predictions are requested.

Latent variable models (cf. Davison et al., 2012, § 4) allow one to borrow strength from neigh-

bouring sites, but cannot be utilized directly for simulation of extreme events. Indeed, condi-

tional on the marginal parameter vectors, all pointwise realizations are independent of those

at the other sites, resulting in discontinuous spatial realizations. Latent variable models can

be used to obtain return levels and such models can be fitted in high dimensions at little cost:

for example, Geirsson et al. (2015) use a Gaussian Markov random field approximation for

the covariance of the random effect for maxima, and Jalbert et al. (2017) fit a second order

improper Gaussian Markov random field with scaling to account for temporal nonstationarity.

The regression can be more or less complex, with covariates derived from climatic models; as

an example, Dyrrdal et al. (2014) employ Bayesian model averaging with a conditional Bayes

factor for model selection to determine optimal regression models, whereas other have used

information criteria.

It is possible to include dependence structures: Sang and Gelfand (2010) employed a Gaussian

copula to introduce dependence between generalized extreme value distributions and Fuentes

et al. (2013) use a truncated Dirichlet process mixture of Gaussian copulas. Shaby and Reich

(2012) and Reich and Shaby (2012) propose the use of the hierarchical kernel extreme value

process for inference based on block maxima, but estimation is complicated due to the
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dual role of the nugget parameter (Sebille, 2016); the stochastic construction is laid out in

Stephenson (2009) and in Section 2.2.1. Use of max-stable processes has been hampered

by the computational costs associated with evaluation of the likelihood: Ribatet et al. (2012)

suggest an adjustment for composite likelihoods to approximately restore the asymptotic χ2

distribution for the likelihood ratio, whereas Shaby (2014) propose an open-faced sandwich

adjustment that adjusts samples post hoc. Such methods have rarely been used (but see

Sharkey and Winter (2019) for an application to areal data with an improper conditional

autoregressive model).

We model the marginal parameters {log(σ),ξ} using Gaussian processes, assuming that scale

and shape parameters are independent a priori. Covariates are often incorporated in a gener-

alized spatial linear model to model potential nonstationarity and pool information across

space, but the specification of the response surface must be the same for both scale and shape

to ensure that threshold stability is preserved (Eastoe and Tawn, 2009, § 2.2). If the shape ξ

is constant (or involves spatial covariates that are constant in time), then the scale σu(s) can

only be a linear function of covariates, which is incompatible with a log-link transformation

to ensure positivity; Gyarmati-Szabó et al. (2017) propose an alternative parametrization of

the model as workaround. Let θ denote either of the log-scale or the shape vectors and let Xθ
denote a D ×p matrix of covariates and assume that inference is performed conditional on

the correlation matrices Rθ and Rβθ and hyperparameters a,b,νθ. The Bayesian linear model

employs conjugate priors for the regression parameters, namely a Gaussian-inverse Gamma

prior. Write the posterior as

p(βθ,τ2 | θ) ∝ p(θ |βθ,τ2
θRθ)p(βθ | τ2

θ)p(τ2
θ)

where

θ ∼NoD (βθXθ,τ2
θRθ), p(βθ | τ2

θ) ∼Nop (βθ;νθ,τ2
θRβθ ), p(τ2

θ) ∼ IG(τ2
θ; aθ,bθ). (3.8)

The posterior is then proportional to

p(βθ,τ2 | θ) ∝ τ−D
θ exp

{
− 1

2τ2
θ

(θ−Xθβθ)>R−1
θ (θ−Xθβθ)

}

× 1

2
βθ(τ2

θ)−a−1 exp

(
− b

τ2
θ

)
τ
−p
θ

exp
{
−(βθ−νθ)>R−1

βθ
(βθ−νθ)

}
.

By completing the square and grouping terms that depend on βθ, we readily obtain the

parameters of the Gaussian inverse gamma posterior. Simulation from this is straightforward

using composition sampling: first sample τ2
θ

, then use this value to generate the new regression

parameters βθ, i.e.,

τ2
θ | θ ∼ IG

(
aθ+

D +p

2
,b +

θ>R−1
θ
θ+ν>

θ
R−1
βθ
νθ−m>Mm

2

)
,
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βθ | τ2
θ,θ ∼Nop (Mm,τ2

θM)

with M−1 := X>
θ

R−1
θ

Xθ+R−1
βθ

the precision matrix of βθ and m = θ>R−1
θ

Xθ+R−1
βθ
νθ.

The correlation matrix of the spatial random effects, Rθ, is usually taken to be exponential,

i.e., Cor{θ(si ),θ(s j )} = exp(−‖si − s j‖/ς), giving Rθ = exp(−D/ς) for D the matrix of pairwise

distances between sites. The range hyperparameter ς is notably hard to estimate and the prior

will tend to dominate the posterior of ς unless the number of sites is large.

Dyrrdal et al. (2014) fit a Bayesian hierarchical model with generalized extreme value margins

and uses the transition kernel of eq. (3.3) in a Metropolis-within-Gibbs algorithm to update

the parameters one by one. We adopt this idea for the range parameters of the exponential cor-

relation Rθ, since gradients can be readily calculated analytically. With a Γ(aς,bς) hyperprior

for ς, the conditional log-posterior for ς is

f (ς) := log{p(ς |βθ,τ2,θ)} ∝−
τ−2
θ

2
(θ−βθ)>R−1

θ (θ−βθ)− 1

2
log |Rθ|+ (aς−1)log(ς)−bςς,

and the first two derivatives of the conditional posterior for ς are (Dyrrdal et al., 2014)

f ′(ς) =
τ−2
θ

2
(θ−βθ)>R−1

θ ṘθR−1
θ (θ−βθ)− 1

2
tr

{
R−1
θ Ṙθ

}−bς+ (aς−1)ς−1,

f ′′(ς) =
τ−2
θ

2
(θ−βθ)>Nς(θ−βθ)− 1

2
tr

{
R−1
θ R̈θ−

[
R−1
θ Ṙ−1

θ

]2
}
− (aς−1)ς−2,

where

Ṙθ = ς−2D◦Rθ, R̈θ = 2ς−3D◦Rθ+ς−2D◦ Ṙθ, Nς = 2R−1
θ

[
ṘθR−1

θ

]2 −R−1
θ R̈θR−1

θ ,

and ◦ denotes the Hadamard (i.e., element-wise) product. The Laplace approximation pro-

posal has the drawback that the chains gets stuck if the proposal mean is negative; we thus

sample from a truncated Gaussian to ensure that ς> 0 and the step size of random walk is

bounded; we also reduce ω< 1 in the Newton step to improve mixing.

For a latent Gaussian model log(σ) ∼NoD (Xβσ,Q−1), the gradient and Hessian with respect

to σ are

f ′(σ) =−σ−1 −Q{log(σ)−Xβσ}◦σ−1,

f ′′(σ) = diag(σ−2)−Q◦σ−1 ⊗σ−1 +diag
[
Q{log(σ)−Xβσ}◦σ−2] .
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3.5 Bayesian inference for generalized l-Pareto processes

3.5.1 Data augmentation

The major difficulty for Bayesian inference for the l-Pareto process is the lack of closed-form

expressions for the risk region and the censored contribution, meaning that gradients are not

available. This precludes the use of many more efficient algorithms for Markov chain Monte

Carlo. An alternative is to use the point process representation to augment the likelihood with

the inferentially censored components; the joint likelihood for the components above the

threshold and the imputed values involves only the full intensity function.

Given current values of the state vector θ and a vector of partly censored observations

(xA,1{xU≤vU}) andλu the percentage of observations falling above their site-wise threshold,

we map observations to the standardized scale via the marginal transformation yA = (1+
ξxA/σA)1/ξ/λu , and similarly for the marginal censoring limits v∗

U = (1+ξvA/σA)1/ξ/λu .

Figure 3.5 illustrates the censoring of non-extreme observations and shows the risk region.

Conditional simulation is mostly useful for censored observations: if the risk region is such

that we can identify exceedances from a single observation (e.g., with functionals such as

maxD
j=1 X (s j ) or X (s0)) that is uncensored, then additional observations can be simulated on

the unit Pareto scale. These observations can be drawn from a truncated Gaussian distribution

for the Brown–Resnick and from a truncated Student-t distribution for the extremal Student

using the algorithm of Botev (2017) and Botev and L’Écuyer (2017) covered in Section 3.2.2;

simulated samples below are then back-transformed to the data scale. censoring Conditional

simulations would automatically fall in the risk region shown in grey in Figure 3.5, but below

the marginal threshold, along the line corresponding to the non-censored component.

For other risk regions such as {X ∈ RD :
∑D

j=1 X (s j ) > u}, such sampling schemes must be

embedded in an accept-reject algorithm to ensure that simulated points fall in the risk region

after the marginal transformation; see Figure 3.5. For the sum risk functional, one would also

need to ensure that at least one observation exceeds its marginal threshold, by taking, e.g.,

u/D1D as the vector of marginal thresholds. Algorithm 3.4 can be used for data augmentation

in the case of the Brown–Resnick process. For the extremal Student process, the augmented

components could be assigned negative values, as is commonly done in Bayesian modelling

of rainfall where zero components are modelled as truncated Gaussian on [0D ,∞D ) and the

augmented values are negative (cf. Sansó and Guenni, 1999).

While data augmentation is commonly used in spatial statistics (de Oliveira, 2005), the num-

ber of censored components is so large that the information from the imputed values dom-

inates the likelihood and hinders the good mixing of standard Markov chain Monte Carlo

algorithms. Efforts to leverage on this have been largely unsuccessful, notably because the

doubly-intractable likelihood prevents use of methods such as Hamiltonian Monte Carlo that

could lead to more efficient exploration of the space.
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X
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j
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X
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j
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u

∑2
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Figure 3.5 – Illustration of inferential censoring for max (left) and sum (right) risk functionals in
dimension D = 2. Points in white are censored, i.e., only the information that they
fell below their marginal threshold (dashed line) is retained.

Algorithm 3.4 Imputation of censored observations, Brown–Resnick generalized l-Pareto
process

Require: marginal thresholds v ≤ u, functional threshold u;
Require: marginal parametersλu ,η,τ,ξ, semivariogram matrix [γi j ]i , j=1,...,D ;
Require: observation vector y ∈ {y ∈RD : l(y) > u, y � v , y � v };

1: defineA := { j : y j ≥ v j },U := { j : y j < v j },A1 = min{A}
2: defineA− := { j : ( j +1) ∈A},U− := { j : ( j +1{ j<A1}) ∈U}
3: function MARGINAL TRANSFORMATION(x)
4: return H(x) = [1+ξ(x −η)/τ]1/ξ/λu

5: set v∗ ← H(v ), u∗ ← H(u1D ), y∗ ← H(y)
6: set Σi j ← γi ,U1 +γ j ,U1 −γi , j , i , j ∈ {1, . . . ,D} \ {U1}
7: set

µU← log

(
vU
y∗
A1

)
+γU,A1

−ΣU−,A−
Σ−1
A−,A−

{
log

(
y∗
A−1

y∗
A1

)
+γA−1,A1

}
ΣU←ΣU−,U− −ΣU−,A−Σ

−1
A−,A−ΣA−,U−

8: repeat
9: sample z ∼ TNo(µU,ΣU;−∞|U|, vU)

10: set y∗
U← exp

{
z + log(y∗

A1
)
}

11: set yU←τU(y∗ξ
U −1)/ξ+ηU

12: until l(y) > u
13: return y
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3.5.2 Simulation study: logistic max-Pareto process

For most parametric families presented in Section 2.2.3, there are no closed-form expressions

for the exponent measure V (u) and the censored likelihood. One notable exception is the

(simple) logistic model, for which V1:k and V are fully known. We use the model in simulations,

partly because this allows for considerable speed-up, but also because optimization is easily

performed in this four-parameter problem and this allows us to draw meaningful comparisons

between the censored and full likelihoods. We fitted a Bayesian hierarchical model based on

simulated data from a logistic generalized max-Pareto process with η= 0 and τ= 1 and varying

shape ξ ∈ {−0.15,0,0.15} and dependence parameters α ∈ {0.25,0.5,0.75}. We selected the 40th

marginal percentile as threshold in order to assess the loss of information from censoring, since

this corresponds roughly to the proportion of missing values when we look at the observations

for which there is at least one exceedance. For identifiability, the first location parameter

was set to zero. We ran two parallel chains using Hamiltonian Monte Carlo implemented

in Stan (Carpenter et al., 2017), keeping 5000 iterations after burn-in of 750. Hamiltonian

Monte Carlo is extremely efficient at exploring the state space. We selected independent

vague priors for all parameters, with p(η) ∼ No(0,100), p(τ) ∼ HNo(0,100), p(ξ) ∼ No(0,1)

and p(α) ∼ Be(5/4,5/4). For each dataset, we estimated the maximum a posteriori using

constrained optimization using both censored and full likelihood in addition to the MCMC

runs.

We consider varying sample sizes n ∈ {125,250,500} and varying dimensions D ∈ {5,10,20} and

performed 1000 replications of the simulation. Simulations in which the algorithm did not

converge (less than 0.05%) were discarded; we monitored the potential scale reduction factor

R̂ and the effective sample size; the median of the latter is over 50% of the simulated values,

and lowest effective sample size across all 64000 simulations is 1500 for a single parameter.

Because there are only four parameters, increasing the dimension usually has the same

effect as increasing the sample size: both increase the precision of the estimators. For some

combinations of the parameters, there is virtually no loss of information when using a censored

likelihood relative to full likelihood for the location parameter.

Table 3.2 gives the relative root mean squared error for the median posterior estimates of the

parameters. The stronger the dependence between sites (smaller values ofα), the more precise

the estimates of the location; this is likely due to the identifiability constraint. In contrast, the

posterior median estimator of the scale and shape have lower variances when α is large and

dependence weak. The relative efficiency of the censored likelihood for η decreases when

ξ increases, which seems natural as the data have higher a variance and an infinite upper

endpoint. Both estimators of the dependence parameter are nearly as efficient, except when

n = 500 and D = 5, in which case the full likelihood is much sharper. In the case of weak

dependence, a lot of information about the shape is lost and the efficiency is around one-third.

In most cases, censoring leads to unbiased but less efficient estimators, though with the

notable exception that, with α= 0.25 and D = 5, the censored likelihood shape estimator is
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3.5. Bayesian inference for generalized l-Pareto processes

par. η τ ξ α

ξ0 D n | α0 0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75

−0.15 5 125 90 90 93 41 86 82 49 62 47 58 95 85
250 90 86 96 35 89 84 44 65 48 49 95 83
500 88 88 95 27 85 85 34 59 46 38 95 83

10 125 85 86 95 85 88 90 74 62 49 91 96 89
250 87 88 94 91 91 92 80 62 51 94 96 90
500 87 86 93 93 92 92 78 63 50 96 96 89

20 125 84 87 92 97 94 89 79 64 55 100 98 89
250 85 87 94 96 95 91 79 66 52 99 97 91
500 83 86 93 97 94 92 80 67 52 99 98 90

0 5 125 86 81 81 39 83 82 56 49 31 58 95 84
250 85 77 84 34 86 85 50 51 32 50 95 82
500 84 80 82 26 83 86 42 47 29 38 95 82

10 125 78 76 82 84 88 87 66 50 33 91 95 89
250 80 79 79 90 90 87 69 48 32 94 95 90
500 80 77 77 91 91 90 68 49 33 96 96 89

20 125 77 77 76 96 94 83 65 49 34 100 97 89
250 78 78 79 95 95 84 65 49 31 99 97 91
500 76 77 77 96 95 86 66 49 32 99 97 90

0.15 5 125 81 69 42 37 81 80 62 44 31 59 94 83
250 81 65 41 32 84 83 57 44 30 50 94 81
500 79 68 41 24 81 83 52 43 27 39 94 82

10 125 71 63 44 82 87 81 67 52 36 92 95 89
250 74 66 40 88 90 79 67 49 33 94 95 90
500 72 64 37 90 91 81 68 51 33 96 95 89

20 125 70 64 39 95 94 76 71 60 38 99 97 89
250 71 66 40 94 95 77 72 57 37 99 97 91
500 69 64 37 95 95 77 70 56 39 99 97 90

Table 3.2 – Relative root mean squared error of the censored likelihood versus the full likelihood
(in %) for the logistic model based on B = 1000 replications.

ξ0 −0.15 0 0.15

par. | n 125 250 500 125 250 500 125 250 500

τ 16 15 15 17 16 15 18 16 16
ξ −4 −4 −4 −3 −3 −3 −2 −2 −2
α −2 −2 −2 −2 −2 −2 −2 −2 −2

Table 3.3 – Average bias (in %) of posterior median estimators based on B = 1000 replications
using the censored likelihood for the logistic model with D = 5 and α0 = 0.25.

negatively biased (Figure 3.6) and the estimator of the scale is positively biased, mimicking

the classical tradeoff observed in Example 1.19 for the generalized Pareto distribution; see

Table 3.3. This bias holds irrespective of the value of ξ0 and persists even as n increases.

Credible intervals have poor coverage properties because of the bias, as evidenced by the error

rates in the first nine lines of Tables 3.5 to 3.7.
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Figure 3.6 – Density estimate of the posterior median based on B = 1000 replications for the
shape parameter with D = 5 and α= 0.25, with ξ0 =−0.15 (left), ξ= 0 (middle) and
ξ= 0.15 (right) based on the censored likelihood (grey dashed) and full likelihood
(black full).

Tables 3.4 to 3.7 report the one-sided nominal error rates for credible intervals. While the latter

have no theoretical coverage guarantees, it is nevertheless reassuring that, with vague priors,

the coverage is decent except in cases of strong bias discussed earlier.

