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Motivation

Figure 1: Aerial pictures of flooding in Abbotsford and Chilliwack, British
Columbia, November 23, 2021. Province of British Columbia, CC license
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2021 British Columbia floods

CBC reports on a storm caused by an atmospheric river in November
2021

� many officials called the storm that hit the province a
once-in-a-century event.

� 24 B.C. communities received more than 100mm of rain from
Saturday to Monday.

� The town of Hope led the way with 252mm over that time period.
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Objective and stylized facts

Objective: construct a stochastic generator and create catalogues of
daily cumulative rainfall fields given an exceedance at one site.

Stylized facts:

� Extreme rainfall events tend to become more spatially localized as
their intensity increases (asymptotic independence).

� Rainfall is zero-inflated, with either no rain recorded or a positive
amount.
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Regional climate model (RCM) output

� RCM data from the Pacific Climate Impact Consortium Canadian
Downscaled Climate Scenarios - Multivariate (CMIP6)

� The downscaled data from one ensemble member includes data for
representative concentration pathway (RCP) 4.5
• the historical period (1950–2020) and
• future (until 2100).

� Data include multivariate quantile correction

Environment Canada and NOAA stations have sparse coverage, with less
than 100 stations for the region of interest, and uneven temporal
coverage and missing values.
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Return level maps based on RCM data

We restrict attention to October–February rainfalls.
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Figure 2: 50 year return level for historical (left) and future (right) data.

Generalized Pareto model fitted to gridwise exceedances above 98
percentile
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Marginal analysis

Comparing return levels for historical (1950-2020) versus future data
from RCP4.5 (2050-2100) suggest an increase in very extreme events.
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Extremal dependence - tail correlation
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Figure 3: Conditional pairwise tail correlation, relative to grid point closest to
Abbotsford. There is strong evidence of spatial heterogeneity.

RCM data exhibit asymptotic independence at intermediate distances.
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Key findings from exploratory data analysis

RCM data are, by construction

� non-stationary
� smoother than real cumulated daily rainfall fields
� exhibit more extremal dependence than station data (?)
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Justification for modelling spatial extremes

Flooding can be caused by either

� heavy localized rainfalls
� large-scale events

Both

� the site-wise behaviour of rainfall and
� the spatio-temporal dependence

are of interest.
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Spatial model

� We focus on the conditional spatial extremes (COSPEX) model of
Wadsworth.Tawn:2022.

� The COSPEX model describes the stochastic behaviour of a spatial
process given the value at a particular site 𝑠0 within the spatial
domain is large.
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Model

� Consider a stationary spatial process {𝑋(𝒔), 𝒔 ∈ S} with exponential
tails

� Conditional on the random field being extreme at site 𝒔0 , we assume
that the suitably renormalized process𝑋(𝒔) converges in
distribution to a non-degenerate spatial process 𝑍(𝒔) satisfying
• 𝑍(𝒔0) = 0 almost surely and
• 𝑍(𝒔0) independent of lim𝑢→∞ 𝑋(𝒔0) − 𝑢 ∣ 𝑋(𝒔0) > 𝑢 ∼ Exp(1).
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COSPEX model

For sufficiently high threshold 𝑢, the standardized conditional field
𝑋0(𝒔) ≔ 𝑋(𝒔) ∣ 𝑋(𝒔0) > 𝑢 is of the form

𝑋0(𝒔)
𝑑≈ 𝑎{𝒔, 𝑋(𝒔0)} + 𝑏{𝒔, 𝑋(𝒔0)}𝑍(𝒔), 𝒔 ∈ S.

Location function 𝑎(⋅) and scale function 𝑏(⋅) depends on

� location (distance to conditioning site 𝑠0)
� intensity of event𝑋(𝑠0)
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Statistical challenges

� High spatial resolution of gridded data:
• around 2K locations at 6km distance

� Small temporal resolution
• roughly 200 temporal replications (3 per year) above 0.98 quantile at 𝑠0

For extremes, this is a high-dimensional problem.
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Statistical challenges

Rainfall can be zero,

� but model doesn’t allow for it! (inferential left-censoring)

� Same computational bottlenecks as other spatial extreme value
models.
• need to evaluate numerically high dimensional Gaussian integrals
• the censoring pattern changes from one observation to the next
(repeated matrix decompositions).
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Data augmentation

Add a nugget term to facilitate data augmentation
(Zhang.Shaby.Wadsworth:2022),

𝑋0(𝒔)
𝑑≈ 𝑎{𝒔, 𝑋(𝒔0)} + 𝑏{𝒔, 𝑋(𝒔0)}𝑍(𝒔) + 𝜀(𝒔).

where

𝜀 ∼ Normal(0, 𝜏2)

Léo Belzile joint work with Rishikesh Yadav, Nicholas Beck, Jordan RichardsClimate Model Output of Extreme Rainfall 16/36



Recent advances and shortcomings of COSPEX

� Two-stage estimation (margins mapped to standard Laplace scale).
� Mostly frequentist approach for the inference, except
Simpson.Opitz.Wadsworth:2023 and Vandeskog.Martino.Huser:2022,
who use INLA.

