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Motivation

Figure 1: Aerial pictures of flooding in Abbotsford and Chilliwack, British
Columbia, November 23, 2021. Province of British Columbia, CC license
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2021 British Columbia floods

CBC reports on a storm caused by an atmospheric river in
November 2021

� many officials calling the storm that hit the province a
once-in-a-century event.

� 24 B.C. communities receivedmore than 100mmof rain from
Saturday to Monday.

� The town of Hope led thewaywith 252mm over that time
period.
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Data for BC lowermainland

Figure 2: Average daily rainfall and conditional average given large
rainfall near Abbotsford (BC). PCIC daily griddedmeteorological
dataset NRCANMET (1950-2012).
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Asymptotic dependence regime
Preliminary checks suggestive of asymptotic independencewith
strong anisotropy

Figure 3: Tail correlation coefficient for selected sites

𝜒𝑢(𝒔𝑖, 𝒔0) = Pr {𝑋(𝒔𝑖) > 𝐹−1
𝑖 (𝑣) ∣ 𝑋(𝒔0) > 𝐹−1

0 (𝑢)} , 𝑢 ∈ [0, 1].
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Spatial model

� We focus on the spatio-temporal conditional extremes model
ofWadsworth and Tawn (2022).

� This model describes the stochastic behaviour of a spatial
process given the value at a particular site within the spatial
domain is large.
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Model

� Consider a stationary spatial process {𝑋(𝒔), 𝒔 ∈ 𝒮}with
exponential tails

� Conditional on the random field being extreme at site 𝒔0 , we
assume that the suitably renormalized process𝑋(𝒔)
converges in distribution to a non-degenerate spatial process
𝑍(𝒔) satisfying
� 𝑍(𝒔0) = 0 almost surely and
� 𝑍(𝒔0) independent of lim𝑢→∞ 𝑋(𝒔0) − 𝑢 ∣ 𝑋(𝒔0) > 𝑢 ∼ Exp(1).
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COSPEXmodel

For sufficiently high threshold𝑢, the standardized conditional field
𝑋0(𝒔) ≔ 𝑋(𝒔) ∣ 𝑋(𝒔0) > 𝑢 is of the form

𝑋0(𝒔)
𝑑≈ 𝑎{𝒔, 𝑋(𝒔0)} + 𝑏{𝒔, 𝑋(𝒔0)}𝑍(𝒔), 𝒔 ∈ 𝒮.

We add a nugget term 𝜀 ∼ No(0, 𝜏2) to facilitate data
augmentation (Zhang, Shaby, andWadsworth, 2022)

𝑋0(𝒔)
𝑑≈ 𝑎{𝒔, 𝑋(𝒔0)} + 𝑏{𝒔, 𝑋(𝒔0)}𝑍(𝒔) + 𝜀(𝒔).
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Normalizing functions

Wadsworth and Tawn (2022) list conditions for𝑎(⋅) and 𝑏(⋅) that
guarantee valid limiting models, e.g., taking

𝑎(𝒔, 𝑥) = 𝑥𝜌(‖𝒔 − 𝒔0‖).

with 𝜌 any correlation function.

In the sequel, we consider

� 𝑏(𝒔, 𝑥) = 𝑥𝛽 for𝛽 ∈ (0, 1) (doesn’t decaywith distance)
� an exponential correlation functionwith geometric anisotropy,

𝜌(𝑑) = exp(−𝑑/𝜅𝑎), 𝑑 = ‖𝐀𝒉‖.
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Recent advances and shortcomings of COSPEX

� Two-stage estimation (margins to standard Laplace)
� Mostly frequentist approach for the inference, except Simpson,
Opitz, andWadsworth (2023) (INLA) and Vandeskog, Martino,
and Huser (2022)

� Same computational bottlenecks for left-censoring (e.g.,
zero-inflated data) as other spatial extreme value models.
Censoring only considered Richards, Tawn, and Brown (2022)
and extension thereof.
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Framework and objectives

� Establish a computationally feasible way for handling
large-scale inference in the presence of censoring

� Use full likelihoodswith data augmentation (Bayesian
paradigm)