Running a simulation study using the logistic model, with our choice of location and scale

parameter, was convenient because it allowed us to get a large number of replicates and

compare various scenarios. However, we set the marginal parameters to be equal, which is

unrealistic for practical settings. Moreover, spatial extreme value models must be flexible

enough to accommodate the spatial dependence, hence the need to consider models based

on elliptical distributions.
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α0 D ξ0 | error rate 1 2.5 5 10 25 25 10 5 2.5 1

0.25 5 −0.15 0.6 1.5 4 8 22 24 9 5 1.5 0.8
0 0 1 3 7 22 24 8 4 1.5 0.6
0.15 0 1 2 6 22 23 8 4 1.5 0.4

10 −0.15 1.2 3 5 9 24 24 9 5 2.5 1
0 1.2 2.5 5 9 24 25 9 5 2.5 0.8
0.15 1.4 2 4 9 23 25 9 5 3 0.8

20 −0.15 2 3 6 11 23 26 10 5 2.5 1.4
0 1.8 4 6 11 23 26 9 4 3 1.2
0.15 1.6 3.5 6 11 24 26 9 5 2.5 1.4

0.50 5 −0.15 1.2 3 5 9 23 28 13 6 3 0.6
0 1 3 4 9 22 28 12 6 3 1
0.15 0.8 2.5 4 9 23 28 12 6 2.5 0.8

10 −0.15 1.2 2.5 5 9 26 23 8 5 2 0.6
0 0.6 2.5 5 10 26 23 9 4 2 0.6
0.15 0.6 2 5 10 26 24 9 4 1.5 0.4

20 −0.15 1 3 5 10 25 23 9 4 2 0.6
0 0.6 2.5 5 9 25 24 9 4 2 0.4
0.15 0.8 2.5 5 9 26 24 9 4 2 0.4

0.75 5 −0.15 0.6 2 4 10 25 26 11 5 2 1.6
0 0.4 1.5 5 11 25 26 11 5 2.5 1.2
0.15 0.4 2 5 11 25 26 11 5 3 1.2

10 −0.15 1.2 3 6 11 26 24 9 4 1.5 0.6
0 1.2 3 6 12 26 23 9 5 2 0.6
0.15 1 3 6 11 26 23 8 4 1.5 0.4

20 −0.15 0.8 3 5 9 26 25 9 4 2 1.2
0 0.6 2 5 9 25 25 9 4 2 0.8
0.15 1 2 4 8 24 24 10 5 2 1.2

Table 3.4 – One-sided nominal error rate (in %) for lower and upper credible intervals for the
location parameter η for the censored likelihood estimator with n = 250 based on
B = 1000 replications.
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α0 D ξ0 | error rate 1 2.5 5 10 25 25 10 5 2.5 1

0.25 5 −0.15 38.8 48.5 57 67 80 3 1 0 0 0
0 39.6 49 58 68 81 3 1 0 0.5 0
0.15 41 50.5 59 69 82 3 1 1 0 0

10 −0.15 2.6 5 8 13 28 21 7 3 1 1
0 3.2 5.5 8 13 29 21 7 4 1.5 0.8
0.15 3.2 5.5 8 14 29 21 7 4 1 0.8

20 −0.15 1 3 6 13 29 22 8 4 2 1
0 1.2 3 7 13 30 21 8 4 2 1
0.15 1.4 3 7 14 30 21 8 4 2 1

0.50 5 −0.15 1.4 3 6 13 29 20 6 2 1 0.2
0 1.4 3 6 13 29 19 7 2 1 0
0.15 1.4 3 7 13 30 19 7 2 1 0

10 −0.15 1.2 2.5 6 12 28 19 8 3 1.5 0.4
0 1.4 3 6 12 29 20 7 4 1.5 0.2
0.15 1.2 3 6 13 30 20 7 3 1.5 0.4

20 −0.15 2.2 3.5 7 14 32 19 7 4 1.5 0.6
0 2.2 4 7 14 32 19 7 4 1.5 0.8
0.15 2 4 7 13 31 19 7 4 1.5 0.8

0.75 5 −0.15 2 4 8 14 32 18 7 3 1 0.6
0 2.2 5 8 14 33 18 7 3 1.5 0.4
0.15 2.8 4 8 14 33 18 6 3 1.5 0.4

10 −0.15 1.6 4 7 15 31 20 8 4 1.5 0.4
0 1.6 5 8 15 30 22 8 4 2 0.4
0.15 1.2 4 8 15 30 22 9 4 1.5 0.6

20 −0.15 1.8 3.5 7 13 31 21 9 5 2 1
0 1.2 3.5 6 13 30 22 8 4 1.5 0.8
0.15 1.4 3.5 6 11 29 23 9 4 1.5 0.6

Table 3.5 – One-sided nominal error rate (in %) for lower and upper credible intervals for the
scale parameter τ for the censored likelihood estimator with n = 250 based on B =
1000 replications.

184



3.5. Bayesian inference for generalized l-Pareto processes

α0 D ξ0 | error rate 1 2.5 5 10 25 25 10 5 2.5 1

0.25 5 −0.15 0.2 0.5 1 2 5 69 48 36 25.5 17.2
0 0 0.5 1 2 8 54 33 22 15 7
0.15 0 1 2 4 14 42 22 13 6.5 2.6

10 −0.15 0.4 1.5 4 8 21 28 12 7 3.5 1
0 1 2 4 8 21 27 11 5 2 1
0.15 1.4 2.5 4 8 23 25 10 4 2.5 0.8

20 −0.15 0.4 1.5 3 7 21 30 13 6 3.5 1
0 0.6 1.5 3 7 21 29 12 6 3 1.2
0.15 0.8 1.5 3 8 21 27 11 6 3 1.2

0.50 5 −0.15 0.2 2 4 9 22 30 11 5 3 1.8
0 0.8 2 4 10 24 28 11 5 2.5 1.4
0.15 0.6 2 5 8 24 27 11 6 3 1.8

10 −0.15 0.8 2 4 9 21 31 12 7 3.5 1.4
0 0.8 2 4 9 21 30 12 7 3.5 1.2
0.15 0.6 1.5 3 9 21 30 11 6 3.5 1

20 −0.15 0.4 1.5 3 6 17 32 15 8 4.5 2.2
0 0.4 1.5 4 7 20 32 13 7 4 1.8
0.15 0.6 2 5 9 21 29 12 7 3.5 1.4

0.75 5 −0.15 1.4 2.5 4 8 22 26 11 6 2.5 0.6
0 1.2 3 4 9 22 26 10 5 2.5 0.8
0.15 0.6 2 5 9 24 25 9 4 2.5 1

10 −0.15 0.6 2.5 4 8 18 32 13 7 3.5 1.4
0 1 3 5 8 20 30 13 6 3 1.6
0.15 1.6 3 5 9 22 29 12 6 3 1

20 −0.15 0.8 2.5 4 8 20 31 15 8 4.5 2
0 1.2 3 5 9 21 30 12 7 4 1.4
0.15 1 3 5 10 23 28 12 6 3.5 1.2

Table 3.6 – One-sided nominal error rate (in %) for lower and upper credible intervals for the
shape parameter ξ for the censored likelihood estimator with n = 250 based on
B = 1000 replications.
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α0 D ξ0 | error rate 1 2.5 5 10 25 25 10 5 2.5 1

0.25 5 −0.15 0 0.5 1 2 6 72 56 45 37.5 27.2
0 0 0.5 1 2 6 72 56 45 37.5 27
0.15 0 0.5 1 2 6 72 55 44 37 26.8

10 −0.15 1 2.5 5 9 23 27 12 7 4.5 2.6
0 0.8 2.5 5 9 23 28 12 7 5 2.4
0.15 0.8 2.5 5 10 23 28 12 7 4.5 2.6

20 −0.15 1.4 2 5 9 22 27 12 6 2.5 1
0 1.2 2.5 4 9 22 28 12 6 3 1.2
0.15 1.2 2 4 9 22 28 12 6 3 1

0.50 5 −0.15 0.6 1 4 8 21 28 12 6 3.5 1.2
0 0.6 1.5 4 8 20 28 12 6 3 1.4
0.15 0.6 1.5 4 8 20 29 12 6 3 1.4

10 −0.15 0.6 2 4 8 23 27 11 5 2.5 1.6
0 0.6 2 4 8 23 27 11 5 2.5 1.6
0.15 0.6 2 4 8 22 28 11 5 2.5 1.6

20 −0.15 0.6 2 4 8 21 29 13 6 3.5 1.6
0 0.8 2 4 8 21 30 13 6 3.5 2
0.15 0.6 2 4 8 21 30 13 6 4 1.8

0.75 5 −0.15 0.4 1 3 9 23 30 13 6 3 1.2
0 0.4 1 3 8 23 30 13 7 3 1.2
0.15 0.4 1 3 8 22 31 14 7 3.5 1

10 −0.15 0.6 2 4 8 21 31 13 6 3.5 1.4
0 0.4 2 4 8 21 31 12 6 3.5 1.4
0.15 0.6 2 4 8 21 31 12 7 3.5 1.4

20 −0.15 0.6 1.5 4 9 21 30 11 6 3 1.6
0 0.6 1.5 4 9 22 30 11 6 3 1.6
0.15 0.6 1.5 4 9 21 30 11 6 3 1.4

Table 3.7 – One-sided nominal error rate (in %) for lower and upper credible intervals for the
dependence parameter α for the censored likelihood estimator with n = 250 based
on B = 1000 replications.

186



3.6. Simulation study: Bayesian hierarchical model

3.6 Simulation study: Bayesian hierarchical model

We conduct a simulation study to assess the performance of the Markov chain Monte Carlo

algorithm that will be used in Section 3.7. We use data from a collection of MeteoSwiss rainfall

time series to derive plausible parameter values and simulate realizations from a Brown–

Resnick model with a power variogram γ(h) = (‖Ah‖/λ)α and from an extremal Student model

with a power exponential correlation function ρ(h) = exp{−Ah‖/λ)α}, including geometric

anisotropy in both. We obtained marginal parameters (σ,ξ) by fitting a generalized Pareto

distribution to exceedances over the 90% of the site-wise rainfall series to all sites, with a

common shape parameter or a site-specific shape. For the dependence structure, we used the

extremogram (Section 2.7.2) to derive a scatter of pairwise estimates displayed in Figure 3.7.

The model-based estimate (grey line) is obtained by minimizing the squared distance between

the pairwise estimates χ̂(h) and the fitted curve: for example, for the Brown–Resnick process

with power variogramγ, we found minA,ϑ ‖χ̂−2Φ({γ(Ah;ϑ)})‖2 using constrained optimization.

While we considered using the Schlather variogram model (B.1), the parameter estimates for

the shapes (α,β) of the variogram model based on two-step modelling were nearly identical,

i.e., α̂ ≈ β̂, the extremogram curves were overlaid and preliminary runs from the Markov

chain Monte Carlo algorithm yielded chains with a negative correlation of −0.98, indicating

that one parameter was superfluous and the power variogram can adequately capture the

dependence. There is strong indication of geometric anisotropy in the North-East direction;

the parameter estimates of (2.3) are a2 = 2.15 and %= 0.7. The model-based extremograms

for the Brown–Resnick and extremal Student models are nearly indistinguishable (Figure 3.7),

except for short distances. While the extremal Student process is not mixing, meaning that

limh→∞θ(h) < 2 (2.37) and does not lead to asymptotic independence even as the distance

between site becomes infinite, it is difficult to detect asymptotic independence on a small

region.

The simulation study considered four different models (Brown–Resnick versus extremal Stu-

dent, common shape across the spatial domain or different shape parameters at each site)

and, for each scenario, three datasets were generated. We selected 500 observations at 20 sites

for inference because of the computational burden associated with the Markov chain Monte

Carlo procedure. One easy way to assess whether the model is plausible is by verifying that

summary statistics are well captured. Figure 3.8 shows the frequency at which a given site

provides the maximum exceedance for the Swiss rainfall data at 25 sites, compared with the

simulated data. The simulations show excellent agreement, with two values out of 25 falling

outside the pointwise 95% confidence interval.

Description of the algorithm

We ran four parallel chains on each dataset, and estimated both Brown–Resnick and extremal

Student models with common shape ξ in all cases, even if the underlying shape parameter is

different for every site. To assess the effect of fixing the marginal parameters in a preliminary
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Figure 3.7 – Extremogram for the Swiss rainfall data in the deformed space with the theoreti-
cal extremogram for the fitted Brown–Resnick process with power variogram (red
dashed) and for the extremal Student process with power exponential correlation
(blue full). The geometric anisotropy parameter estimates for the models are nearly
identical and both curves are overlapping.

step, as done by Thibaud (2014), we also ran latent Gaussian models to estimate scale and

shape parameters, and then fixed these to the median of the posterior draws before running

further MCMC steps for the dependence parameters alone. While plug-in estimators are often

used in practice in frequentist estimation, they make little sense in the Bayesian framework:

the marginal distribution of the i th component of a multivariate generalized Pareto model is

typically not generalized Pareto distributed. Unlike in the data application, we did not include

a spatial random effect and used a Bayesian linear model with independent components,

meaning that the spatial dependence is captured through the mean only as the covariates

include the spatial coordinates of the collection sites.

The extremal Student model with power exponential correlation function becomes a Brown–

Resnick model with power variogram when the degrees of freedom ν→∞ (Nikoloulopoulos

et al., 2009). If we fit an extremal Student process to the Brown–Resnick model, the values

of the marginal chain for the degrees of freedom are very large, sometimes larger than 105,

and the chains mix poorly unless such values were observed during the adaptation phase

during which the variance of the proposal is adapted tuned. The chains are sticky and we

can observe very high correlation between the scale parameter and ν. Mixing would likely

be improved by capping ν at 100, say, where extremal Student and Brown–Resnick models

are indistinguishable. Because of the low sensitivity of the model, updates for ν are best

performed on the log-scale and we adapt the algorithm for the data application to incorporate

these features.
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Figure 3.8 – Bar plot of the frequency at which each of 25 sites has the largest exceedance for 2000
observations with 95% confidence intervals (vertical bars) for the Swiss rainfall data
(pale grey) and simulated observations (dark grey) from a Brown–Resnick model
generalized max-Pareto process with Schlather variogram. The marginal parameters
used to simulate the data were estimated by fitting a generalized Pareto distribution
at every site with a common shape parameter and the dependence parameters were
obtained by using least squares and minimizing the distance between the empirical
extremogram and the fitted curve.

Estimation is challenging: as the model is doubly intractable, we can only calculate the

gradient numerically through Monte Carlo, and this prevents use of more efficient algorithms

such as Metropolis-adjusted Langevin or Hamiltonian Monte Carlo. We tried without success

to implement the adaptive incremental mixture MCMC algorithm of Maire et al. (2019), which

uses an independence sampler with a diffuse Gaussian proposal and adaptively adds Gaussian

mixtures when observations sampled have both high posterior mass and low probability under

the transition kernel. The proposal failed in the initialization phase, as the diffuse proposals

completely missed the posterior mode and resulted in innefficient proposals; moreover, there

is some evidence from the adaptive Metropolis-within-Gibbs output that the posterior is

unimodal. Independence samplers have near zero acceptance rate in high dimensions and

the mixture ignores the geometry. We also considered a Gaussian proposal for σwhose mean

and variance are based on marginal generalized Pareto distribution, but the approach is less

efficient than random walk Metropolis–Hastings updates because the proposed move may

be systematically in the direction opposite to the posterior mode. Alternatives for pseudo-

marginal methods include Lindsten and Doucet (2016), who transform auxiliary variables in

order to derive a Hamiltonian Monte Carlo algorithm, but the approach is impractical because
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Figure 3.9 – Directed acyclic graphical representation of the Bayesian model for the extremal
Student multivariate generalized Pareto distribution with powered exponential
correlation function R(·).

of the quasi Monte Carlo scheme we use and is unlikely to work given the large number of

augmented variables. We thus resorted to Metropolis-within-Gibbs: the marginal parameters

σ were sampled in groups of 2 or 3 sites using a random scan (Liu et al., 1995) to reduce

the number of likelihood evaluations. We used truncated Gaussian proposals for the scales

and the shape parameters to ensure the proposals satisfied the boundary constraints of the

generalized Pareto distribution marginally. The parameters of the Gaussian linear model

for log(σ) were updated using Gibbs sampling and the sampler described in Section 3.4. A

summary of the hierarchical model is given in Figure 3.9 and the prior specification is reported

in Table 3.8; we used conjugate priors for the latent Gaussian model and vague priors for the

scale and range parameters. The values of the shape parameter ξ reported in the literature

are more often than not positive and small and Serinaldi and Kilsby (2014), using extensive

records, report an average of around 0.1 for the shape of the generalized Pareto distribution

fitted to more than 15 000 sites. Since the shape is hard to estimate, we use an informative prior

for the latter and set p(α/2) ∼ Be(60,40) in the data application, reflecting previous studies

(Davison et al., 2012; Thibaud and Opitz, 2015) and p(α) ∼No(0,0.2) in the simulation study.

The Beta prior is centered at 0.1 with approximate standard deviation of 0.05. The difference in

log-likelihood between ξ= 0.1 and ξ= 0.2 is −10, whereas it increases to −30 if ξ= 0.4 relative

to the mean of the prior. We standardized the covariates, namely longitude, latitude and log

elevation, to have zero mean and unit standard deviation and likewise specified the prior for

the reciprocal scale λ after standardizing by the average distance between sites. For the shape

parameter of the variogram or power exponential correlation matrix, we used a Gaussian prior

centered at zero, α/2 ∼Be(4,4) to avoid fields that are too rough or too smooth, both of which

are not observed in practice.