� Censoring only considered Richards.Tawn.Brown:2022 and extension
thereof, using composite triplewise likelihoods.

Léo Belzile joint work with Rishikesh Yadav, Nicholas Beck, Jordan RichardsClimate Model Output of Extreme Rainfall 17/36



Framework and contributions

� Establish a computationally feasible way for handling large-scale
inference in the presence of censoring.

� Use full likelihoods with data augmentation (Bayesian paradigm).
� Simultaneous estimation of marginal parameters and dependence,
• lot’s of uncertainty in the margins;
• reduce model misspecification.
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Sparse residual process

Expanding on the work of Simpson.Opitz.Wadsworth:2023, we consider
the SPDE approximation (Lindgren.Rue.Lindstrom:2011)

𝑍(𝒔) = √𝑟𝑍
𝐾
∑
𝑘=1

𝜙𝑘(𝒔)𝑊𝑘 +√(1 − 𝑟𝑍)𝜖𝑍,

or in vector form 𝒁 = √𝑟𝑍𝐀𝑾 +√(1 − 𝑟𝑍)𝝐.

� 𝑾 ∼ Normal𝐾(0𝐾, 𝐐−1) are Gaussian weights,
� the sparse precision matrix𝐐 depends on the mesh,
� {𝜙𝑘} are (compactly-supported) piecewise linear basis functions
with associated projector matrix 𝐀,

� 𝜖𝑍 ∼ Normal(0, 1) are i.i.d. (nugget).
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Piecewise linear approximation

Figure 4: Piecewise linear approximation to SPDE (image courtesy of Finn
Lindgren)
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Mesh

As in Vandeskog.Martino.Huser:2022, we create a mesh with a node at
𝒔0 , extract the precision matrix and shed it.

Figure 5: Mesh for SPDE approximation with conditioning site (red cross)
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Mesh for RCMWest Coast data

Figure 6: Mesh for RCA data

Reduces number of “locations” from 1910 sites to 688 nodes.
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Believe in sparsity

Leveraging the sparsity leads to efficient data augmentation building on
Zhang.Shaby.Wadsworth:2022

𝑋0(𝒔𝑗) ∣ 𝑍𝑗 ∼ Normal {𝐚𝑗(𝑥0) + 𝐛𝑗(𝑥0)𝑍𝑗, 𝜏2} ,

𝑍𝑗 ∼ Normal(√𝑟𝑍𝐀𝑗,ne(𝑗)𝒘ne(𝑗), 1 − 𝑟𝑍)

where the mean of 𝑍𝑗 depends only on neighbours as a result of the
sparsity of 𝐀.

The conditional distribution of basis weight𝑊𝑘 given the others is

𝑊𝑘 ∣ {𝑾−𝑘 = 𝒘−𝑘} ∼ Normal (−𝐐−1
𝑘𝑘𝐐𝑘,−𝑘𝒘−𝑘, 𝐐

−1
𝑘𝑘) , (1)

Can also marginalize over weights𝑾 (Nychka:2015).
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Hierarchical model formulation

Observations are conditionally independent given 𝒁

𝑝 (𝑋𝑗 ∣ 𝒁, 𝜣𝑎, 𝜣𝑏, 𝜏) =
⎧
⎨
⎩

𝜙{𝑥𝑗; 𝐚𝑗(𝑥0) + 𝐛𝑗(𝑥0)𝑧𝑗, 𝜏2} , 𝑥𝑗 > 𝑞𝑗
Φ{𝑞𝑗; 𝐚𝑗(𝑥0) + 𝐛𝑗(𝑥0)𝑧𝑗, 𝜏2} , 𝑥𝑗 ≤ 𝑞𝑗

𝒁 ∣ 𝑾, 𝑟𝑍 ∼ Normal𝑑 {√𝑟𝑍𝐀𝑾, (1 − 𝑟𝑍)𝐈𝑑} ;
𝑾 ∣ 𝑟𝑍, 𝜌 ∼ Normal𝐾(0𝐾, 𝑟𝑍𝐐−1);

𝜣 ∼ 𝜋(𝜣).

We censor observations below quantiles 𝑞𝑗 .
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Simulation study and estimation

We generate data from the model and censor observations below their
75 percentile.

We use Markov chain Monte Carlo methods to draw posterior samples

� Gibb’s sampling for the weights𝑾
� random walk Metropolis–Hastings, MALA and second-order
approximations for 𝒁

� (transformed scale/truncated normal proposals, block updates)
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Convergence diagnostics

There is strong autocorrelation between the parameters of the
normalizing functions.
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Figure 7: Traceplots of Markov chains for dependence parameters.

