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Motivation: 2021 British Columbia floods

Figure 1: Aerial pictures of flooding in Abbotsford and Chilliwack, British
Columbia, November 23, 2021. Province of British Columbia, CC license
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Studying rare events

CBC reports on flooding caused by an atmospheric river in
November 2021:

� many officials called the storm that hit the province a
once-in-a-century event.

� 24 B.C. communities receivedmore than 100mmof rain from
Saturday to Monday.

� The town of Hope led thewaywith 252mm over that time
period.
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Data for British Columbia lowermainland

Figure 2: Average daily rainfall and conditional average given large
rainfall near Abbotsford (BC). Pacific Climate Impacts Consortium daily
griddedmeteorological dataset NRCANMET (1950-2012).

Léo Belzile (HECMontréal) Sparse conditional spatial extremeswith left-censoring 4/45



Justification formodelling spatial extremes

Flooding can be caused by either

� heavy localized rainfalls
� large-scale events

Both

� the site-wise behaviour of rainfall and
� the spatio-temporal dependence

are of interest.
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Objective and stylized facts

The objective of this work is to construct a stochastic generator
and create catalogues of daily cumulative rainfall fields given
exceedance at one site.

Stylized facts:

� Rainfall extremes are typically heavy-tailed (except for
smoothed data).

� Realizations of rainfall fields are typically rough.
� Extreme events tend to becomemore spatially localized as
their intensity increases.

� Rainfall is zero-inflated (either no rain or positive amount).
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Asymptotic (in)dependence

Correctly accounting for the dependence regime at large levels is
crucial. Consider the marginal quantile function𝐹−1

𝑗 at site 𝒔𝑗 .
The tail correlation coefficient is

𝜒𝑢(𝒔𝑖, 𝒔0) = Pr {𝑋(𝒔𝑖) > 𝐹−1
𝑖 (𝑢) ∣ 𝑋(𝒔0) > 𝐹−1

0 (𝑢)} , 𝑢 ∈ [0, 1].

We broadly characterize processes based on tail correlation
𝜒 = lim𝑢→1 𝜒(𝑢), with

� 𝜒 > 0 (asymptotic dependence)
� 𝜒 = 0 (asymptotic independence).

Gaussian processes, which are ubiquitous in spatial statistics, are
asymptotically independent and lead to underestimation of the
risk.
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Asymptotic dependence regime

Preliminary checks suggestive of asymptotic independencewith
strong anisotropy.

Figure 3: Tail correlation coefficient for selected sites

Léo Belzile (HECMontréal) Sparse conditional spatial extremeswith left-censoring 8/45



Spatial models for threshold exceedances

There is a plethora of models for spatial extremes, including
models for dealingwith original realizations of the field given
some event is large.

� (generalized) risk-Pareto processes (only asymptotic
dependence),

� random scale mixtures (either asymptotic dependence or
independence),

� conditional spatial extremes model (both tail regime).

Léo Belzile (HECMontréal) Sparse conditional spatial extremeswith left-censoring 9/45



Conditional spatial extremes model

� We focus on the spatio-temporal conditional extremes model
ofWadsworth and Tawn (2022).

� This model describes the stochastic behaviour of a spatial
process with exponential tails given that the value at a
particular site within the spatial domain is large.
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Conditional spatial extremes framework

Consider a stationary spatial process {𝑋(𝒔), 𝒔 ∈ 𝒮}with
exponential tails.

We assume that there exists scaling functions𝑎 ∶ (𝒮, ℝ) ↦ ℝ and
𝑏 ∶ (𝒮, ℝ) ↦ ℝ+, such that, for a conditioning site 𝒔0 ∈ 𝒮 and
any collection of sites 𝒔1,… , 𝒔𝑑 ∈ 𝒮, as the threshold𝑢 → ∞,

⎛

⎝
𝑋(𝒔0) − 𝑢, [

𝑋(𝒔𝑗) − 𝑎{𝒔𝑗, 𝑋(𝒔0)}
𝑏{𝒔𝑗, 𝑋(𝒔0)}

]
𝑗=1,…,𝑑

⎞

⎠

|||||
𝑋(𝒔0) > 𝑢

w⟶[𝐸, {𝑍(𝒔𝑗)}𝑗=1,…,𝑑}] .
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Model reformulation

� Conditional on the random field being extreme at site 𝒔0 , we
assume that the suitably renormalized process𝑋(𝒔)
converges in distribution to a non-degenerate spatial process
𝑍(𝒔) satisfying
� 𝑍(𝒔0) = 0 almost surely and
� 𝑍(𝒔) independent of lim𝑢→∞ 𝑋(𝒔0) − 𝑢 ∣ 𝑋(𝒔0) > 𝑢 ∼ Exp(1).
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COSPEXmodel

For sufficiently high threshold𝑢, the standardized conditional field
𝑋0(𝒔) ≔ 𝑋(𝒔) ∣ 𝑋(𝒔0) > 𝑢 is of the form

𝑋0(𝒔)
𝑑≈ 𝑎{𝒔, 𝑋(𝒔0)} + 𝑏{𝒔, 𝑋(𝒔0)}𝑍(𝒔), 𝒔 ∈ 𝒮.