Adaptive methods are used to adjust the variance of the proposals within the Metropolis-

within-Gibbs scheme: we tuned it to yield acceptance rates of about 0.44 for individual

parameters and 0.234 for multivariate proposals, based on results for Gaussian distributions

(Rosenthal, 2011). After exploring for 1000 iterations, we updated the covariance every 200

iterations by setting Σ← εΣ+ (1−ε){Cov
(
{X (b)}b

b−1000

)+εI} for ε ∈ (0,1); the ridge εI ensures
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Brown–Resnick (1) α/2 ∼Be(2,2), d̃/λ∼HNo(0,22), 2−β∼Ga(2,2),
Brown–Resnick (2) α/2 ∼Be(2,2), d̃/λ∼HNo(0,52),
Extremal Student α/2 ∼Be(4,4), d̃/λ∼HNo(0,52), ν−1 ∼Ga(3,3),
Shape and anisotropy ξ+1/2 ∼Be(60,40), a −1 ∼HNo(0,1.52), %∼U(−π/2,π/2),
Latent Gaussian model βσ ∼No4(0,5I4), τ2

σ ∼ IG(0.5,0.1), ρσ ∼Ga(2,2/d̃).

Table 3.8 – Prior specification for the Bayesian hierarchical model used in the data analysis, for
the Brown–Resnick model with Schlather variogram (1) and with a power variogram
(2) and the extremal Student model with a power exponential correlation function.
No: Gaussian, IG: inverse gamma, HNo: half-Gaussian, i.e., truncated Gaussian on
(0,∞), HCa: half-Cauchy, i.e., truncated Cauchy on (0,∞); LNo: log-Gaussian. The
gamma distribution is parametrized in terms of shape and scale and we denote the
median distance between sites by d̃ .

that the covariance matrix does not collapse to O. We experienced with alternatives proposed

in Andrieu and Thoms (2008), but found our simple scheme to work better in practice while

being relatively robust. The parameters of the variogram/correlation function, together with

the degrees of freedom for the extremal Student process, were updated independently only

for the first 3000 iterations and we adapted the marginal variances during that period. Some

of the parameters are strongly correlated a posteriori, justifying the need for joint updates

and we proposed from multivariate truncated Gaussian distribution. Adaptive proposals

reduce manual tuning, but can lead to poor samplers, particularly if the chain has not reached

stationarity during burn-in and this difficult to monitor.

Convergence assessment

We can assess the convergence of the algorithm by running standard tests and looking at

trace plots. For all cases, including misspecified models in which the shape parameter is

wrongly assumed to be constant in space and/or the dependence model is not that of the

data generating mechanism, the model captures most of the dependence dynamics. This is

unsurprising given the negligible differences between the fitted models reported in Figure 3.7.

Except for the cases in which the extremal Student model was fitted to the Brown–Resnick

and the estimated degrees of freedom are very large, the scale reduction factors were equal

to 1 for every scenario. We also performed Geweke tests (Geweke, 1992), which failed for

some parameters, but never for more than one of the four chains. Mixing is relatively good:

Figure 3.10 shows trace plots for selected parameters from the posterior of an extremal Student

model fitted to simulated data from the same model and all chains appear to have reached

stationarity. The left panel of Figure 3.11 shows kernel density estimates for the four chains

for dependence parameters, with true value marked by a black dot. All of the data generating

parameters lie within the bulk of the posterior density estimates and the density curve overlap,

indicating agreement between the posterior marginals estimated by each chain. The sample

autocorrelation of the Markov chain (right of Figure 3.11) show geometric decay and suggest

that samples at lag 100 are approximately independent. The parameters that are harder to

sample are often highly correlated (Figure 3.12), but bivariate density plots suggest that the
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Figure 3.10 – Traceplots of the posterior draws (post burn-in) from the extremal Student model
based on four chains. From top to bottom: shape and log-scale for the powered
exponential correlation function, degrees of freedom, scale parameter at the first
site and common shape parameter. The bars on the left mark the 25% and 75%
and 10% and 90% of the marginal posterior draws.

joint posterior distribution is not degenerate.

The effective sample size varies a lot: the parameters of the linear model, updated using Gibbs,

are nearly independent, but the effective sample size for the other parameters is between five

and ten percent. Some of the dependence parameters of the variogram/correlation model,

which are updated jointly, are more difficult to sample and the shape parameterα has effective

sample size of 1.5% in the worst case scenario: with 160 000 draws, this is sufficient to estimate
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Figure 3.11 – Density plots (left) and correlograms (right) for the posterior draws (post burn-
in) from the extremal Student model based on four chains. From top to bottom:
shape and log-scale for the powered exponential correlation function, degrees of
freedom, scale parameter at the first site and common shape parameter. The true
parameter are indicated by dots on the x-axis of the plots in the left panel.

95% marginal credible intervals reliably.

Comparison between the parametric models based on the samples from the posterior is not

straightforward. If the model is correctly specified, we can compare the parameter values

used to generate the synthetic observations with the posterior quantiles. Tables 3.9 and 3.10

give the marginal posterior quantiles for runs from the correct model, which shows that

both the two-stage approach and the full likelihood yield comparable output for the different
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Figure 3.12 – Random subsamples of the posterior draws (post burn-in) from the extremal
Student model and bivariate kernel density (contour lines) for the four chains for
the shape and log-scale for the powered exponential correlation function, (α,λ)
and the degrees of freedom, ν.

simulated datasets. The generalized Pareto likelihood should yield consistent estimators

of the marginal parameters. Because there are more than 30 parameters in the models, we

report the distribution of the marginal scale parameters σ graphically and focus on the more

challenging dependence parameters and ξ. To avoid cluttering, we show density estimates

of the posterior distribution of the scale parameters, standardized by dividing the draws

by the value of σ used to generate the series. On the basis of this visual inspection, the

distributions appear well calibrated for all methods, regardless of the dependence structure,

but the estimated scale parameters for the extremal Student appear to be systematically

lower than their counterparts from latent Gaussian models and the posterior distribution is

more concentrated than for draws obtained by fitting a Brown–Resnick model. The draws

from the latent Gaussian model are in line with the others; the distribution of σ is not very

different whether we use a generalized Pareto distribution with common shape (dots) or

the multivariate generalized Pareto model, suggesting that both carry the same amount of

information about the marginal parameters.

Conditional predictions from the hierarchical model at holdout sites can be obtained by

forward sampling: conditional on the current posterior draws from σ,ξ, we transform the

observation vector to the unit Pareto scale and simulate the value of the process at the holdout

sites from a log-Gaussian process, the parameters being derived from the conditional intensity

of the Brown–Resnick process. To back-transform observations to the observation scale,

marginal parameters are sampled from the trend surface No(Xβσ,τ2
σR(·,ρσ)) conditional on

the current values of σ. For unconditional predictions, we replace the conditional simulation
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ξ α λ a %

rep. % | FULL 2S FULL 2S FULL 2S FULL 2S FULL 2S

1 2.5 0 −0.06 0.75 0.76 21 25.25 1.98 1.98 0.49 0.48
10 0.02 −0.04 0.77 0.78 23 26.5 2.06 2.06 0.51 0.51
50 0.04 0 0.81 0.81 26.75 28.5 2.25 2.23 0.56 0.56
90 0.07 0.04 0.85 0.85 30.75 30.75 2.44 2.42 0.61 0.6
97.5 0.09 0.06 0.87 0.87 33 32 2.55 2.53 0.63 0.63

2 2.5 −0.05 −0.06 0.67 0.68 17.5 21.25 2.17 2.12 0.53 0.53
10 −0.04 −0.05 0.69 0.69 19.25 22.5 2.28 2.22 0.56 0.56
50 −0.01 −0.01 0.72 0.73 23 24.75 2.48 2.42 0.6 0.6
90 0.02 0.02 0.76 0.77 27 27 2.72 2.64 0.65 0.65
97.5 0.03 0.04 0.78 0.79 29.5 28.25 2.85 2.77 0.67 0.67

3 2.5 0.02 −0.04 0.65 0.65 15.25 16.75 1.92 1.91 0.61 0.62
10 0.03 −0.02 0.67 0.67 16.75 17.75 2.02 2 0.64 0.65
50 0.06 0.01 0.7 0.7 20 19.75 2.21 2.19 0.7 0.71
90 0.1 0.05 0.74 0.74 23.75 21.5 2.43 2.4 0.76 0.76
97.5 0.12 0.07 0.76 0.76 26 22.75 2.56 2.52 0.79 0.8

Table 3.9 – Posterior marginal quantiles using the full likelihood ( FULL) and two-stage estimation
( 2S) across three replicate datasets of size n = 500 with D = 20 sites using a Brown–
Resnick process with a correctly specified likelihood. The data generating process
values are ξ= 0.03, α= 0.73, λ= 22, a = 2.36 and %= 0.61.

ξ α λ ν a %

rep. % | FULL 2S FULL 2S FULL 2S FULL 2S FULL 2S FULL 2S

1 2.5 −0.05 −0.06 0.35 0.35 0 0 6.5 6.3 1.74 1.71 0.51 0.51
10 −0.03 −0.04 0.37 0.37 0 0 7.4 7.1 1.89 1.86 0.56 0.56
50 0 0 0.41 0.41 50 50 10 9.6 2.23 2.19 0.67 0.67
90 0.03 0.04 0.46 0.46 50 50 14.8 14.2 2.65 2.58 0.78 0.78
97.5 0.05 0.06 0.48 0.48 100 150 18.7 18.3 2.91 2.81 0.84 0.84

2 2.5 −0.05 −0.02 0.39 0.38 0 0 4.8 4.9 1.55 1.52 0.41 0.41
10 −0.03 0 0.41 0.4 0 0 5.3 5.4 1.67 1.64 0.47 0.48
50 0.01 0.03 0.46 0.45 0 0 6.7 6.7 1.94 1.91 0.59 0.59
90 0.05 0.07 0.51 0.5 50 50 8.9 8.9 2.27 2.22 0.7 0.72
97.5 0.07 0.09 0.54 0.52 100 50 10.7 10.7 2.47 2.41 0.77 0.79

3 2.5 0.01 −0.02 0.34 0.33 0 0 4.1 4.7 1.99 1.91 0.48 0.47
10 0.03 0 0.36 0.35 0 0 4.5 5.2 2.16 2.07 0.52 0.51
50 0.07 0.03 0.4 0.39 0 0 5.5 6.5 2.55 2.43 0.61 0.61
90 0.1 0.07 0.46 0.44 50 50 7 8.5 3.03 2.84 0.71 0.7
97.5 0.13 0.1 0.48 0.46 50 50 8.3 10.2 3.32 3.09 0.76 0.76

Table 3.10 – Posterior marginal quantiles using the full likelihood ( FULL) and two-stage estima-
tion ( 2S) across three replicate datasets of size n = 500 with D = 20 sites using an
extremal Student process with a correctly specified likelihood. The data generating
process values are ξ= 0.03, α= 0.42, λ= 1073, ν= 6.4, a = 2.36 and %= 0.61.

from the Brown–Resnick process by an unconditional simulation, which would allows us to

compute the CRPS score, which we did not attempt due to lack of time.

The dependence parameters are meaningless on their own if the model is misspecified, so
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Figure 3.13 – Kernel density estimates and boxplots for the posterior distribution of the marginal
scale parameters at selected sites based on data simulated from an extremal Stu-
dent process. From left to right: Brown–Resnick model (dark grey), extremal
Student (grey) and latent Gaussian model (light grey). The dots on the left indicate
the maximum likelihood estimates of the marginal shape obtained by fitting in-
dependent generalized Pareto distributions to each sites with a common shape
parameter.

we consider the spatial conditional probability of exceedance in Figure 3.14. There are few

discernible differences: the credible bands for the extremogram curves obtained from the

joint fit using the envelope method (Davison and Hinkley, 1997, pp. 153–154) are wider than

the two-stage model ones. If the true model is extremal Student, but we fit a Brown–Resnick

model, the joint credible interval does not capture the true curve.

The goal of the simulation study was to assess whether the Markov chain Monte Carlo used

for the data applications in Section 3.7 converges to the stationary posterior distribution

of interest. Since we know the data generating mechanism, it is possible to relate marginal

parameter estimates of the posterior to the true values; we find that most parameters are

adequately captured, as illustrated by Figure 3.13. The convergence diagnostics, such as

Figure 3.11, indicate good mixing for the Markov chain sampler and all of the chains have

converged to the same stationary distribution. The two-stage method and the full likelihood

seem consistent and give similar results (Tables 3.9 and 3.10). The parameter estimates re-

ported in the tables and graphically in Figure 3.13 show that, although the two-stage approach

and the full likelihood do not have the same point estimates, the marginal posterior variance

is approximately the same. This implies that, for a correctly specified model, little is gained

from estimating margins and dependence structure simultaneously. The point estimates of

the two-stage method need not give a local or global optimum, but the marginal adjustment

as assessed by quantile-quantile plots based on the fit of a generalized Pareto distribution
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Figure 3.14 – Extremogram of simulated data from a Brown–Resnick process (left) and from
an extremal Student process (right), with 95% simultaneous credible intervals for
the curve based on the fitted Brown–Resnick (grey shaded), extremal Student (red
shaded). The credible intervals for the parameter estimated using the two-stage
approach are given by dashed curves (same color code).

to site-wise threshold exceedances is likely to be better. While analysis of the Markov chain

Monte Carlo sampler on simulated data from the model yielded comparable output for the

joint likelihood and the two-stage approaches (Tables 3.9 and 3.10), we have no guarantee

of the optimality of the parameter estimates resulting from the two-stage procedure: joint

modelling can lead to very different marginal estimates of σ,ξ.

3.7 Data applications

3.7.1 Zürich rainfall

We fit a Bayesian hierarchical model to the Zürich rainfall data used in Davison et al. (2012)

and in Thibaud and Opitz (2015). The latter consists of daily cumulated rainfall between June

1st and August 31st for the summer months recorded at 44 stations in central Switzerland

between 1962 and 2012. The so-called Plateau is a small region and it may be difficult to

capture weakening spatial dependence because the maximum distance between sites is

small. The location of the measurement sites are indicated with crosses on Figure 3.15; we

retain 20 sites for inference, leading to approximately 13 multivariate exceedances per year.

Thibaud and Opitz (2015) used an extremal Student model, but fixed the margins to the

maximum a posteriori from a latent Gaussian model using the Poisson likelihood for threshold

exceedances given in Proposition 1.4 with Gaussian process priors on the parameters, as in

eq. (3.8). Thibaud (2014) compared the results from running a latent Gaussian model with
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Figure 3.15 – Location of the measurement stations of the Zürich rainfall dataset of Thibaud and
Opitz (2015) (crosses) and of the Swiss rainfall dataset (circles), for which longer
time series are available. Stations used to fit the model are colored in white and
hold-out sites in black.

βσ,0 βσ,1 βσ,2 βσ,3 τ2
σ ρσ

5% 2.1 −0.07 −0.16 −0.06 0.01 18
median 2.3 0.02 −0.06 0 0.03 46
95% 2.5 0.12 0.04 0.05 0.05 95

Table 3.11 – Posterior median with 90% credible interval for the regression parameters of the
latent Gaussian model with a common shape parameter for the joint fit of the
Brown–Resnick model with a power variogram to the Zürich dataset. The regression
parameters βσ correspond to the intercept, longitude, latitude and log altitude,
standardized to have zero mean and unit variance.

adjusted likelihood curvature following Ribatet et al. (2012); writing that the latter mix poorly,

leads to point estimates for the latter centered at different values and with wider “credible

intervals” for the adjusted likelihood.

The parameter estimates are given in Table 3.11 and Figure 3.16 shows an example of a

simulated realization of σ(s) over the domain based on the log-Gaussian hierarchical model

(left panel) along with the median estimated surface from the latent Gaussian model. The

log-Gaussian distribution is skewed to the right, which can lead to very large scale parameters.

The default log link is not a panacea, but alternatives such as identity or reciprocal link

functions require sampled components from truncated Gaussian components, which are

more expensive to compute. If the parameters are far from zero and the variance is small, this

may be an interesting alternative.
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Figure 3.16 – Simulation of the fitted log-Gaussian surface for the scale over the convex hull
of the 20 sites used for inference (left) and pointwise estimate for the regression
surface based on median posterior of βσ.

We consider joint estimation based on a hierarchical model similar to the one described in

Section 3.6 for 20 sites and consider marginal threshold exceedances above the 97.5% of the

series, yielding a total of 588 observations for the Zürich data. To obtain sensible starting

values, we fitted generalized Pareto distributions to marginal threshold exceedances with

a common shape parameter and fitted a variogram model by minimizing the l2 distance

between the cloud of fitted tail correlation coefficient χ̂ and the theoretical curve for the

selected model. We ran 10 parallel chains for 55 000 iterations, discarding the first 10 000

for burn-in and stopping adaptation after 15000. Trace plots (not shown) are stable for all

parameters and the marginal distribution of the parameters appear unimodal. The effective

sample size for the scale parameters is on average 15000 for the Brown–Resnick models and

about 5000 for the extremal Student model; those for the dependence parameters are reported

in Tables 3.13 to 3.15. We used the separation of variables estimator for the Gaussian and

Student distribution functions, averaging over 12 runs based on a sample of 307 observations,

whereas we increase the precision for the Gaussian distribution functions appearing in the

exponent measure by taking 499 observations to reduce the bias. The variance of the likelihood

estimator is around 0.2 and a single evaluation of the log-likelihood at 20 sites takes about a

second. While it may advisable to use parallel computing when the number of sites D is in

the hundreds to split the evaluation of Gaussian distribution functions between cores, the

communication costs make this option impractical with our cluster architecture.

