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Figure 1: Aerial pictures of flooding in Abbotsford and Chilliwack, British
Columbia, November 23, 2021. Province of British Columbia, CC license
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2021 British Columbia floods

CBC reports on a storm caused by an atmospheric river in
November 2021

= many officials calling the storm that hit the province a
once-in-a-century event.

= 24 B.C. communities received more than 100mm of rain from
Saturday to Monday.

= The town of Hope led the way with 252mm over that time
period.
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Figure 2: Average daily rainfall and conditional average given large
rainfall near Abbotsford (BC). PCIC daily gridded meteorological

dataset NRCANMET (1950-2012).
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Asymptotic dependence regime

Preliminary checks suggestive of asymptotic independence with
strong anisotropy
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Figure 3: Tail correlation coefficient for selected sites

Xu(Si So) = PriX(s;) > Fi ' (v) | X(s) > Fy ' (w)}, u € [0,1].
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Spatial model

= We focus on the spatio-temporal conditional extremes model
of Wadsworth and Tawn (2022).

= This model describes the stochastic behaviour of a spatial
process given the value at a particular site within the spatial
domainis large.
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= Consider a stationary spatial process {X(s), s € ¥} with
exponential tails

= Conditional on the random field being extreme at site s,, we
assume that the suitably renormalized process X (s)
converges in distribution to a non-degenerate spatial process
Z (s) satisfying
o Z(sy) = 0 almost surely and
1 Z(s,) independent of lim,,_, .. X(sy) — u | X(s9) > u ~ Exp(1).
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COSPEX model

For sufficiently high threshold w1, the standardized conditional field
Xo(s) :== X(s) | X(sg) > uisof the form

Xo(s) 2 als, X(sy)} + bis, X(s,)}Z(s), se€ ..

We add a nugget term € ~ No(0, 72) to facilitate data
augmentation (Zhang, Shaby, and Wadsworth, 2022)

X,(s) g a{s, X(sy)} + b{s, X(sy)}Z(s) + (s).
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Normalizing functions

Wadsworth and Tawn (2022) list conditions for a(-) and b(-) that
guarantee valid limiting models, e.g., taking

a(s,x) =xp(lls — soll).
with p any correlation function.

In the sequel, we consider

= b(s,x)= xP for B € (0, 1) (doesn't decay with distance)
m an exponential correlation function with geometric anisotropy,

o(d) = exp(—d/x,), d = |Ah]|.
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Recent advances and shortcomings of COSPEX

= Two-stage estimation (margins to standard Laplace)

= Mostly frequentist approach for the inference, except Simpson,
Opitz, and Wadsworth (2023) (INLA) and Vandeskog, Martino,
and Huser (2022)

= Same computational bottlenecks for left-censoring (e.g.,
zero-inflated data) as other spatial extreme value models.
Censoring only considered Richards, Tawn, and Brown (2022)
and extension thereof.
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Framework and objectives

= Establish a computationally feasible way for handling
large-scale inference in the presence of censoring

= Use full likelihoods with data augmentation (Bayesian
paradigm)

= Simultaneous estimation of marginal parameters and
dependence

o lot's of uncertainty in the margins
o reduce model misspecification
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Sparse residual process

Expanding on the work of Simpson, Opitz, and Wadsworth (2023)
(previous talk), we consider the SPDE approximation (Lindgren,
Rue, and Lindstrom, 2011)

K
Z(s) = \/r_sz Gr(SIWi + /(1 = 12)ey,
=1
orinvectorformZ = |/, AW + /(1 - 1;)€

W ~ Nog(0x, Q1) are Gaussian weights

the sparse precision matrix Q depends on the mesh
{¢bi.} are (compactly-supported) piecewise linear basis
functions with associated projector matrix A.

€, ~ No(0, 1) areiid. (hugget)



Mesh

As in Vandeskog, Martino, and Huser (2022), we create a mesh
with a node at s,, extract the precision matrix and shed it.
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Figure 4: Mesh for SPDE approximation with conditioning site (red cross)
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Believe in sparsity

Leveraging the sparsity leads to efficient data augmentation
building on Zhang, Shaby, and Wadsworth (2022)

Xo(57) 1 Zj ~ No{a;(x) +b;(x0)Z, 12},
Z; ~ No(\/TzA () Wre(r 1 = T2)

where the mean of Z] depends only on neighbours as a result of
the sparsity of A.

The conditional distribution of basis weight W,. given the others is
Wi [{W_, = w_i} ~ No (_Qillch,-kw-k’Qillc)» (1)

Can also marginalize over weights W (Nychka et al., 2015).