Sampling 500K samples from the posterior takes about 10 hours with
200 sites and 100 time replications, but mixing is slow.
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Goodness-of-fit for simulated data
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Figure 8: Quantile-quantile plots of marginal standardized observations for
holdout data (top) and in-sample sites (bottom) for simulated data.
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Marginal distribution of standardized variables

If we integrate out the random effects, the conditional distribution of
the 𝑑-vector of observations is

𝑿 ∣ 𝑋(𝒔0) = 𝑥0 > 𝑢 ∼ Normal𝑑{𝒂(𝑥0), 𝐕(𝑥0)},
𝑋(𝒔0) ∣ 𝑋(𝒔0) > 𝑢 ∼ Exp(1)

where

𝐕(𝑥0) = diag{𝐛(𝑥0)}{𝑟𝑍𝐀𝐐−1
𝜌 𝐀⊤ + (1 − 𝑟𝑍)𝐈𝑑}diag{𝐛(𝑥0)} + 𝜏𝐈𝑑

This hierarchical formulation characterizes the marginal distributions of
𝑋0(𝒔) conditional on𝑋(𝒔0) > 𝑢.
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Incorporating marginal transformations

Write𝐺𝑗 and 𝐹𝑗 for the distribution functions at site 𝒔𝑗

� 𝑌(𝒔𝑗) ∣ 𝑌(𝒔0) > 𝐺−1
0 (𝑞) (data scale) and

� 𝑋(𝒔𝑗) ∣ 𝑋(𝒔0) > − log(−𝑞) (standardized)

The likelihood contribution on the standardized scale is

𝑝 (𝑋𝑗 ∣ 𝒁, 𝜣𝑎, 𝜣𝑏, 𝜏)

∝
⎧
⎨
⎩

𝐽𝑗 × 𝜙 [𝐹−1
𝑗 {𝐺𝑗(𝑌𝑗)}; 𝐚𝑗(𝑥0) + 𝐛𝑗(𝑥0)𝑧𝑗, 𝜏2] , 𝑦𝑗 > 𝑞𝑗

Φ[𝐹−1
𝑗 {𝐺𝑗(𝑞𝑗)}; 𝐚𝑗(𝑥0) + 𝐛𝑗(𝑥0)𝑧𝑗, 𝜏2] , 𝑦𝑗 ≤ 𝑞𝑗

,

where 𝐽𝑗 is the Jacobian of the marginal transformation.

Léo Belzile joint work with Rishikesh Yadav, Nicholas Beck, Jordan RichardsClimate Model Output of Extreme Rainfall 29/36



Marginal transformation

We need to evaluate the quantile function 𝐹−1
𝑗 and the density 𝑓𝑗

pointwise for every site 𝒔𝑗 (bottleneck).

Interchanging the order of integration, evaluate using Monte Carlo

𝑓𝑗 ≈
1
𝐵

𝐵
∑
𝑏=1

𝜙{
𝑥 − 𝜇(𝑋0𝑏)

𝜏
} , 𝑋0𝑏 ∼ Exp(1) + 𝑢

For the quantile function, we draw 𝐵 observations from the joint model
and approximate 𝐹−1

𝑗 using empirical quantile.
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Laplace approximation to marginal

Approximate the denominator of (??) by a Gaussian distribution (Laplace
approximation)1

𝑝(𝑿0(𝑠) = 𝑥) =
𝑝(𝑿(𝑠) = 𝑥, 𝑋0(𝒔0) = 𝑥0)
𝑝(𝑋0(𝒔0) = 𝑥0 ∣ 𝑿0(𝑠) = 𝑥)

. (2)
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1For given 𝑥, we compute the conditional mode 𝑥∗0 (𝑥) = max𝑥0∈[𝑢,∞) 𝑓(𝑥, 𝑥0) and
replace the denominator by a truncated Gaussian distribution above 𝑢.
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Ongoing work

� With 𝑑 = 1000 sites and 𝑛 = 100 time points, evaluation of the
marginal quantile and density increase the time per iteration by
about 20 seconds…
• We approximate marginal distribution by skewed-unified normal (SUN)
that minimizes KL divergence with Laplace approximation

• Train a neural network to learn parameters for different combinations of
parametersΘ, enforcing monotonicity constraints
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Summary and future work

� Use Gaussian Markov random field residual process with data
augmentation to effectively deal with left-censoring

� Efficient full likelihood-based inference based on Markov chain
Monte Carlo sampling

Work in progress include;

� solve identifiability issue when geometric anisotropy in 𝑎 is weak
� application to daily precipitation data from British Columbia
accounting for the non-stationarity and seasonality

� more efficient implementation of the joint estimation scheme.
� comparison with the two-stage approach
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