To assess the sensitivity of the model to prior selection, we ran Markov chains with different

priors on the Zürich data, doubling or halving the precision of the parameters. For the Bayesian

linear model, we used the two-stage approach to reduce the computational burden. Changing

the priors aτ,bτ, aρ ,bρ ,τ2
β

had no impact on the distribution of the hyperparametersβσ,ρσ,τ2
σ:

the magnitude of the differences was about 0.01 for τ2
σ and 1 for ρσ, whose posterior median is

144; all these changes are within Monte Carlo variability and hint to the fact that the likelihood
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σ1 ξ α λα a % ν

10.60 0.286 0.60 4.21 1.766 0.580
10.62 0.286 0.61 4.24 1.764 0.581
10.74 0.288 0.61 4.36 1.770 0.580
10.57 0.287 0.60 4.18 1.764 0.582
10.71 0.436 0.35 165.40 2.074 0.637 5.98
10.57 0.436 0.36 168.35 2.050 0.634 5.98
10.66 0.435 0.35 166.20 2.070 0.633 5.98
10.73 0.435 0.35 167.65 2.060 0.634 5.98
10.64 0.436 0.35 166.65 2.066 0.636 6.00

Table 3.12 – Prior sensitivity analysis for the Zurich data: marginal posterior mean for the
parameters of the Brown–Resnick model with power variogram (first four rows)
and the extremal Student with power exponential correlation (last five rows).
The priors relative to the model specification are α/2 ∼ Be(1,1) (first and fifth
rows),α/2 ∼Be(4,4) (second and sixth rows) d̄/λ∼HNo(0,2.52) (third and seventh
row), d̄/λ∼HNo(0,102) (fourth and eigth rows), ν−1 ∼Ga(3,3) (ninth row).
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Figure 3.17 – Posterior kernel density estimates with various priors density for the Zürich data
with a latent Gaussian model for the variance (left) and scale parameters (right) of
the exponential covariance model for the spatial random effect model; the prior
used in the data analysis is the first specified in the legend (dashed).

contribution dominates the posterior, with the prior having little to no impact except for

ξ. Figure 3.17 shows that, despite very large changes in the priors, the posterior estimates

are unaffected when the support of the prior and that of the posterior overlap. Table 3.12

shows the impact of changes in the prior specification for the dependence parameters of

the Brown–Resnick and extremal Student models, relative to the specification outlined in

Table 3.8 for the full model for selected updates. The only informative prior is that of the
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method | θ σ1 ξ α λ a %

full 5% 9.48 0.26 0.57 8.8 1.6 0.5
median 10.57 0.29 0.6 10.7 1.76 0.58
95% 11.82 0.32 0.64 13 1.94 0.66
ESS(×0.01) 152 428 384 68 434 578

two-stage 5% 8.93 0.1 0.54 5.41 1.59 0.5
median 9.97 0.13 0.57 6.08 1.75 0.58
95% 11.12 0.17 0.61 6.79 1.93 0.66
ESS(×0.01) 928 566 414 376 250 352

Table 3.13 – Posterior median, 90% marginal credible intervals, and effective sample size (ESS)
for the parameters of the Brown–Resnick model with a power variogram for the
Zürich rainfall dataset.

shape, whereby p(ξ+1/2) ∼Be(60,40); since the sites share a common shape parameter, the

truncation allows for some regularization, so as to avoid regions of the parameter space where

the estimation of the log-likelihood becomes numerically unstable or the shape parameter

values are implausible. The difference in posterior when the value of ξ increases is so large

that the prior has a small impact. Despite the very large shape estimates, the Markov chain

Monte Carlo sampler seem to have reached stationarity, even if mixing is poorer than for

simulated data of Section 3.6. The latent Gaussian model however has lower autocorrelation

and larger jump distance: we use a Mahalanobis distance, with a diagonal covariance matrix

based on marginal variance of the posterior for the scale to make comparison meaningful.

The jump distance is 2.22 for the 20 scale parameters for the latent Gaussian model with

22.5% of effective samples, compared to a jump distance of 1.06 and 2.2% of effective samples

for the full Bayesian hierarchical model. Quantiles of the sample draws from the posterior

are reported in Tables 3.13 to 3.15; note the very large difference with the estimates for the

scale and the shape reported for the two-stage fit. For the Brown–Resnick model with the

Schlather variogram, there is strong negative correlation between posterior draws for (α,β).

A reparametrization of the model parameters would be advisable, but both parameters are

constrained and the constraint linking (α,β) is nonlinear.

Marginal goodness-of-fit diagnostics for the training data and at holdout sites are given

through marginal Bayesian quantile-quantile plots (Figure 3.18) for the 10 first sites, which

show that the fitted model overpredicts the largest observations except sites 4 and 7. The high

shape parameter leads to poor fit in the lower tail of the distribution of the extremes at the

holdout sites. For the fourth holdout site shown in the third row of Figure 3.18, the extremes

seem to originate from a mixture.

We also plot the fitted conditional probability of exceedance curve in Figure 3.19, including

pairwise estimates χ̂ for the 24 holdout sites. All models completely fail to capture the linear

rate of decay of dependence with distance. The two-stage approach credible bands are too

narrow and underestimate the dependence. Both models seem to adjust poorly to the data;
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method | θ σ1 ξ β α λ a %

full 5% 9.66 0.26 0.57 0.14 9.43 1.62 0.51
median 10.78 0.29 0.88 0.41 11.41 1.78 0.58
95% 12.04 0.32 1.15 0.64 13.84 1.97 0.66
ESS(×0.01) 144 388 182 172 56 406 560

two-stage 5% 8.93 0.1 0.46 0.13 5.64 1.62 0.5
median 9.96 0.13 0.71 0.47 6.33 1.79 0.58
95% 11.12 0.17 1.07 0.7 7.06 1.97 0.65
ESS(×0.01) 896 560 98 92 128 210 344

Table 3.14 – Posterior median, 90% marginal credible intervals, and effective sample size (ESS)
for the parameters of the Brown–Resnick model with a Schlather variogram for the
Zürich rainfall dataset.

method | θ σ1 ξ α λα a % ν

full 5% 9.56 0.42 0.31 133.95 1.68 0.51 5.15
median 10.67 0.44 0.35 166.16 2.04 0.63 5.96
95% 11.92 0.45 0.4 206.81 2.51 0.76 6.97
ESS(×0.01) 50 666 298 178 374 518 300

two-stage 5% 8.93 0.1 0.29 92.45 1.67 0.52 5.49
median 9.96 0.13 0.33 110.18 2.04 0.65 6.14
95% 11.12 0.17 0.37 131.36 2.52 0.78 6.9
ESS(×0.01) 896 566 90 120 198 304 116

Table 3.15 – Posterior median, 90% marginal credible intervals, and effective sample size (ESS)
for the parameters of the extremal Student model with a power exponential correla-
tion function for the Zürich rainfall dataset.

this puzzling finding requires further investigation to better understand the causes of these

discrepancies.

3.7.2 Swiss rainfall

We consider a complementary dataset with 86 time series from MeteoSwiss running between

1901 and 2016, keeping observations between May 1st and September 30th to ensure approxi-

mate stationarity, thresholding and censoring observations falling below the 98% and using

the first 1000 observations threshold exceedances at 20 sites for inference to ensure reasonable

computing time. All stations, shown with circles in Figure 3.15, are located north of the Alps.

The marginal posterior estimates for the shape parameter obtained from fitting the Brown–

Resnick model to the Swiss rainfall data are much more reasonable, but the shape parameters

are still high; marginal posterior estimates for the dependence parameters and for ξ are given in

Tables 3.16 to 3.18. We only make the comparison with the two-stage approach for the Brown–
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Figure 3.18 – Quantile-quantile plots for marginal threshold exceedances above the 0.975%,
based on the generalized Pareto distribution. The parameter values are posterior
medians for (σi ,ξ) for the first two rows (sites i = 1, . . . ,10), which were used to
estimate the model. The last row gives quantile-quantile plots for holdout data;
the value of the scale parameter is obtained as the median from simulations from
the latent Gaussian models, conditional on the posterior draws from the Bayesian
linear model. The dashed (dotted) lines give approximate 95% pointwise (overall)
credible intervals derived from the posterior predictive distribution.

Resnick model with a power variogram. As for the Zürich data, we derive Bayesian analogs of

quantile-quantile plots based on posterior draws for the 15 first sites, using all exceedances

available at the station; it appears that the model nearly systematically overpredicts large

events. The extremogram on Figure 3.22 shows that the dependence structure is well captured

by a Brown–Resnick model and both variograms give indistinguishable results, capturing

the decreasing dependence with distance, whereas the extremal Student underestimates the

probability of joint occurrence of extremes. The estimated 95% credible interval for the curve

from the two-stage fit is very narrow and lies below the cloud of empirical estimates of χ̂(h).

The left panel of Figure 3.20 shows the profile log-likelihood for the shape parameter ξ based

on fitting independent generalized Pareto distribution to threshold exceedances at the 20

sites with a common shape parameter for the Swiss rainfall data and for simulated data; there

is good agreement between the two methods. In contrast, the fit of the full Brown–Resnick
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Figure 3.19 – Left: conditional probability of exceedance above the 0.975 marginal percentile
for the Zürich data, χ̂(h). Because of the geometric anisotropy, the distance be-
tween the sites is random and the points (segments) indicate the median distance
(50% posterior predictive interval); vertical segments give approximate Wald 95%
confidence intervals for the estimates of χ based on the delta-method. The fitted
curve corresponds to the Brown–Resnick model with a power variogram (grey)
and the extremal Student with a power exponential correlation function (red) with
simultaneous 95% credible interval and median curve for the full likelihood fit
(left) and the two-stage approach (right).

method | θ σ1 ξ α λ a %

full 5% 8.81 0.14 0.48 7.03 1.71 0.58
median 9.99 0.18 0.53 9.55 1.95 0.69
95% 11.32 0.23 0.57 12.7 2.22 0.79
ESS(×0.01) 154 398 444 116 508 570

two-stage 5% 10.21 0.04 0.57 7.5 2.06 0.63
median 10.97 0.06 0.58 7.54 2.18 0.67
95% 11.82 0.08 0.6 7.68 2.3 0.71
ESS(×0.01) 1380 746 234 312 216 266

Table 3.16 – Posterior median, 90% marginal credible intervals, and effective sample size (ESS)
for the parameters of the Brown–Resnick model with a power variogram for the
Swiss rainfall dataset.

model with power variogram to the Swiss rainfall data gives very different shape estimates;

the right panel of Figure 3.20 shows density estimates of posterior draws for ξ, which do not

overlap. There is a tradeoff between scale λ and ξ (Table 3.16) which results in an increase

of the log-likelihood by nearly 3185 units if we evaluate the latter at the median a posteriori,

suggesting that the draws for the two-stage approach are far from the maximum a posteriori.
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| θ σ1 ξ β α λ a %

5% 8.92 0.15 0.01 0.46 9.34 1.65 0.55
median 10.12 0.19 0.27 0.84 12.04 1.89 0.67
95% 11.46 0.23 0.62 1.17 15.02 2.17 0.77
ESS(×0.01) 154 370 198 202 146 366 534

Table 3.17 – Posterior median, 90% marginal credible intervals, and effective sample size (ESS)
for the parameters of the Brown–Resnick model with a Schlather variogram for the
Swiss rainfall dataset.

| θ σ1 ξ α λα a % ν

5% 9.49 0.36 0.23 142.94 1.36 0.66 5.63
median 10.8 0.39 0.25 189.05 2.02 1 6.97
95% 12.31 0.41 0.29 253.61 2.95 1.28 8.82
ESS(×0.01) 90 530 208 180 324 378 238

Table 3.18 – Posterior median, 90% marginal credible intervals, and effective sample size (ESS)
for the parameters of the extremal Student model with a power exponential correla-
tion function for the Swiss rainfall dataset.

Such differences between marginal parameters are not uncommon even in the bivariate

censored likelihood estimation, where marginal parameter estimates can compensate for

what is potentially an incorrect dependence model. The marginal posterior estimates for ξ for

the extremal Student (Table 3.18) are unreasonably high, potentially indicating a misspecified

model. Such issues do not arise in simulation from the model; it would be interesting to

compute the maximum composite likelihood estimator with a curvature adjustment to see if

similar discrepancies between marginal and joint fit arise.
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Figure 3.20 – Left panel: profile log-likelihood for ξ for independent generalized Pareto distri-
butions with common shape parameter (left) for the Swiss rainfall dataset and
for simulated observations from the Brown–Resnick model with common shape
parameter whose marginal parameters are obtained from the marginal fit. Right
panel: posterior density estimates for ξ for a Brown–Resnick model with power
variogram, using the two stage approach (dashed grey) and full likelihood (full).

3.7.3 Concluding remarks

Bayesian modelling of functional peaks-over-threshold remains difficult and the simulations

illustrate some of the challenges arising from censoring, which is responsible for the computa-

tional bottleneck of any frequentist or Bayesian estimation method. While efficiency gains

could be achieved by porting routines to low level programming languages such as C++ , the

most expensive computations come from repeated matrix decompositions and calculation

of Gaussian distribution functions, and there are limited alternatives. Data augmentation,

which replaces the Monte Carlo average by a single draw, is costly to implement because of

the need to compute the conditional distribution and we found that, despite faster computing

time because we can use the full likelihood, use of auxiliary variables makes it extremely

hard to design efficient proposals for the Markov chain Monte Carlo sampler. The loss of

information for parameter estimation from going from full to censored likelihood depends on

identifiability constraints, but overall remains moderately small as the dimension increases,

in particular for dependence functions that have few parameters.

Adjusting a multivariate generalized Pareto model in large dimensions is difficult and real data,

in particular in environmental settings, may be poorly approximated by the model. While

an adaptive Metropolis-within-Gibbs Markov chain Monte Carlo algorithm worked in the

simulation study and for the data applications, the method requires running long chains to

get a good effective sample size and reliable estimate posterior quantiles of interest. The
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Figure 3.21 – Quantile-quantile plots for marginal threshold exceedances above the 0.98%, based
on the generalized Pareto distribution, using posterior samples from the fit of the
Brown–Resnick model with a power variogram. The parameter values are posterior
medians for (σi ,ξ) for 10 sites used to fit the model, using all exceedances. The
dashed (dotted) lines give approximate 95% pointwise (overall) credible intervals
derived from the posterior predictive distribution.

estimation is complex and special care must be taken to ensure that the proposals satisfy

boundary constraints; use of truncated Gaussian proposals seems natural in many cases

for sampling from the conditional posterior of a single parameter. However, the number

of marginal parameters scales linearly in the dimension, the number of points exceeding

their threshold decreases as D increases, leaving us with the unsatisfying option of having

to evaluate numerically Gaussian distribution functions in dimension close to D for most

of the observation vectors if we adopt a Brown–Resnick model. The computational burden

increases linearly in the number of observations. As such, inference is and will remain limited

to a small number of sites, D ≈ 20, if we wish to obtain estimates in reasonable time. The

computing for the application to the Zürich data took approximately 70 hours, but the time

series are strongly spatially dependent. In contrast, some of the simulations in Section 3.6

with the extremal Student, the likelihood of which is more costly to evaluate, took a full 10

days of computing; while we can run multiple chains on a cluster, the sequential nature of

the computations makes it difficult to exploit parallel computing architecture. In contrast,

latent Gaussian models are very cheap to compute and the strategies outlined at the end of

Section 3.4 and used in, e.g., Dyrrdal et al. (2014) can lead to efficient samplers without tuning

the proposals. In dimension D = 20, it takes less than one hour to obtain about 40 000 posterior

samples. However, the model falsely assumes that sites are independent, which means that

the uncertainty is underestimated: nearby sites often share information about extreme events
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Figure 3.22 – Left: conditional probability of exceedances above the 0.98 marginal percentile for
the Swiss rainfall data, along with fitted curves obtained from posterior samples
from the full likelihood fit (left) and the two-stage approach (right). Because of
the geometric anisotropy, the distance between the sites is random; the points are
median pairwise estimates of χ̂ and the segments give 50% posterior predictive
interval for the distances; vertical segments give approximate Wald 95% confidence
intervals for the estimates of χ based on the delta-method. The fitted simultaneous
95% credible intervals curves correspond to a Brown–Resnick model with power
variogram (grey) and with a Schlather variogram (green), and to the fit from the
extremal Student with power exponential correlation (red).

if the latter are spatially extended. Hewitt et al. (2019) suggest using the extremal coefficient to

downweight observations, but this is ad hoc.
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Conclusion and future work

The unifying theme of this thesis is likelihood-based inference. In Chapter 1, we considered

inference for univariate extremes and derived closed-form expressions for cumulants of the

generalized extreme value distribution. A key finding of the simulations is that confidence

intervals based on the profile likelihood, while having adequate coverage, are typically shifted

to the left and, as such, lead to higher error rate than confidence intervals derived using the

tangent exponential model approximation. While derivation of higher-order cumulants is

feasible, Bartlett and Cox–Snell corrections were shown to have poor finite-sample properties.

It may be better avenue to rely on bootstrap methods, which while computationally expensive

can more easily be generalized to arbitrary functionals. Often, the quality of the approximation

provided by extreme value distributions is inadequate. On the other hand, these limiting mod-

els are the key tools for the extrapolation of risk. An avenue for future research is development

of sub-asymptotic models for threshold exceedances, designed to be more flexible so that

more observations from the bulk of the distribution can be used for inference. Automated

threshold selection methods for high dimensional problems remain elusive, and likewise the

problem for choosing the functional threshold for generalized l-Pareto processes has not yet

been addressed.