� Simultaneous estimation of marginal parameters and
dependence
� lot’s of uncertainty in the margins
� reducemodel misspecification
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Sparse residual process

Expanding on thework of Simpson, Opitz, andWadsworth (2023)
(previous talk), we consider the SPDE approximation (Lindgren,
Rue, and Lindström, 2011)

𝑍(𝒔) = √𝑟𝑍
𝐾
∑
𝑘=1

𝜙𝑘(𝒔)𝑊𝑘 +√(1 − 𝑟𝑍)𝜖𝑍,

or in vector form 𝒁 = √𝑟𝑍𝐀𝑾 +√(1 − 𝑟𝑍)𝝐

� 𝑾 ∼ No𝐾(0𝐾, 𝐐−1) are Gaussianweights
� the sparse precision matrix𝐐 depends on themesh
� {𝜙𝑘} are (compactly-supported) piecewise linear basis
functions with associated projectormatrix 𝐀.

� 𝜖𝑍 ∼ No(0, 1) are i.i.d. (nugget)
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Mesh

As in Vandeskog, Martino, and Huser (2022), we create amesh
with a node at 𝒔0 , extract the precision matrix and shed it.

Figure 4: Mesh for SPDE approximationwith conditioning site (red cross)
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Believe in sparsity

Leveraging the sparsity leads to efficient data augmentation
building on Zhang, Shaby, andWadsworth (2022)

𝑋0(𝒔𝑗) ∣ 𝑍𝑗 ∼ No {𝐚𝑗(𝑥0) + 𝐛𝑗(𝑥0)𝑍𝑗, 𝜏2} ,

𝑍𝑗 ∼ No(√𝑟𝑍𝐀𝑗,ne(𝑗)𝒘ne(𝑗), 1 − 𝑟𝑍)

where themean of 𝑍𝑗 depends only on neighbours as a result of
the sparsity of 𝐀.
The conditional distribution of basis weight𝑊𝑘 given the others is

𝑊𝑘 ∣ {𝑾−𝑘 = 𝒘−𝑘} ∼ No (−𝐐−1
𝑘𝑘𝐐𝑘,−𝑘𝒘−𝑘, 𝐐

−1
𝑘𝑘) , (1)

Can also marginalize overweights𝑾 (Nychka et al., 2015).
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Hierarchical model formulation

Observations are conditionally independent given 𝒁

𝑝 (𝑋𝑗 ∣ 𝒁 , 𝜣𝑎, 𝜣𝑏, 𝜏) =
⎧
⎨
⎩

𝜙{𝑥𝑗; 𝐚𝑗(𝑥0) + 𝐛𝑗(𝑥0)𝑧𝑗, 𝜏2} , 𝑥𝑗 > 𝑞𝑗
Φ{𝑞𝑗; 𝐚𝑗(𝑥0) + 𝐛𝑗(𝑥0)𝑧𝑗, 𝜏2} , 𝑥𝑗 ≤ 𝑞𝑗

𝒁 ∣ 𝑾 , 𝑟𝑍 ∼ No𝑑 {√𝑟𝑍𝐀𝑾, (1 − 𝑟𝑍)𝐈𝑑} ;
𝑾 ∣ 𝑟𝑍, 𝜌 ∼ No𝐾(0𝐾, 𝑟𝑍𝐐−1);

𝜣 ∼ 𝜋(𝜣).

We censor observations below quantiles 𝑞𝑗 .
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Simulation study and estimation

We generate data from themodel and censor observations
below their 75 percentile.

We use Markov chain Monte Carlo methods to draw posterior
samples

� Gibb’s sampling for theweights𝑾
� randomwalk Metropolis–Hastings, MALA and second-order
approximations for𝒁

� (transformed scale/truncated normal proposals, block
updates)

Results shown next don’t includemarginal transformations or
anisotropy
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Convergence diagnostics

There is strong autocorrelation between the parameters of the
normalizing functions.
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Figure 5: Traceplots of Markov chains for selected parameters.
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Goodness-of-fit for simulated data
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Figure 6: Quantile-quantile plots of marginal standardized observations
for holdout data (top) and in-sample sites (bottom) for simulated data.
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Marginal distribution of standardized variables