Hierarchical model formulation

Observations are conditionally independent given Z

¢ x5 (%) + bi(x0)z, T, x> g
@ < q;;a;(xo) + bj(xo)zj»Tz y Xj=(
Z | W, 1, ~ Nog {\/T AW, (1 — r)I};

W |r,p~ NOK(OK, TzQ_l);
0~ n1(0).

p(X;12,6,6,7) ={

We censor observations below quantiles g;.
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Simulation study and estimation

We generate data from the model and censor observations
below their 75 percentile.

We use Markov chain Monte Carlo methods to draw posterior
samples

m Gibb's sampling for the weights W

= random walk Metropolis—Hastings, MALA and second-order
approximations for Z

= (transformed scale/truncated normal proposals, block
updates)

Results shown next don’t include marginal transformations or
anisotropy
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Convergence diagnostics

There is strong autocorrelation between the parameters of the

normalizing functions.
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Figure 5: Traceplots of Markov chains for selected parameters.
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Goodness-of-fit for simulated data

site 1 site 2 site 3 site 4 site 5
. . o 10 .
o o b 2 g g J
g s OO & g 2 . S
g g g g g
2 2 2 £ £
Eo g, g, g R
5 5 g g0 g
£ £ £ & £ £
5 s S 2 s s
- 4 -,
- § .
. Ve - SiA
BN T = G 3 B 3 S B ] 3 To EI ]
theoretical quantiles theoretical quantiles theoretical quantiles theoretical quantiles theoretical quantiles
site 8 site 19 site 20 site 36 site 47
& . o
s A A . . 10
o o SR 9 g .
8 £ g £ . g
g g g g g
3o 3, 2 £l £l
g g go g° go
g g g g g
&5 §-2 § H H
. 4 " -
s . .
e
RN 3 ¥ 5 0 3 % B ] 5 R S 0 5 D
theoretical quantiles theoretical quanties theoretical quantiles theoretical quantiles theoretical quantiles

Figure 6: Quantile-quantile plots of marginal standardized observations
for holdout data (top) and in-sample sites (bottom) for simulated data.
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Marginal distribution of standardized variables

If we integrate out the random effects, the conditional distribution
of the d-vector of observations is

X | X(s9) = xo > u ~ Nogfa(x,), V(xy)},
X(s0) 1 X(s9) > u ~ Exp(1)

where

V(i) = diag{b(xo)}Hr,AQ, AT + (1 = 1)L }diag{b(xo)} + 714

This hierarchical formulation characterizes the marginal
distributions of X, (s) (recall, conditional on X (s,) > u).
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Incorporating marginal transformations

Write Gj and F] for the distribution functions at site S;

= Y(s;) | Y(sy) > Gy (g) (data scale) and
= X(s;) | X(s9) > —log(—q) (standardized)

The likelihood contribution on the standardized scale is
p(X;12,0,6,71)
{chp [FHG )b ay(xe) +by(x0)z,T2] 35>
® |FHG(q)h a;(x0) + bi(x)z;, 7], vy =g

where J; is the Jacobian of the marginal transformation.
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Marginal transformation

We need to evaluate the quantile function Fj'1 and the density j;
pointwise for every site S; (bottleneck).

Interchanging the order of integration, evaluate using Monte
Carlo

1 & [x— u(Xop)
R e TR RLCORY

For the quantile function, we draw B observations from the joint
model and approximate Fj‘1 using empirical quantile.
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Laplace approximation to marginal

Approximate the denominator of (2) by a Gaussian distribution
(Laplace approximation)!

_ p(X(s) = x, Xo(8) = %)
p(Xo(sp) = Xo | Xo(s) = x)

p(Xo(s) = x) (2)
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For given x, we compute the conditional mode x; (x) = MOX e 11,00) f(x, x,)
and replace the denominator by a truncated Gaussian distribution above u.
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Computational bottlenecks

m Using only the dependence part, sampling 5SO0K samples from
the posterior takes about 10 hours

= With d = 1000 sites and n = 100 time points, evaluation of the
marginal quantile and density increase the time per iteration
by about 20 seconds...

= Possible remedies: parallelization and C++ (work in progress)
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Summary and future work

Use Gaussian Markov random field residual process with data
augmentation to effectively deal with left-censoring

Efficient full-likelihood-based inference based on Markov chain
Monte Carlo sampling

Work in progress include;

solve identifiability issue when geometric anisotropy in a is
weak

application to daily precipitation data from British Columbia
accounting for the non-stationarity and seasonality

more efficient implementation of the joint estimation scheme.
compadarison with the two-stage approach
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Thank you for your attention. Questions, comments, suggestions?
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