Chapter 2 comprises an extensive literature review, unifying the different characterizations

of multivariate and functional extremes under a common umbrella. There have been many

recent developments in the field, yet much remains to be done. While we have not covered

temporal extremes, the models can be easily accommodated even if further complications,

related to clustering, arise. In particular, the conditional spatial extremes model has not really

been employed for modelling spatial extremes. Because it allows for modelling of possibly

non-extreme data, the need for inferential censoring is less acute and extensions of the model,

based on a mixture representation, could be envisioned. The main computational bottleneck

is inferential censoring; while few models exist, extensions that account for skewness are

likely to be even more difficult to fit. Inference appears feasible in high dimensions through

gradient scoring, because the latter bypasses the estimation of the measure of the risk set and

downweights rather than censors small observations. The gradient score method is limited to

models that do not have mass on the boundary. Many open questions regarding estimation

using gradient scoring also need to be addressed, including uncertainty quantification, the

choice of weighting function and model selection.
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Exploration of alternative hierarchical scale mixture model constructions to allow truly high-

dimensional models to be fitted to extremal data is an obvious next step. Possible compu-

tational gains could come from approximating the Gaussian field with a basis expansion

comprising stochastic Gaussian weights and compactly-supported basis functions. This corre-

sponds to the finite element representation of the solution to a particular class of stochastic

partial differential equations (SPDE) which give a Gaussian Markov random field (GMRF)

approximation with Matérn covariance (Lindgren et al., 2011). The GMRF approximation

results in sparse precision matrices for the weights and embedding the GMRF in a hierarchical

model in place of the Gaussian process could drastically speed up computations. Use of

weighted estimators rather than censoring could also allow better exploitation of the GMRF

approximation; alternative estimators such as the gradient score have not yet been considered.

Rather than starting from extreme value models, it may make sense to consider extremal prop-

erties of established models that are scalable, such as that presented in Wallin and Bolin (2015).

An alternative to the SPDE approach for sparse modelling of high-dimensional Gaussian fields

is the nearest-neighbour Gaussian process (Datta et al., 2016).

We estimated marginal and dependence parameters simultaneously for generalized max-

Pareto processes in Chapter 3, finding that this is feasible in low dimensions and that it

provides a large improvement in terms of overall fit compared to the two-step approach. There

is no guarantee that the parameter estimates obtained from the two-stage procedure are

optimal, and the application to the Zürich rainfall data shows this. The main issue is the fact

that the posterior is doubly intractable, which means no information about the geometry

of the posterior can be captured without gradient and hessian. Our attempts at bypassing

this using data imputation were unsuccessful, and we had to rely on an adaptive Metropolis-

within-Gibbs scheme. Pooling of spatial information can lead to better marginal estimates

if the model is correctly specified, but censoring leads to a loss of information. There was

some evidence of model misspecification in the application to the Zürich rainfall data and

perhaps one could consider more complex models. However, only with additional spatial

information can parameters of a more flexible model be estimated reliably and we are far

from being able to tackle problems where the number of spatial sites of interest range in the

hundreds. Even in bivariate models, incorrect specification of the joint model can lead to poor

marginal adjustment, so it should perhaps not be too surprising that this carries over to higher

dimensions.
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A Supplementary material for Chapter 1

A.1 Cumulants of the generalized extreme value distribution

The moments of the derivatives log-likelihood µ for the generalized extreme value distri-

bution are readily obtained after making the change of variable y = µ+σ(z−ξ−1)/ξ. The

moments of second order νi j , are defined for ξ>−1/2, while νi j k exists whenever ξ>−1/3,

etc. Let ζ∗ ≈ 1.202 denote the Riemann zeta function evaluated at 3, ψ(0)(x) = Γ′(x)/Γ(x) the

digamma function, ψ(1)(x) the psigamma function dψ(0)(x)/dx and, lastly, γ∗ ≈ 0.5772 the

Euler–Mascheroni constant. Then

νµµ =
(1+ξ)Γ(3+2ξ)

2σ2(1+2ξ)
,

νµσ = Γ(2+ξ)− (1+ξ)2Γ(1+2ξ)

σ2ξ
,

νµξ =
(1+ξ)2Γ(1+2ξ)−ξ(1+ξ)Γ(1+ξ)

{
1+ψ(0)(2+ξ)

}+Γ(1+ξ)

σξ2 ,

νσσ = (1+ξ)2Γ(1+2ξ)−2Γ(2+ξ)+1

σ2ξ2 ,

νσξ =
(γ∗−1)ξ− (1+ξ)2Γ(1+2ξ)+Γ(1+ξ){ξ(2+ξ)+ξ(1+ξ)ψ(0)(2+ξ)+2}−1

σξ3 ,

νξξ =
{
(γ∗−1)2 +π2/6

}
ξ2 −2Γ(1+ξ)

{
ξ2 +ξ+ (1+ξ)ξψ(0)(2+ξ)+1

}
ξ4

− 2(γ∗−1)ξ+ (1+ξ)2Γ(1+2ξ)+1

ξ4 ,

νµσξ =
(1+ξ)

[
Γ(1+2ξ)

{
3ξ2 +7ξ+ (1+2ξ)ξψ(0)(2+2ξ)+2

}− (
4ξ2 +5ξ+1

)
Γ(1+3ξ)

]
σ2ξ3

+ (1+ξ)(1+2ξ)ξΓ(1+2ξ)ψ(0)(2+2ξ)−Γ(2+ξ){2ξ+ξψ(0)(2+ξ)+1}

σ2ξ3

+ 2(1+ξ)Γ(1+2ξ)−6ξΓ(1+3ξ)−Γ(2+ξ)−Γ(1+3ξ)− (1+ξ)ξΓ(2+ξ)ψ(0)(2+ξ)

σ2ξ3 ,

νµµµ =
(1+ξ)2(1+4ξ)Γ(1+3ξ)

σ3 ,
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νµµσ = (1+ξ){Γ(2+2ξ)− (1+ξ)(1+4ξ)Γ(1+3ξ)}

σ3ξ
,

νµµξ =
(1+ξ){(1+ξ)(1+4ξ)Γ(1+3ξ)−Γ(1+2ξ)(2ξ(2+ξ)+ξ(1+2ξ)ψ(0)(2+2ξ)+1)}

σ2ξ2 ,

νµσσ = (1+4ξ)(1+ξ)2Γ(1+3ξ)+ (1−ξ)Γ(2+ξ)−Γ(3+2ξ)

σ3ξ2 ,

νµξξ =
(
8ξ2 +6ξ+1

)
(1+ξ)2Γ(1+3ξ)−Γ(3+2ξ)

{
3ξ2 +5ξ+ (1+2ξ)ξψ(0)(2+2ξ)+1

}
σξ4(1+2ξ)

,

+ Γ(1+ξ)
{
2ξ3 +5ξ2 + (1+ξ)ξ2ψ(0)(2+ξ)2 + (1+ξ)ξ2ψ(1)(2+ξ)

}
σξ4

+ Γ(1+ξ)
{
2
(
2ξ2 +3ξ+1

)
ξψ(0)(2+ξ)+6ξ+1

}
σξ4 ,

νσξξ =
8ξ3Γ(1+2ξ)−3(9+4ξ)ξ3Γ(3ξ)+4ξ3Γ(1+2ξ)ψ(0)(2+2ξ)+4ξ2 +22ξ2Γ(1+2ξ)

σξ5

+ 6ξ2Γ(1+2ξ)ψ(0)(2+2ξ)+γ2
∗ξ

2 +π2ξ2/6−6γ∗ξ2 −2γ∗ξ+7ξ−6ξΓ(1+3ξ)

σξ5

+ 17ξΓ(1+2ξ)+3Γ(2ξ+1)−Γ(1+3ξ)+2ξΓ(1+2ξ)ψ(0)(2+2ξ)+1

σξ5

− Γ(1+ξ)
[
ξ2(1+ξ)

{
ψ(0)(2+ξ)2 +ψ(1)(2+ξ)

}+2
(
3ξ2 +5ξ+2

)
ξψ(0)(2+ξ)

]
σξ5

− Γ(1+ξ)(4ξ3 +13ξ2 +16ξ+3)

σξ5 ,

νσσξ =
ξ3Γ(3ξ)(12ξ+27)−γ∗ξ2 +ξ2 −4(1+ξ)ξ2Γ(1+2ξ)+γ∗ξ−2ξ+5ξΓ(2+ξ)

σ2ξ4

+ 6ξΓ(1+3ξ)−10(1+ξ)ξΓ(2ξ+1)+3Γ(2+ξ)−3(1+ξ)Γ(1+2ξ)+Γ(1+3ξ)

σ2ξ4

+ 2ξΓ(2+ξ)ψ(0)(2+ξ)− (1+ξ)(1+2ξ)ξΓ(1+2ξ)ψ(0)(2+2ξ)−1

σ2ξ4 ,

νσσσ = 3(ξ−1)Γ(2+ξ)−3ξ− (1+4ξ)(1+ξ)2Γ(1+3ξ)+3Γ(3+2ξ)/2+1

σ3ξ3 ,

νξξξ =−3Γ(3+2ξ)
(
4ξ2 +6ξ+ (1+2ξ)ξψ(0)(2+2ξ)+1

)
2ξ6(1+2ξ)

+ (1+2ξ)ξ3
{
4ζ∗+γ∗

(
24+π2

)+2γ3
∗−18γ2

∗−3π2 −8
}

2ξ6(1+2ξ)

+ (1+2ξ)
{
6(γ∗−4)ξ+2(1+ξ)2(4ξ+1)Γ(1+3ξ)− (

30−42γ∗+6γ2
∗+π2

)
ξ2 −2

}
2ξ6(1+2ξ)

+ 3(1+2ξ)Γ(1+ξ)
(
4ξ3 +7ξ2 +8ξ+1+2

(
3ξ2 +4ξ+1

)
ξψ(0)(2+ξ)

)
ξ6(1+2ξ)

+ 3(1+2ξ)Γ(1+ξ)
[
(1+ξ)ξ2

{
ψ(0)(2+ξ)2 +ψ(1)(2+ξ)

}]
ξ6(1+2ξ)

.
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A.2. Cumulants of the generalized Pareto distribution

Some entries of the Fisher information matrix of the generalized extreme value distribution,

i.e., second-order cumulants, are undefined at ξ= 0 and can be obtained as limξ→0ν··, viz.

iµµ =
1

σ2 ,

iµσ = 1−γ∗
σ2 ,

iµξ =
π2/12+γ2

∗/2−γ∗
σ

,

iσξ =
γ∗+γ3

∗/2+γ∗π2/3−π2
(
γ∗−1

)
/12−3γ2

∗/2−π2/3+ζ∗
σ

,

iσσ = γ2
∗−2γ∗+π2/6+1

σ2 ,

iξξ =
1

4
γ4
∗+

1

4
γ2
∗π

2 + 3

80
π4 −γ3

∗−
1

2
γ∗π2 +γ2

∗+
1

6
π2 +2γ∗ζ∗−2ζ∗.

A.2 Cumulants of the generalized Pareto distribution

Calculating the cumulants of the generalized Pareto distribution is a somewhat easier task;

the nth order moment exist if and only if ξ>−1/n. The (mixed) moments of the derivatives of

the log-likelihood up to fourth order are

νξξ =− 2

(1+ξ)(1+2ξ)
,

νσσ =− 1

σ2(1+2ξ)
,

νξσ =− 1

σ(1+ξ)(1+2ξ)
,

ν(σ)
ξξ

= 0,

ν(σ)
ξσ

= 1

σ2(1+ξ)(1+2ξ)
,

ν(σ)
σσ = 2

σ3(1+2ξ)
,

ν
(ξ)
ξξ

= 2(3+4ξ)

(1+ξ)2(1+2ξ)2 ,

ν
(ξ)
ξσ

= (3+4ξ)

σ(1+ξ)2(1+2ξ)2 ,

ν
(ξ)
σσ = 2

σ2(1+2ξ)2 ,

νξξξ =
24

(1+ξ)(1+2ξ)(1+3ξ)
,

νξξσ = 8

σ(1+ξ)(1+2ξ)(1+3ξ)
,

νξσσ = 4

σ2(1+2ξ)(1+3ξ)
,

νσσσ = 4

σ3(1+3ξ)
,

νξξ,ξ =− 2
(
12ξ2 +23ξ+9

)
(1+ξ)2(1+2ξ)2(1+3ξ)

,

νξξ,σ =− 8

σ(1+ξ)(1+2ξ)(1+3ξ)
,

νξσ,ξ =− 4ξ2 +11ξ+5

σ(1+ξ)2(1+2ξ)2(1+3ξ)
,

νξσ,σ =− ξ+3

σ2(1+ξ)(1+2ξ)(1+3ξ)
,

νσσ,ξ =− 2(1+ξ)

σ2(1+2ξ)2(1+3ξ)
,

νσσ,σ =− 2(1+ξ)

σ3(1+2ξ)(1+3ξ)
,

νξ,ξ,ξ =
6
(
4ξ2 +11ξ+5

)
(1+ξ)2(1+2ξ)2(1+3ξ)

,

νξ,ξ,σ = 2
(
4ξ2 +11ξ+5

)
σ(1+ξ)2(1+2ξ)2(1+3ξ)

,

νξ,σ,σ =− 2
(
ξ2 −3ξ−2

)
σ2(1+ξ)(1+2ξ)2(1+3ξ)

,

νσ,σ,σ =− 2(ξ−1)

σ3(1+2ξ)(1+3ξ)
,
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νξξξξ =− 18

σ4(1+4ξ)
,

νξξξσ =− 18

σ3(1+3ξ)(1+4ξ)
,

νξξσσ =− 36

σ2(1+2ξ)(1+3ξ)(1+4ξ)
,

νξσσσ =− 108

σ(1+ξ)(1+2ξ)(1+3ξ)(1+4ξ)
,

νσσσσ =− 432

(1+ξ)(1+2ξ)(1+3ξ)(1+4ξ)
,

νξ,ξ,ξ,ξ =
24

(
108ξ5 +464ξ4 +831ξ3 +686ξ2 +259ξ+36

)
(1+ξ)3(1+2ξ)3(1+3ξ)2(1+4ξ)

,

νξ,ξ,ξ,2 =
6
(
108ξ5 +464ξ4 +831ξ3 +686ξ2 +259ξ+36

)
σ(1+ξ)3(1+2ξ)3(1+3ξ)2(1+4ξ)

,

νξ,ξ,σ,σ = 2
(
12ξ5 +96ξ4 +389ξ3 +453ξ2 +203ξ+31

)
σ2(1+ξ)2(1+2ξ)3(1+3ξ)2(1+4ξ)

,

νξ,σ,σ,σ = 3
(
4ξ4 −4ξ3 +27ξ2 +30ξ+7

)
σ3(1+ξ)(1+2ξ)2(1+3ξ)2(1+4ξ)

,

νσ,σ,σ,σ = 3
(
2ξ2 −ξ+3

)
σ4(1+2ξ)(1+3ξ)(1+4ξ)

,

νξξ,ξξ =
8
(
30ξ2 +59ξ+23

)
(1+ξ)2(1+2ξ)2(1+3ξ)(1+4ξ)

,

νξξ,ξσ = 2
(
30ξ2 +59ξ+23

)
σ(1+ξ)2(1+2ξ)2(1+3ξ)(1+4ξ)

,

νξξ,σσ = 2
(
26ξ2 +29ξ+9

)
σ2(1+ξ)(1+2ξ)2(1+3ξ)(1+4ξ)

,

νξσ,ξσ = 2(ξ+7)

σ2(1+ξ)(1+2ξ)(1+3ξ)(1+4ξ)
,

νξσ,σσ = ξ+7

σ3(1+ξ)(1+3ξ)(1+4ξ)
,

νσσ,σσ = 2ξ+5

σ4(1+2ξ)(1+4ξ)
,

νξξ,ξ,ξ =−4
(
360ξ5 +1596ξ4 +2624ξ3 +1973ξ2 +686ξ+89

)
(1+ξ)3(1+2ξ)3(1+3ξ)2(1+4ξ)

,

νξξ,ξ,σ =− 2
(
126ξ3 +377ξ2 +268ξ+53

)
σ(1+ξ)2(1+2ξ)2(1+3ξ)2(1+4ξ)

,

νξξ,σ,σ = 2
(
2ξ2 −35ξ−19

)
σ2(1+ξ)(1+2ξ)2(1+3ξ)(1+4ξ)

,

νξσ,ξ,ξ =−2
(
108ξ5 +464ξ4 +831ξ3 +686ξ2 +259ξ+36

)
σ(1+ξ)3(1+2ξ)3(1+3ξ)2(1+4ξ)

,
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νξσ,ξ,σ = 12ξ4 −46ξ3 −169ξ2 −124ξ−25

σ2(1+ξ)2(1+2ξ)2(1+3ξ)2(1+4ξ)
,

νξσ,σ,σ = 2ξ2 −3ξ−11

σ3(1+ξ)(1+2ξ)(1+3ξ)(1+4ξ)
,

νσσ,ξ,ξ =−2
(
132ξ4 +252ξ3 +195ξ2 +74ξ+11

)
σ2(1+ξ)(1+2ξ)3(1+3ξ)2(1+4ξ)

,

νσσ,ξ,σ = 12ξ4 −48ξ3 −89ξ2 −50ξ−9

σ3(1+ξ)(1+2ξ)2(1+3ξ)2(1+4ξ)
,

νσσ,σ,σ = 6ξ2 −5ξ−5

σ4(1+2ξ)(1+3ξ)(1+4ξ)
,

νξξξ,ξ =
48

(
18ξ3 +46ξ2 +31ξ+6

)
(1+ξ)2(1+2ξ)2(1+3ξ)2(1+4ξ)

,

νξξξ,σ = 108

σ(1+ξ)(1+2ξ)(1+3ξ)(1+4ξ)
,

νξξσ,ξ =
4
(
18ξ3 +85ξ2 +70ξ+15

)
σ(1+ξ)2(1+2ξ)2(1+3ξ)2(1+4ξ)

,

νξξσ,σ = 4(ξ+7)

σ2(1+ξ)(1+2ξ)(1+3ξ)(1+4ξ)
,

νξσσ,ξ =
4
(
6ξ2 +13ξ+4

)
σ2(1+2ξ)2(1+3ξ)2(1+4ξ)

,

νξσσ,σ = 2(2ξ+5)

σ3(1+2ξ)(1+3ξ)(1+4ξ)
,

νσσσ,ξ =
6(1+ξ)

σ3(1+3ξ)2(1+4ξ)
,

νσσσ,σ = 6(1+ξ)

σ4(1+3ξ)(1+4ξ)
.
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Parameter Method | F F1 F2 F3 F4 F5 F6 F7 F8 F9

Quantile MLE −2 8 5 −3 11 −4 1 0 −2
TEM 0 10 7 −1 12 −2 2 1 0
Severini (TEM) −2 6 3 −3 7 −5 −1 −1 −2
Severini (cov.) −1 7 4 −3 9 −4 0 −1 −1

N -obs. median MLE −2 10 6 −4 13 −5 1 0 −2
TEM 0 12 9 −2 14 −3 3 2 0
Severini (TEM) −3 7 4 −4 9 −6 −1 −1 −2
Severini (cov.) −1 9 5 −3 11 −5 0 0 −1

N -obs. mean MLE −2 13 9 −4 21 −6 2 0 −2
TEM −1 15 12 −2 21 −4 4 2 0
Severini (TEM) −3 11 7 −4 16 −7 0 −1 −2
Severini (cov.) −1 13 8 −3 18 −6 1 0 −1

Table A.1 – Truncated mean (α= 0.1) of relative bias (in %), block maximum method with m =
30,k = 60. The largest standard error, obtained using a nonparametric bootstrap, is
0.44%. The distributions (from top to bottom) are Burr (F1), Weibull (F2), generalized
gamma (F3), normal (F4), lognormal (F5), Student t (F6), GEV(ξ= 0.1) (F7), Gumbel
(F8) and GEV(ξ=−0.1) (F9).