If we integrate out the random effects, the conditional distribution
of the 𝑑-vector of observations is

𝑿 ∣ 𝑋(𝒔0) = 𝑥0 > 𝑢 ∼ No𝑑{𝒂(𝑥0), 𝐕(𝑥0)},
𝑋(𝒔0) ∣ 𝑋(𝒔0) > 𝑢 ∼ Exp(1)

where

𝐕(𝑥0) = diag{𝐛(𝑥0)}{𝑟𝑍𝐀𝐐−1
𝜌 𝐀⊤ + (1 − 𝑟𝑍)𝐈𝑑}diag{𝐛(𝑥0)} + 𝜏𝐈𝑑

This hierarchical formulation characterizes themarginal
distributions of𝑋0(𝒔) (recall, conditional on𝑋(𝒔0) > 𝑢).
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Incorporatingmarginal transformations

Write𝐺𝑗 and𝐹𝑗 for the distribution functions at site 𝒔𝑗

� 𝑌 (𝒔𝑗) ∣ 𝑌 (𝒔0) > 𝐺 −1
0 (𝑞) (data scale) and

� 𝑋(𝒔𝑗) ∣ 𝑋(𝒔0) > − log(−𝑞) (standardized)

The likelihood contribution on the standardized scale is

𝑝 (𝑋𝑗 ∣ 𝒁 , 𝜣𝑎, 𝜣𝑏, 𝜏)

∝
⎧
⎨
⎩

𝐽𝑗𝜙 [𝐹−1
𝑗 {𝐺𝑗(𝑌𝑗)}; 𝐚𝑗(𝑥0) + 𝐛𝑗(𝑥0)𝑧𝑗, 𝜏2] , 𝑦𝑗 > 𝑞𝑗

Φ[𝐹−1
𝑗 {𝐺𝑗(𝑞𝑗)}; 𝐚𝑗(𝑥0) + 𝐛𝑗(𝑥0)𝑧𝑗, 𝜏2] , 𝑦𝑗 ≤ 𝑞𝑗

,

where 𝐽𝑗 is the Jacobian of the marginal transformation.
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Marginal transformation

We need to evaluate the quantile function𝐹−1
𝑗 and the density 𝑓𝑗

pointwise for every site 𝒔𝑗 (bottleneck).
Interchanging the order of integration, evaluate using Monte
Carlo

𝑓𝑗 ≈
1
𝐵

𝐵
∑
𝑏=1

𝜙{
𝑥 − 𝜇(𝑋0𝑏)

𝜏
} , 𝑋0𝑏 ∼ Exp(1) + 𝑢

For the quantile function, we draw 𝐵 observations from the joint
model and approximate𝐹−1

𝑗 using empirical quantile.
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Laplace approximation to marginal
Approximate the denominator of (2) by a Gaussian distribution
(Laplace approximation)1

𝑝(𝑿0(𝑠) = 𝑥) =
𝑝(𝑿(𝑠) = 𝑥, 𝑋0(𝒔0) = 𝑥0)
𝑝(𝑋0(𝒔0) = 𝑥0 ∣ 𝑿0(𝑠) = 𝑥)

. (2)
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1For given 𝑥, we compute the conditional mode 𝑥∗0 (𝑥) = max𝑥0∈[𝑢,∞) 𝑓(𝑥, 𝑥0)
and replace the denominator by a truncated Gaussian distribution above𝑢.
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Computational bottlenecks

� Using only the dependence part, sampling 500K samples from
the posterior takes about 10 hours

� With 𝑑 = 1000 sites and𝑛 = 100 time points, evaluation of the
marginal quantile and density increase the time per iteration
by about 20 seconds…

� Possible remedies: parallelization and C++ (work in progress)
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Summary and futurework

� Use Gaussian Markov random field residual process with data
augmentation to effectively deal with left-censoring

� Efficient full-likelihood-based inference based on Markov chain
Monte Carlo sampling

Work in progress include;

� solve identifiability issuewhen geometric anisotropy in 𝑎 is
weak

� application to daily precipitation data from British Columbia
accounting for the non-stationarity and seasonality

� more efficient implementation of the joint estimation scheme.
� comparisonwith the two-stage approach
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