Parameter Method | F F1 F2 F3 F4 F5 F6 F7 F8 F9

Quantile MLE −1 5 2 −3 9 −3 1 0 −2
TEM 1 7 5 −1 10 −1 3 2 0
Severini (TEM) −2 3 0 −3 4 −4 −1 −1 −2
Severini (cov.) 0 5 2 −2 7 −3 0 0 −1

N -obs. median MLE −1 7 4 −3 11 −4 1 0 −2
TEM 1 9 7 −1 13 −1 3 2 1
Severini (TEM) −2 4 1 −4 6 −5 −1 −1 −2
Severini (cov.) 1 6 3 −2 9 −3 1 0 −1

N -obs. mean MLE −1 10 7 −3 19 −4 2 0 −2
TEM 1 13 10 −1 20 −1 5 3 1
Severini (TEM) −2 6 3 −4 12 −5 0 −1 −2
Severini (cov.) 1 10 6 −2 17 −4 2 1 −1

Table A.2 – Truncated mean (α= 0.1) of relative bias (in %), block maximum method with m =
45,k = 40. The largest standard error, obtained using a nonparametric bootstrap, is
0.51%. The distributions (from top to bottom) are Burr (F1), Weibull (F2), generalized
gamma (F3), normal (F4), lognormal (F5), Student t (F6), GEV(ξ= 0.1) (F7), Gumbel
(F8) and GEV(ξ=−0.1) (F9).

A.3 Simulation results for higher order methods

This section includes additional tables of simulation results, which are discussed on page 54.
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Parameter Method | F F1 F2 F3 F4 F5 F6 F7 F8 F9

Quantile MLE 0 3 1 −2 7 −2 1 0 −2
TEM 2 6 5 1 10 2 4 3 1
Severini (TEM) −2 −1 −3 −3 0 −4 −3 −2 −3
Severini (cov.) 3 4 2 0 8 1 2 2 0

N -obs. median MLE 1 4 2 −2 10 −1 2 0 −2
TEM 3 8 6 1 13 2 5 4 2
Severini (TEM) −2 −1 −2 −3 1 −4 −3 −2 −3
Severini (cov.) 4 6 4 0 11 1 4 3 1

N -obs. mean MLE 2 9 6 −2 21 −1 5 2 −1
TEM 5 13 10 1 23 3 8 6 2
Severini (TEM) −1 2 0 −3 7 −4 −1 −1 −3
Severini (cov.) 9 12 9 1 25 3 8 5 2

Table A.3 – Truncated mean (α= 0.1) of relative bias (in %), block maximum method with m =
90,k = 20. The largest standard error, obtained using a nonparametric bootstrap, is
0.81%. The distributions (from top to bottom) are Burr (F1), Weibull (F2), generalized
gamma (F3), normal (F4), lognormal (F5), Student t (F6), GEV(ξ= 0.1) (F7), Gumbel
(F8) and GEV(ξ=−0.1) (F9).

Parameter Method | F F1 F2 F3 F4 F5 F6 F7 F8 F9

Quantile MLE −3 −4 −5 −2 −6 −4 −4 −3 −2
TEM 2 3 2 1 3 2 3 3 1
Severini (TEM) −1 −1 −2 −1 −2 −1 −1 0 −1
Severini (cov.) −1 −1 −2 −1 −2 −1 −1 −1 −1

N -obs. median MLE −3 −4 −5 −3 −6 −4 −5 −3 −2
TEM 2 4 3 1 5 2 3 3 2
Severini (TEM) 0 0 −1 −1 −1 −1 −1 0 0
Severini (cov.) 0 0 −1 −1 0 −1 0 0 0

N -obs. mean MLE −3 −3 −4 −3 −3 −4 −4 −2 −2
TEM 4 8 7 2 14 4 7 5 3
Severini (TEM) 1 3 2 −1 6 0 2 1 0
Severini (cov.) 1 4 3 0 8 1 3 2 0

Table A.4 – Truncated mean (α= 0.1) of relative bias (in %), peaks-over-threshold method with
k = 20. The largest standard error, obtained using a nonparametric bootstrap, is
0.77%. The distributions (from top to bottom) are Burr (F1), Weibull (F2), gener-
alized gamma (F3), normal (F4), lognormal (F5), Student t (F6), GP(ξ = 0.1) (F7),
exponential (F8) and GP(ξ=−0.1) (F9).
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Parameter Method | F F1 F2 F3 F4 F5 F6 F7 F8 F9

Quantile MLE −3 −4 −5 −3 −4 −5 −5 −3 −3
TEM −1 1 0 −1 3 −2 0 0 −1
Severini (TEM) −2 −2 −3 −3 0 −4 −3 −2 −2
Severini (cov.) −2 −2 −3 −3 0 −4 −3 −2 −2

N -obs. median MLE −4 −4 −5 −4 −3 −6 −5 −3 −4
TEM −1 2 0 −2 4 −2 0 0 −1
Severini (TEM) −2 −1 −3 −3 1 −4 −3 −2 −3
Severini (cov.) −2 −1 −2 −3 1 −4 −3 −2 −2

N -obs. mean MLE −4 −3 −4 −4 0 −6 −5 −3 −4
TEM 0 4 2 −2 10 −2 1 1 −1
Severini (TEM) −2 1 −1 −3 6 −4 −2 −1 −2
Severini (cov.) −2 1 0 −3 6 −4 −2 −1 −2

Table A.5 – Truncated mean (α= 0.1) of relative bias (in %), peaks-over-threshold method with
k = 40. The largest standard error, obtained using a nonparametric bootstrap, is
0.56%. The distributions (from top to bottom) are Burr (F1), Weibull (F2), gener-
alized gamma (F3), normal (F4), lognormal (F5), Student t (F6), GP(ξ = 0.1) (F7),
exponential (F8) and GP(ξ=−0.1) (F9).

Parameter Method | F F1 F2 F3 F4 F5 F6 F7 F8 F9

Quantile MLE −3 −2 −4 −4 −1 −5 −3 −3 −3
TEM −1 2 0 −2 4 −3 0 0 −1
Severini (TEM) −2 0 −2 −3 2 −4 −2 −2 −2
Severini (cov.) −2 0 −2 −3 2 −4 −2 −2 −2

N -obs. median MLE −3 −1 −4 −4 0 −6 −4 −3 −3
TEM −1 3 0 −2 5 −3 0 0 −1
Severini (TEM) −2 1 −2 −4 3 −5 −2 −2 −3
Severini (cov.) −2 1 −2 −4 3 −5 −2 −2 −3

N -obs. mean MLE −4 0 −3 −5 4 −7 −3 −3 −3
TEM −1 5 2 −3 11 −4 1 0 −1
Severini (TEM) −2 3 0 −4 8 −5 −1 −1 −3
Severini (cov.) −2 3 0 −4 8 −5 −1 −1 −2

Table A.6 – Truncated mean (α= 0.1) of relative bias (in %), peaks-over-threshold method with
k = 60. The largest standard error, obtained using a nonparametric bootstrap, is
0.49%. The distributions (from top to bottom) are Burr (F1), Weibull (F2), gener-
alized gamma (F3), normal (F4), lognormal (F5), Student t (F6), GP(ξ = 0.1) (F7),
exponential (F8) and GP(ξ=−0.1) (F9).
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Parameter Quantile N -obs. mean

F Method | Error rate 0.5 2.5 5 5 2.5 0.5 0.5 2.5 5 5 2.5 0.5

F1 Wald 0.0 0.0 0.5 18.0 14.0 8.5 0.0 0.0 0.0 19.5 15.5 10.0
profile 0.5 2.0 3.5 7.5 3.5 0.5 0.5 1.5 3.5 8.5 4.0 0.5
TEM 0.5 2.0 4.5 6.0 2.5 0.5 0.5 2.0 4.0 6.5 3.0 0.5
Severini (TEM) 0.5 1.5 3.0 8.5 4.0 0.5 0.5 1.5 3.0 9.0 4.5 0.5
Severini (cov.) 0.5 2.0 3.5 6.5 3.0 0.5 0.5 2.0 4.0 6.5 3.0 0.5

F2 Wald 0.0 0.5 2.5 9.0 7.0 4.0 0.0 0.5 2.5 8.5 6.5 4.0
profile 0.5 3.5 6.5 3.5 1.5 0.5 1.0 4.0 7.5 3.0 1.5 0.5
TEM 1.0 4.0 7.0 2.5 1.0 0.0 1.0 4.5 8.5 2.5 1.0 0.0
Severini (TEM) 0.5 2.5 5.5 4.0 1.5 0.5 1.0 3.5 7.0 3.0 1.5 0.5
Severini (cov.) 0.5 3.0 6.0 3.5 1.5 0.5 1.0 4.0 7.5 3.0 1.5 0.5

F3 Wald 0.0 0.5 1.5 11.0 8.5 5.0 0.0 0.0 1.5 10.5 8.0 5.0
profile 0.5 2.0 4.5 4.5 2.0 0.5 0.5 2.5 5.0 4.0 2.0 0.5
TEM 0.5 2.0 5.0 3.5 1.5 0.5 0.5 2.5 5.5 3.0 1.5 0.5
Severini (TEM) 0.0 1.5 3.5 5.0 2.5 0.5 0.5 2.0 4.5 4.5 2.0 0.5
Severini (cov.) 0.5 1.5 4.0 4.5 2.0 0.5 0.5 2.5 5.0 4.0 2.0 0.5

F4 Wald 0.0 0.0 0.5 25.0 21.0 15.0 0.0 0.0 0.0 27.0 22.5 16.5
profile 0.5 1.5 3.0 11.0 6.5 1.5 0.5 1.5 2.5 11.5 6.5 2.0
TEM 0.5 2.5 4.5 8.0 4.0 1.0 0.5 2.0 4.0 8.5 4.5 1.0
Severini (TEM) 0.5 1.5 2.5 11.5 6.5 1.5 0.0 1.0 2.5 12.5 7.0 2.0
Severini (cov.) 0.5 1.5 3.0 9.5 5.0 1.5 0.5 1.5 2.5 10.5 5.5 1.5

F5 Wald 0.0 1.0 3.0 8.0 6.0 3.5 0.0 0.5 2.5 7.5 5.5 3.0
profile 0.5 3.0 6.5 3.5 1.5 0.5 1.0 4.0 8.5 3.0 1.5 0.5
TEM 0.5 3.5 6.5 3.0 1.5 0.5 1.0 4.5 8.0 2.5 1.0 0.5
Severini (TEM) 0.5 2.5 5.5 4.0 2.0 0.5 0.5 3.5 7.0 3.5 1.5 0.5
Severini (cov.) 0.5 3.0 6.0 3.5 1.5 0.5 1.0 4.0 7.5 3.0 1.5 0.5

F6 Wald 0.0 0.0 0.5 22.0 18.0 12.0 0.0 0.0 0.5 24.0 20.0 14.0
profile 0.5 2.0 3.0 11.5 6.5 1.5 0.5 1.5 3.0 13.5 7.5 2.0
TEM 0.5 2.0 4.0 9.0 5.0 1.0 0.5 2.0 3.5 10.5 6.0 1.5
Severini (TEM) 0.5 1.5 3.0 12.5 7.0 2.0 0.5 1.5 2.5 13.5 8.0 2.5
Severini (cov.) 0.5 1.5 3.0 11.5 6.5 1.5 0.5 1.5 3.0 12.5 7.0 2.0

F7 Wald 0.0 0.5 1.5 14.5 11.0 6.5 0.0 0.0 1.0 15.0 11.5 7.0
profile 0.5 2.0 4.5 6.5 3.5 1.0 0.5 2.0 5.0 7.0 3.5 1.0
TEM 0.5 2.5 5.0 5.5 2.5 0.5 0.5 2.5 5.5 5.5 3.0 0.5
Severini (TEM) 0.5 2.0 4.0 7.0 4.0 1.0 0.5 2.0 4.5 7.5 4.0 1.0
Severini (cov.) 0.5 2.0 4.0 7.0 3.5 1.0 0.5 2.0 4.5 7.0 3.5 1.0

F8 Wald 0.0 0.0 1.0 16.5 13.0 8.5 0.0 0.0 0.5 16.5 13.5 8.5
profile 0.5 2.0 4.5 6.5 3.5 1.0 0.5 2.0 4.5 6.5 3.5 1.0
TEM 0.5 2.5 5.5 5.0 2.5 0.5 0.5 2.5 5.5 5.0 2.5 0.5
Severini (TEM) 0.5 2.0 4.0 7.5 4.0 1.0 0.5 2.0 4.0 7.0 4.0 1.0
Severini (cov.) 0.5 2.0 4.0 6.5 3.5 0.5 0.5 2.0 4.5 6.5 3.5 0.5

F9 Wald 0.0 0.0 0.5 19.5 16.0 11.0 0.0 0.0 0.5 20.0 16.5 11.5
profile 0.5 1.5 3.5 7.5 4.0 1.0 0.5 1.5 3.5 7.5 4.0 1.0
TEM 0.5 2.5 5.0 5.5 2.5 0.5 0.5 2.5 5.0 5.5 2.5 0.5
Severini (TEM) 0.5 1.5 3.0 8.0 4.5 1.0 0.0 1.5 3.0 8.0 4.0 1.0
Severini (cov.) 0.5 1.5 3.5 7.0 3.5 1.0 0.5 1.5 3.5 7.0 3.5 0.5

Table A.7 – One-sided nominal error rate (in %) for lower (first to third columns) and up-
per (fourth to sixth columns) confidence intervals, block maximum method with
m = 30,k = 60. The distributions (from top to bottom) are Burr (F1), Weibull (F2),
generalized gamma (F3), normal (F4), lognormal (F5), Student t (F6), GEV(ξ= 0.1)
(F7), Gumbel (F8) and GEV(ξ=−0.1) (F9).
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Parameter Quantile N -obs. mean

F Method | Error rate 0.5 2.5 5 5 2.5 0.5 0.5 2.5 5 5 2.5 0.5

F1 Wald 0.0 0.0 0.0 27.0 23.5 18.0 0.0 0.0 0.0 28.5 25.5 20.0
profile 0.5 1.5 3.5 9.5 4.5 0.5 0.5 1.5 3.0 10.0 5.0 0.5
TEM 0.5 3.0 5.5 3.5 1.0 0.0 0.5 3.0 5.5 3.5 1.0 0.0
Severini (TEM) 0.5 1.5 3.5 7.5 3.5 0.5 0.5 1.5 3.5 8.0 3.5 0.5
Severini (cov.) 0.5 1.5 3.5 7.5 3.5 0.5 0.0 1.5 3.5 7.5 3.5 0.5

F2 Wald 0.0 0.0 0.0 24.0 21.0 16.0 0.0 0.0 0.0 24.5 21.5 17.0
profile 0.5 1.5 3.0 8.5 4.5 0.5 0.5 1.5 3.0 8.0 4.0 0.5
TEM 0.5 2.5 5.5 3.5 1.5 0.0 0.5 3.0 6.0 3.0 1.0 0.0
Severini (TEM) 0.0 1.5 3.0 7.0 3.5 0.5 0.0 1.5 3.5 6.5 3.0 0.5
Severini (cov.) 0.0 1.5 3.0 7.0 3.5 0.5 0.5 1.5 3.5 6.5 3.0 0.5

F3 Wald 0.0 0.0 0.0 25.0 22.0 17.5 0.0 0.0 0.0 25.5 22.5 18.0
profile 0.0 1.0 2.0 10.0 6.0 1.0 0.0 1.0 2.0 9.5 5.5 1.0
TEM 0.0 1.5 4.0 4.5 2.0 0.0 0.0 2.0 5.0 4.5 1.5 0.0
Severini (TEM) 0.0 0.5 2.0 8.5 4.5 0.5 0.0 1.0 2.5 8.0 4.5 0.5
Severini (cov.) 0.0 1.0 2.0 8.0 4.5 0.5 0.0 1.0 2.5 8.0 4.0 0.5

F4 Wald 0.0 0.0 0.0 31.0 27.0 21.5 0.0 0.0 0.0 32.5 29.0 23.5
profile 0.5 1.5 3.0 8.5 3.5 0.0 0.5 1.0 2.5 8.5 3.5 0.0
TEM 0.5 3.0 5.5 2.0 0.5 0.0 0.5 2.5 5.0 2.0 0.5 0.0
Severini (TEM) 0.0 1.0 2.5 6.5 2.5 0.0 0.0 1.0 2.0 6.5 2.0 0.0
Severini (cov.) 0.0 1.0 2.5 6.0 2.5 0.0 0.0 1.0 2.5 6.0 2.0 0.0

F5 Wald 0.0 0.0 0.0 21.5 18.0 13.5 0.0 0.0 0.0 22.0 19.0 14.5
profile 0.5 1.5 3.5 9.0 5.0 1.0 0.5 2.0 4.0 8.5 4.5 1.0
TEM 0.5 3.0 5.5 4.5 2.5 0.5 0.5 3.5 7.0 4.5 2.0 0.0
Severini (TEM) 0.5 2.0 4.0 8.0 4.5 1.0 0.5 2.0 4.5 7.5 4.0 0.5
Severini (cov.) 0.5 2.0 4.0 8.0 4.5 1.0 0.5 2.5 4.5 7.0 4.0 0.5

F6 Wald 0.0 0.0 0.0 29.0 25.5 20.0 0.0 0.0 0.0 31.0 27.5 22.0
profile 0.5 2.0 3.5 11.5 6.0 1.0 0.5 1.5 3.0 12.0 6.5 1.0
TEM 0.5 3.0 6.0 5.0 2.0 0.0 0.5 3.0 6.0 5.0 2.0 0.0
Severini (TEM) 0.5 1.5 3.5 9.5 5.0 0.5 0.5 1.5 3.0 10.0 5.0 0.5
Severini (cov.) 0.5 1.5 3.5 9.5 5.0 0.5 0.5 1.5 3.5 9.5 5.0 0.5

F7 Wald 0.0 0.0 0.0 25.5 22.5 17.5 0.0 0.0 0.0 27.0 23.5 19.0
profile 0.5 1.5 3.5 10.0 5.5 1.0 0.5 1.5 3.0 10.0 5.5 1.0
TEM 0.5 3.0 6.0 4.5 2.0 0.0 0.5 3.0 6.0 4.5 2.0 0.0
Severini (TEM) 0.5 1.5 3.5 8.5 4.5 1.0 0.5 1.5 3.5 8.5 4.5 0.5
Severini (cov.) 0.5 1.5 3.5 8.5 4.5 0.5 0.5 2.0 4.0 8.0 4.5 0.5

F8 Wald 0.0 0.0 0.0 26.0 23.0 18.0 0.0 0.0 0.0 27.0 24.0 19.5
profile 0.5 1.5 3.5 8.5 4.0 0.5 0.5 1.5 3.0 8.5 4.0 0.5
TEM 0.5 3.0 6.0 3.0 1.0 0.0 0.5 3.0 6.0 3.0 1.0 0.0
Severini (TEM) 0.0 1.0 3.0 7.0 3.0 0.5 0.0 1.0 3.0 6.5 3.0 0.0
Severini (cov.) 0.0 1.0 3.0 6.5 3.0 0.5 0.0 1.5 3.0 6.5 3.0 0.0

F9 Wald 0.0 0.0 0.0 29.5 26.0 20.5 0.0 0.0 0.0 30.5 27.0 22.0
profile 0.5 1.5 3.0 7.5 3.0 0.0 0.0 1.0 2.5 7.0 3.0 0.0
TEM 0.5 3.0 5.5 1.5 0.5 0.0 0.5 2.5 5.5 1.5 0.5 0.0
Severini (TEM) 0.0 1.0 2.0 5.5 2.0 0.0 0.0 1.0 2.0 5.0 2.0 0.0
Severini (cov.) 0.0 1.0 2.0 5.5 2.0 0.0 0.0 1.0 2.5 5.0 1.5 0.0

Table A.8 – One-sided nominal error rate (in %) for lower (first to third columns) and upper
(fourth to sixth columns) confidence intervals, peaks-over-threshold method with
k = 40. The distributions (from top to bottom) are Burr (F1), Weibull (F2), gener-
alized gamma (F3), normal (F4), lognormal (F5), Student t (F6), GP(ξ = 0.1) (F7),
exponential (F8) and GP(ξ=−0.1) (F9).
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A.3. Simulation results for higher order methods

Parameter Quantile N -obs. median N -obs. mean

F Method | Conf. level (%) 90 95 99 90 95 99 90 95 99

F1 Wald 78 71 57 77 70 56 73 65 49
TEM 102 102 102 103 103 102 103 103 103
Severini (TEM) 96 95 95 95 95 95 95 95 94
Severini (cov.) 103 103 103 103 103 103 105 105 105

F2 Wald 74 68 55 73 67 55 69 62 49
TEM 101 101 101 101 101 101 101 101 101
Severini (TEM) 94 94 94 94 94 94 94 94 94
Severini (cov.) 96 96 96 97 96 96 96 96 96

F3 Wald 74 68 55 73 67 54 69 61 48
TEM 101 101 101 101 101 101 101 101 101
Severini (TEM) 94 94 94 94 94 94 94 93 93
Severini (cov.) 96 96 96 96 96 96 96 96 96

F4 Wald 73 68 57 73 67 57 71 66 55
TEM 105 105 105 106 106 105 106 106 106
Severini (TEM) 98 98 98 98 98 98 98 97 97
Severini (cov.) 102 102 101 102 101 101 102 102 102

F5 Wald 77 69 54 76 68 53 67 57 41
TEM 99 99 99 99 99 99 98 98 98
Severini (TEM) 93 93 92 92 92 92 90 90 90
Severini (cov.) 95 95 94 95 95 94 94 93 93

F6 Wald 78 71 58 78 71 57 75 67 52
TEM 103 103 103 104 104 103 104 104 104
Severini (TEM) 96 96 96 96 96 96 96 96 95
Severini (cov.) 99 99 98 99 98 98 99 98 98

F7 Wald 76 70 56 76 69 55 71 63 48
TEM 102 101 101 102 102 102 102 102 102
Severini (TEM) 95 95 94 95 95 94 94 94 93
Severini (cov.) 97 96 96 96 96 96 96 96 96

F8 Wald 74 69 57 74 68 57 72 65 53
TEM 103 103 103 103 103 103 104 104 104
Severini (TEM) 96 96 96 96 96 96 96 96 96
Severini (cov.) 98 98 98 98 98 98 98 98 98

F9 Wald 72 68 58 72 68 58 71 66 57
TEM 105 105 104 105 105 104 105 105 104
Severini (TEM) 98 97 97 97 97 97 97 97 97
Severini (cov.) 100 100 100 100 100 100 100 100 100

Table A.9 – Truncated mean (α = 0.1) of the ratio of the confidence interval width relative to
the width of profile confidence interval (in %), block maximum method with m =
30,k = 60. The largest standard error, obtained using a nonparametric bootstrap, is
0.12%. The distributions (from top to bottom) are Burr (F1), Weibull (F2), generalized
gamma (F3), normal (F4), lognormal (F5), Student t (F6), GEV(ξ= 0.1) (F7), Gumbel
(F8) and GEV(ξ=−0.1) (F9).
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Parameter Quantile N -obs. median N -obs. mean

F Method | Conf. level (%) 90 95 99 90 95 99 90 95 99

F1 Wald 68 59 44 67 58 42 61 52 35
TEM 103 103 103 104 103 103 104 104 104
Severini (TEM) 93 93 92 93 93 92 92 91 91
Severini (cov.) 105 105 105 106 106 105 111 111 112

F2 Wald 66 58 45 65 58 44 60 52 39
TEM 102 102 102 102 102 102 102 102 102
Severini (TEM) 92 92 92 92 92 92 91 91 91
Severini (cov.) 97 96 96 97 97 96 97 97 97

F3 Wald 66 58 44 65 57 44 59 51 37
TEM 102 102 102 102 102 102 102 102 102
Severini (TEM) 92 92 92 92 92 92 91 91 91
Severini (cov.) 96 96 96 96 96 96 96 96 96

F4 Wald 64 58 47 64 58 46 62 55 43
TEM 108 108 107 108 108 107 108 108 108
Severini (TEM) 97 96 96 96 96 96 96 96 96
Severini (cov.) 104 104 104 104 104 103 105 105 104

F5 Wald 67 58 42 66 57 40 55 44 28
TEM 99 99 98 99 99 99 98 98 97
Severini (TEM) 90 89 88 89 89 88 86 85 85
Severini (cov.) 94 94 93 94 94 94 93 93 93

F6 Wald 68 60 46 67 59 44 63 54 38
TEM 104 104 104 105 105 105 105 105 105
Severini (TEM) 94 94 93 94 94 93 93 93 92
Severini (cov.) 100 99 99 100 99 99 100 100 99

F7 Wald 67 59 44 66 58 43 60 51 35
TEM 102 102 102 103 102 102 103 103 102
Severini (TEM) 92 92 91 92 92 91 91 90 90
Severini (cov.) 97 96 96 96 96 96 96 96 95

F8 Wald 66 59 46 65 58 46 62 54 42
TEM 105 105 104 105 105 105 105 105 105
Severini (TEM) 94 94 94 94 94 94 93 93 94
Severini (cov.) 99 99 98 99 99 98 99 99 99

F9 Wald 64 59 49 64 59 49 62 57 46
TEM 107 107 106 107 107 106 108 107 106
Severini (TEM) 96 96 96 96 96 96 96 96 95
Severini (cov.) 102 102 101 102 102 101 102 102 101

Table A.10 – Truncated mean (α = 0.1) of the ratio of the confidence interval width relative
to the width of profile confidence interval (in %), block maximum method with
m = 45,k = 40. The largest standard error, obtained using a nonparametric boot-
strap, is 0.13%. The distributions (from top to bottom) are Burr (F1), Weibull (F2),
generalized gamma (F3), normal (F4), lognormal (F5), Student t (F6), GEV(ξ= 0.1)
(F7), Gumbel (F8) and GEV(ξ=−0.1) (F9).
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A.3. Simulation results for higher order methods

Parameter Quantile N -obs. median N -obs. mean

F Method | Conf. level (%) 90 95 99 90 95 99 90 95 99

F1 Wald 46 37 22 45 36 22 37 28 15
TEM 105 105 105 106 106 106 106 106 106
Severini (TEM) 85 84 83 85 84 83 81 80 81
Severini (cov.) 117 118 118 118 118 117 149 151 149

F2 Wald 47 39 26 47 38 26 40 32 22
TEM 104 105 104 105 105 104 105 105 104
Severini (TEM) 85 85 85 85 85 86 82 83 85
Severini (cov.) 102 101 100 102 102 101 103 102 101

F3 Wald 47 39 25 46 38 25 39 31 20
TEM 104 105 104 105 105 104 104 104 104
Severini (TEM) 85 85 85 85 85 85 82 82 84
Severini (cov.) 101 100 99 101 101 100 101 101 100

F4 Wald 47 40 29 47 40 29 43 36 25
TEM 114 114 112 115 114 111 115 114 111
Severini (TEM) 92 92 91 92 91 91 90 89 89
Severini (cov.) 116 116 113 116 115 112 122 121 118

F5 Wald 46 36 21 44 34 20 31 22 12
TEM 98 98 98 98 98 98 96 96 96
Severini (TEM) 80 78 77 79 78 78 72 72 75
Severini (cov.) 98 97 97 98 98 98 101 100 101

F6 Wald 47 38 24 46 37 23 39 30 17
TEM 107 107 107 108 108 108 108 108 108
Severini (TEM) 87 86 84 86 85 85 83 82 83
Severini (cov.) 108 107 107 107 107 106 113 113 112

F7 Wald 47 37 23 45 36 22 37 28 16
TEM 104 104 104 104 104 104 104 104 104
Severini (TEM) 84 83 82 84 83 83 80 79 80
Severini (cov.) 101 101 100 101 101 100 103 102 101

F8 Wald 48 40 28 47 39 28 42 35 24
TEM 109 109 108 109 109 108 110 109 107
Severini (TEM) 89 88 88 88 88 88 86 86 87
Severini (cov.) 106 105 104 106 105 103 108 107 105

F9 Wald 49 42 32 48 42 32 45 39 30
TEM 114 113 110 114 112 109 114 112 108
Severini (TEM) 92 92 91 92 91 91 90 90 89
Severini (cov.) 112 110 108 111 109 107 113 112 108

Table A.11 – Truncated mean (α = 0.1) of the ratio of the confidence interval width relative
to the width of profile confidence interval (in %), block maximum method with
m = 90,k = 20. The largest standard error, obtained using a nonparametric boot-
strap, is 0.34%. The distributions (from top to bottom) are Burr (F1), Weibull (F2),
generalized gamma (F3), normal (F4), lognormal (F5), Student t (F6), GEV(ξ= 0.1)
(F7), Gumbel (F8) and GEV(ξ=−0.1) (F9).
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Parameter Quantile N -obs. median N -obs. mean

F Method | Conf. level (%) 90 95 99 90 95 99 90 95 99

F1 Wald 34 24 11 32 22 11 22 14 6
TEM 203 202 179 207 202 172 253 238 184
Severini (TEM) 127 127 127 128 128 127 135 133 126
Severini (cov.) 131 131 131 133 133 131 142 140 130

F2 Wald 36 26 14 35 25 14 26 18 10
TEM 192 186 158 193 184 152 221 205 168
Severini (TEM) 126 126 125 126 126 124 129 127 121
Severini (cov.) 130 130 128 131 131 128 135 133 125

F3 Wald 36 26 14 34 25 14 24 17 9
TEM 193 189 162 195 187 155 224 206 168
Severini (TEM) 126 126 125 126 126 124 130 128 123
Severini (cov.) 131 131 129 132 132 129 137 134 126

F4 Wald 37 29 18 36 28 18 30 22 14
TEM 182 171 144 182 168 140 201 187 157
Severini (TEM) 124 123 120 124 122 118 122 119 112
Severini (cov.) 128 126 121 129 127 121 128 125 116

F5 Wald 34 23 10 32 21 9 18 10 4
TEM 211 213 189 217 214 179 293 266 184
Severini (TEM) 130 130 129 131 131 128 144 141 129
Severini (cov.) 134 135 132 136 136 132 152 148 132

F6 Wald 35 25 12 33 23 11 24 15 7
TEM 203 202 179 207 202 172 248 235 185
Severini (TEM) 126 127 127 127 128 127 133 132 126
Severini (cov.) 130 131 130 132 133 131 140 138 129

F7 Wald 35 24 12 33 23 11 22 14 6
TEM 203 201 176 207 201 168 252 235 180
Severini (TEM) 127 127 127 128 128 127 135 133 126
Severini (cov.) 131 132 131 133 133 131 142 140 129

F8 Wald 37 28 16 35 27 16 28 20 12
TEM 186 178 151 187 175 146 209 195 162
Severini (TEM) 124 124 122 125 124 121 125 122 115
Severini (cov.) 129 129 125 130 129 125 131 129 120

F9 Wald 39 31 21 37 30 21 33 26 18
TEM 170 158 136 168 155 133 185 171 148
Severini (TEM) 122 121 117 122 120 115 120 116 110
Severini (cov.) 126 123 117 126 123 117 125 120 112

Table A.12 – Truncated mean (α= 0.1) of the ratio of the confidence interval width relative to
the width of profile confidence interval (in %), peaks-over-threshold method with
k = 20. The largest standard error, obtained using a nonparametric bootstrap, is
1.17%. The distributions (from top to bottom) are Burr (F1), Weibull (F2), gener-
alized gamma (F3), normal (F4), lognormal (F5), Student t (F6), GP(ξ= 0.1) (F7),
exponential (F8) and GP(ξ=−0.1) (F9).
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A.3. Simulation results for higher order methods

Parameter Quantile N -obs. median N -obs. mean

F Method | Conf. level (%) 90 95 99 90 95 99 90 95 99

F1 Wald 53 42 25 51 40 23 42 31 16
TEM 143 145 146 147 148 147 161 162 156
Severini (TEM) 112 112 112 113 113 113 117 117 116
Severini (cov.) 113 113 113 114 114 114 118 118 117

F2 Wald 52 43 27 51 42 27 44 34 21
TEM 140 141 141 142 143 140 152 151 144
Severini (TEM) 111 112 112 112 112 112 115 114 113
Severini (cov.) 112 113 113 113 113 113 116 116 114

F3 Wald 52 42 27 51 41 26 43 33 20
TEM 140 142 142 143 144 142 154 153 146
Severini (TEM) 112 112 112 112 113 112 115 115 114
Severini (cov.) 112 113 113 113 113 113 116 116 115

F4 Wald 51 43 30 50 42 29 46 38 26
TEM 140 141 138 143 142 137 147 146 139
Severini (TEM) 111 111 110 112 111 110 112 112 110
Severini (cov.) 112 112 111 113 113 111 114 114 112

F5 Wald 53 41 23 51 39 22 37 25 12
TEM 144 147 150 149 151 151 175 175 161
Severini (TEM) 113 114 114 114 115 114 121 121 119
Severini (cov.) 113 114 115 115 115 115 122 123 120

F6 Wald 53 43 26 51 41 25 44 33 18
TEM 143 145 146 147 148 148 159 160 156
Severini (TEM) 112 112 112 113 113 113 116 116 115
Severini (cov.) 113 113 113 114 114 113 117 117 116

F7 Wald 53 42 25 51 40 24 42 31 17
TEM 143 145 146 147 148 146 161 161 154
Severini (TEM) 112 112 112 113 113 113 117 117 116
Severini (cov.) 113 113 113 114 114 114 118 118 117

F8 Wald 52 43 29 51 42 29 46 37 24
TEM 140 141 139 142 142 138 148 148 141
Severini (TEM) 111 111 111 112 112 111 113 113 112
Severini (cov.) 112 112 112 112 112 112 114 114 113

F9 Wald 52 44 33 51 44 33 48 41 30
TEM 138 137 132 140 138 131 143 140 132
Severini (TEM) 111 110 109 111 110 108 111 110 107
Severini (cov.) 112 112 110 112 112 110 113 112 110

Table A.13 – Truncated mean (α= 0.1) of the ratio of the confidence interval width relative to
the width of profile confidence interval (in %), peaks-over-threshold method with
k = 40. The largest standard error, obtained using a nonparametric bootstrap, is
0.28%. The distributions (from top to bottom) are Burr (F1), Weibull (F2), gener-
alized gamma (F3), normal (F4), lognormal (F5), Student t (F6), GP(ξ= 0.1) (F7),
exponential (F8) and GP(ξ=−0.1) (F9).
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Parameter Quantile N -obs. median N -obs. mean

F Method | Conf. level (%) 90 95 99 90 95 99 90 95 99

F1 Wald 64 53 36 62 52 34 55 44 26
TEM 127 128 130 130 131 131 137 138 138
Severini (TEM) 108 108 108 109 109 109 111 111 111
Severini (cov.) 108 108 108 109 109 109 111 111 111

F2 Wald 62 53 38 61 52 37 55 45 30
TEM 126 127 127 128 128 128 133 133 131
Severini (TEM) 108 108 108 108 108 108 110 110 109
Severini (cov.) 108 108 108 108 109 109 110 110 110

F3 Wald 62 53 37 61 52 36 55 44 29
TEM 126 127 128 128 129 129 134 135 132
Severini (TEM) 108 108 108 108 108 109 110 110 110
Severini (cov.) 108 108 109 108 109 109 110 111 110

F4 Wald 60 53 40 59 52 39 57 49 36
TEM 126 127 126 128 128 127 131 131 129
Severini (TEM) 108 108 107 108 108 107 109 109 108
Severini (cov.) 108 108 108 108 108 108 109 109 108

F5 Wald 64 53 34 63 51 32 50 37 20
TEM 127 129 132 130 132 133 144 146 143
Severini (TEM) 108 109 109 109 110 110 113 114 114
Severini (cov.) 109 109 110 110 110 110 114 114 114

F6 Wald 64 54 37 63 53 36 57 46 29
TEM 127 128 130 130 131 131 137 137 137
Severini (TEM) 108 108 108 109 109 109 111 110 110
Severini (cov.) 108 108 108 109 109 109 111 111 111

F7 Wald 63 53 36 62 52 35 55 43 26
TEM 128 128 130 130 131 131 138 138 137
Severini (TEM) 108 108 108 109 109 109 111 111 111
Severini (cov.) 108 108 109 109 109 109 111 111 111

F8 Wald 62 54 39 61 53 38 57 48 34
TEM 126 126 126 127 128 127 131 131 129
Severini (TEM) 107 108 108 108 108 108 109 109 109
Severini (cov.) 108 108 108 108 108 108 109 109 109

F9 Wald 60 54 42 60 53 42 58 51 39
TEM 125 125 123 126 126 123 128 127 124
Severini (TEM) 108 107 107 108 107 106 108 108 106
Severini (cov.) 108 108 107 108 108 107 109 108 107

Table A.14 – Truncated mean (α= 0.1) of the ratio of the confidence interval width relative to
the width of profile confidence interval (in %), peaks-over-threshold method with
k = 60. The largest standard error, obtained using a nonparametric bootstrap, is
0.12%. The distributions (from top to bottom) are Burr (F1), Weibull (F2), gener-
alized gamma (F3), normal (F4), lognormal (F5), Student t (F6), GP(ξ= 0.1) (F7),
exponential (F8) and GP(ξ=−0.1) (F9).
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B Variogram and covariance models

We begin with some commonly used terminology employed in spatial statistics. For bounded

variograms, we define the sill to be the limiting value attained by the function, i.e. limh→∞γ(h).

The smallest lag distance at which this value is attained is the range, which represents the

spatial extent of the process. We speak of effective range as the smallest lag distance h at which

95% of the sill value is attained if the latter is never reached by the variogram.

We review here some of the most commonly used variogram models; see e.g., Table 2.2

of Banerjee, Carlin and Gelfand (2014, p.29) for a more comprehensive list, focusing on

intrinsically stationary and isotropic models. For interpolation purposes, the behaviour of

the variogram at the origin is the most important feature of the function, as it describes

the smoothness of the process. The sum of variogram functions, termed “gigogne”, also

define valid models. Correlation functions can be obtained by taking exp{−γ(·)} for a valid

semi-variogram γ.

Nugget

The simplest variogram model is the nugget,

γ(h) = τ2Ih>0, τ2 > 0,

a spatially-constant noise. The latter is often used in conjunction with other models and

creates a discontinuity at the origin. Nugget processes are often associated to microscale

variation that are best left out of the modelling. They are also justified by measurement errors,

particularly if data sets include replicated measures.

Power exponential variogram

γ(h) =σ2[1−exp{−(φh)α}]Ih>0, σ2,φ> 0,α ∈ (0,2].
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Appendix B. Variogram and covariance models

The classical exponential model is recovered by setting α= 1. The random field that results

from the powered exponential variogram is continuous, but not differentiable.

Power variogram

γ(h) = (h/λ)αIh>0, λ> 0,α ∈ (0,2).

Oesting et al. (2017) utilize a variant designed to be smoother near the origin,

γ(h) =σ2 φ2h2

(1+φ2h2)α
.

Generalized Cauchy variogram

The model, due to Gneiting et al. (2010), has variogram

γ(h) = (1+φαhα)−β/α, α ∈ (0,2],φ,β> 0.

Matérn variogram

The Matérn model is a bounded variogram of the form

γ(h) =σ2M(h;φ,ν) :=σ2
{

1− (φh)ν

2ν−1Γ(ν)
Kν(φh)

}
Ih>0, φ,ν,σ2 > 0,

where Kν the modified Bessel function of the second kind. The parameter ν controls the

smoothness of the process. The latter is m times differentiable provided ν> m (Handcock

and Stein, 1993). The parameter φ gives the reciprocal of the range. The use of the Matérn

family is advocated by Stein (1999) and is widely employed thanks to its inherent flexibility

and its good performance for kriging. It includes as a special case the exponential model

γ(h) = σ2 exp(−φh), when ν = 1/2, and the Gaussian model γ(h) = σ2 exp(−φh2), the latter

being obtained as limiting case when ν→∞. The range parameter of the Matérn is notori-

ously difficult to estimate, since if it often close to the region of interest over which the data

collection took place. Moreover, while the product σ2φ2ν is identifiable, none of the individual

parameters is. Since kriging is only sensitive to the product (Zhang, 2004), the reciprocal range

φ is often set to a fixed value, but simulation studies due to Kaufman and Shaby (2013) suggest

that it may be best to estimate both in finite samples even if the estimators are not consistent.

(Banerjee et al., 2014, p. 125), recommend setting a vague prior for σ2 and a more informative
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prior for φ. It is also common in Markov chain Monte Carlo algorithms to reparametrize the

model as α= 2ν1/2φ and η=σ2φ2ν to improve mixing. For rough processes for which ν< 1, it

may be interesting to use instead an (unbounded) power-law variogram to avoid the need to

estimate the range parameter.

Schlather’s variogram

The choice of variogram in spatial extremes modelling has important implications when

utilized within Gaussian processes which appear as building blocks in the de Haan’s spectral

representation. For example, the ergodicity of Brown–Resnick processes depends on the

boundedness of the underlying variogram model. Schlather and Moreva (2017) details how

large scale extreme events align with non-ergodic processes while localized events are captured

by ergodic processes. Schlather and Moreva proposes a variogram family able to capture both

states, namely

γ(h) =
{
1+hα

}β/α−1

2β/α−1
, 0 <α≤ 2,β≤ 2. (B.1)

The function is obtained through a composition of complete Bernstein functions, i.e., infinitely

differentiable non-negative functions f whose derivative is completely monotone so that

(−1)n+1 f (n)(x)/d xn ≥ 0, and parametrized so that γ(1) = 1. As for the power-law variogram

family, the parameter α controls the smoothness of the process, while β affects the behaviour

at large lags. The variogram is unbounded for non-negative values ofβ and bounded otherwise,

the case β= 0 being understood as the limiting case as β→ 0, i.e., γ(h) = log(1+hα)/ log(2).

The pair (α,β) is generally strongly negatively correlated, but reparametrization is not straight-

forward due to the support constraints.
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C Properties and simulation of elliptical
distributions

C.1 Bayesian linear model and properties of elliptical distributions

Proposition C.1 (Bayesian Gaussian linear model with conjugate location prior)

Consider a hierarchical linear regression model of the form

Y |β∼Noq (Xβ,Σ), β∼Nop (µ,Ω),

The joint distribution of (β,Y ) is(
β

Y

)
∼Nop+q

((
µ

Xµ

)
,

(
Ω ΩX>

XΩ Σ+XΩX>

))
.

The posterior distribution β | Y = y is Gaussian with

E
(
β | Y = y

)=µ+ΩX>(Σ+XΩX>)−1(y −Xµ)

= (
Ω−1 +X>Σ−1X

)−1 (
Ω−1µ+X>Σ−1 y

)
,

Var
(
β | Y = y

)=Ω−ΩX>(Σ+XΩX>)−1XΩ

= (
Ω−1 +X>Σ−1X

)−1
,

the second expression follows from an application of Woodbury’s formula or by completing

the square.

Proposition C.2 (Conditional distribution of Gaussian subvectors)

Suppose that W ∼ Nop (µ,Q−1) is a Gaussian random p-vector partitioned into (W 1,W 2),

respectively p1 ×1 and p2 ×1 dimensional, where p1 +p2 = p. We can decompose the model

into a marginal component and a conditional one as p(W ) = p(W 1 |W 2 = w 2)p(W 2), where

W 2 ∼Nop2 (µ2,Σ22) and

W 1 |W 2 = w 2 ∼Nop1

(
µ1 −Q−1

11 Q12(w2 −µ2),Q−1
11

)
∼Nop1

(
µ1 +Σ12Σ

−1
22 (w2 −µ2),Σ11 −Σ12Σ

−1
22Σ21

)
.
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Proposition C.3 (Conditional distribution of Student subvectors)

Let X ∼ Stp (µ,Σ,ν) be a p-dimensional vector and consider the partition (X 1, X 2), where X 1 is

p1 ×1 and X 2 = p2 ×1 for p1 +p2 = p. The conditional distribution of X 1 | X 2 is again Student

distributed, with

X 1 | X 2 = x2 ∼ Stp1

(
µ1 +Σ12Σ

−1
22 (x2 −µ2),

ν+ (x2 −µ2)>Σ−1
22 (x2 −µ2)

ν+p2
Σ1|2,ν+p2

)
.

whereΣ1|2 :=Σ11 −Σ12Σ
−1
22Σ21 is the Schur complement of Σ11, while X 2 ∼ Stp2 (µ2,Σ2,ν) (e.g.

Ding, 2016).

C.2 Simulation of (truncated) Gaussian processes

Simulation of Gaussian processes

The most widely-used parametrization of the multivariate Gaussian distribution is in terms

of the positive definite matrix covariance matrix Σ and samples can be obtained through

Algorithm C.1. We can consider instead the precision matrix Q = Σ−1 and its Cholesky de-

composition is Q = TT>, where T is a lower triangular matrix and the lower triangular matrix

T−1, can be obtained by back-solving. Since T−>T−1 =Σ, the matrix L ≡ T−> can be used in

Algorithm C.1. For Gaussian Markov random fields, Algorithm C.2 proposed by Rue (2001) can

be used for sampling Gaussian models Nop (Q−1b,Q−1) without calculating explicitly Q−1.

If the precision or covariance matrix is sparse, its Cholesky root will also be sparse; there are

dedicated algorithms to do these calculations efficiently using the sparse structure, though

these may require reordering the variable beforehand to obtain a banded matrix. Given the

Cholesky root, the log determinant of the precision matrix is readily obtained as logdet(Q) =
2
∑n

j=1 log
(
[L] j j

)
since the matrix is upper triangular.

Simulation of truncated Gaussian distributions

The distribution function of an absolutely continuous random variable X ∼ F , truncated on

the interval (a,b), is {F (x)−F (a)}/{F (b)−F (a)} for −∞≤ a < b ≤∞. The inverse distribution

method of Devroye (1986) for this case is summarized in Algorithm C.3. This approach, albeit

simple, requires the evaluation of the inverse distribution function. In the Gaussian case,

evaluation of Φ−1 is numerically unstable for small (large) values of a (b) even if accurate

approximations are used forΦ andΦ−1; the method suffers from numerical overflow whenever

a ≥ 8.3. Whenever a > 0, the following equivalent representation of Algorithm C.3,

−Φ−1[Φ(a)− {Φ(a)−Φ(b)}U ],

is more numerically accurate. For values of a > 37, different approximation routines must

be employed. Botev and L’Écuyer (2017) show that the truncated series expansion of Mill’s
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C.2. Simulation of (truncated) Gaussian processes

Algorithm C.1 Gaussian samples from No(µ,Σ)

Require: mean µ, covariance matrix Σ.
1: compute the Cholesky decomposition Σ= LL>;
2: sample y ∼NoD (0D ,ID )
3: return z =µ+Ly .

Algorithm C.2 Gaussian samples from No(Q−1b,Q−1) (Rue, 2001, Algorithm 3.1.2)

Require: mean Q−1b, precision matrix Q .
1: compute the Cholesky decomposition Q = LL>;
2: solve Lv = b for v;
3: solve L>ν= v for ν;
4: solve L>y = z , where z ∼Non(0,I), for y ;
5: return ν+ y .

Algorithm C.3 Inverse distribution function sampler for two-sided truncated distributions

Require: distribution function F , lower bound a, upper bound b.
1: sample U ∼U(0,1);
2: return F−1[F (a)+U {F (b)−F (a)}].

ratio, {1−Φ(x)}/φ(x), provides upper and lower bounds. The problem can be reduced to root

finding for the equation

−Φ(x)+Φ(a)− {Φ(a)−Φ(b)}u = 0, (C.1)

using the Rayleigh distribution with survival function exp(−x2/2) as a substitute for 1−Φ(x).

The approximate root of eq. (C.1) is

x ≈ [a2 −2log{1−u +u exp(a2/2−b2/2)}]1/2,

and this approximation can be refined if we employ Newton’s method on eq. (C.1) as in

Algorithm C.4.

The alternative to numerical inversion via the inverse distribution function is accept-reject

methods. for unidimensional truncated Gaussian variables, Robert (1995) proposes an accept-

reject algorithm for sampling from TNo(µ,σ2;−∞,b) distribution with b <µ based on expo-

nential proposals (Algorithm C.5) and suggests a MCMC scheme for higher dimensions that

uses a series of univariate simulations at the cost of exactness. If the truncation point b lies

above the mean, one can simply use an accept-reject by sampling from No(µ,σ2) and keep

only draws that fall below b.

Chopin (2011) suggests a faster alternative for finite intervals or semi-finite intervals using

an adaptation of the Ziggurat algorithm that is extended to three variables. Other proposals

include Damien and Walker (2001) and Yu and Tian (2011).
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Algorithm C.4 Numerical inversion for uth quantile of the truncated Gaussian TNo(0,1; a,b)
(Botev and L’Écuyer, 2017)

Let q(x) =∑r
j=0(−1) j x−2 j−1(2 j −1)!!, where !! denotes the double factorial.

Require: u ∈ (0,1), numerical tolerance δ, lower bound a, upper bound b.
1: c ← q(α)(1−u)+q(b)u exp(a2/2−b2/2);
2: δx ←∞;
3: z ← 1−u +u exp(a2/2−b2/2);
4: x ← {a2 −2log(z)}1/2;
5: while δx ≤ δ do
6: z ← z −x{zq(x)− c};
7: x0 ← {a2 −2log(z)}1/2;
8: δx ←|x0 −x|/x;
9: x ← x0;

10: return x.

Algorithm C.5 Right-truncated univariate Gaussian samples using exponential accept-reject
Robert (1995)

Let α∗(x) = {
x + (x2 +4)1/2

}
/2.

Require: mean µ, upper bound b <µ, variance σ2.
1: set bs = (b −µ)/σ;
2: sample e +bs ∼ E(α∗);
3: set ρ(e) = exp[−{e −α∗(bs)}2/2];
4: sample b ∼U(0,1);
5: if b ≤ ρ(e) then
6: return −σe +µ.
7: else
8: return to step 2;

The region of interest for the truncated process need not be rectangular. Rodriguez-Yam et al.

(2004) propose a Gibbs sampling algorithm for sampling from a truncated Gaussian distribu-

tion conditional on a set of linear constraints, which they efficiently transform. Pakman and

Paninski (2014) propose a Hamiltonian Monte Carlo algorithm to sample from a truncated

multivariate Gaussian distribution subject to linear or quadratic constraints. The samples are

however only approximate and the sampler does not work in rare-event estimation, e.g., if

the upper truncation level is much smaller than the mean of the process. Botev (2017) and

Botev and L’Ecuyer (2015) propose a more efficient way to sample exactly from Gaussian and

Student-t multivariate vectors subject to linear constraints.
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D Functionalities of the R package mev

The manual of the R package mev (version 1.12) is available from the Comprehensive R Archive

Network at https://cran.r-project.org/web/packages/mev/index.html.
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