To handle spatial dependence, we consider a Gaussian residual
random field 𝑍(𝒔).
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Normalizing functions

Wadsworth and Tawn (2022) list conditions for scaling functions
𝑎(⋅) and 𝑏(⋅) that guarantee valid limiting models

� for example, 𝑎(𝑥, 𝑠0) = 𝑥 and decreasingwith distance.
� 𝑍(𝒔0) = 0 for identifiability
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Normalizing functions

There are many possible choices of normalizing functions: for
example, taking

𝑎(𝒔, 𝑥) = 𝑥𝜌(max{0, ‖𝒔 − 𝒔0‖ − 𝛿}).

with 𝜌 any correlation functionworks and yields asymptotic
dependence up to distance lag 𝛿.
In the sequel, we consider for simplicity

� 𝑏(𝒔, 𝑥) = 𝑥𝛽 for𝛽 ∈ (0, 1)
� an exponential correlation function

𝜌(𝑑) = exp(−𝑑/𝜅𝑎).
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Inference for COSPEX

� Up to now, only two-stage estimation (margins estimated first,
then transformed to standard Laplace scale) has been
considered.

� Can use a parametric model (spatial pooling) or empirical
distribution.

� Under stationarity assumption, parameters are the same
regardless of the conditioning site. Can use composite
likelihood to pool exceedances (repeated observations).

� Mostly frequentist approach for the inference, except Simpson,
Opitz, andWadsworth (2023) and Vandeskog, Martino, and
Huser (2022) who use INLA.
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Shortcomings of COSPEX

� This model shares the same computational bottlenecks for
left-censoring (e.g., zero-inflated data) as other spatial extreme
value models, although applicable to lower levels.

� Censoring only considered Richards, Tawn, and Brown (2022)
and extension thereof, using triplewise composite likelihood.
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Computational challenges due to censoring

The conditional random field𝑋0(𝒔) at {𝒔1,… , 𝒔𝑑} is multivariate
Gaussian:

� marginal and conditional distributions are also Gaussian.

Ifℂ and𝕌 are the sets of locations for the 𝑐 = |ℂ| left-censored
components at𝒒ℂ and 𝑑 − 𝑐 uncensored components, with
values 𝒙𝕌 , the likelihood contribution is

Pr (𝑿𝕌 = 𝒙𝕌, 𝑿ℂ ≤ 𝒒ℂ)
= Pr (𝑿𝕌 = 𝒙𝕌) Pr (𝑿ℂ ≤ 𝒒ℂ ∣ 𝑿𝕌 = 𝒙𝕌)

This leads to high dimensional Gaussian integrals and, moreover,
the censoring pattern changes from one observation to the next.

Computational bottleneck: inference is limited to∼ 30 sites with
censoring.
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Scale of problem

In the data application, we focus on thewet season (October to
mid-February).

With 61 years of data (1950–2010), our data application has

� ∼ 250 exceedances above 95% threshold (non-zero rainfall
only)

� ∼ 200 spatial sites

In the simulation study , we consider 1000 spatial locations.

This is a somewhat large dimensional problem for extreme
values…
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Data augmentation and the nugget trick

Zhang, Shaby, andWadsworth (2022) proposed adding a nugget
𝜀 ∼ No(0, 𝜏2) to facilitate data augmentation and account for
measurement error

𝑋0(𝒔)
𝑑≈ 𝑎{𝒔, 𝑋(𝒔0)} + 𝑏{𝒔, 𝑋(𝒔0)}𝑍(𝒔) + 𝜀(𝒔).
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Data augmentation

The benefit of this approach is that𝑋𝑖 ≡ 𝑋0(𝒔𝑖) (𝑖 = 1,… , 𝑑) are
conditionally independent given 𝒁 so, if observations are
left-censored at quantile 𝑞, the conditional likelihood contribution
is

𝑝(𝑋𝑗 = 𝑥𝑗 ∣ 𝑍𝑗; 𝜽𝑎, 𝜽𝑏, 𝜏) = {
Φ(𝑞; 𝜇𝑗, 𝜏2), 𝑥𝑗 ≤ 𝑞
𝜙{𝑥𝑗; 𝜇𝑗, 𝜏2}, 𝑥𝑗 > 𝑞

where 𝜇𝑗 = 𝑎(𝒔𝑗, 𝑥0) + 𝑏(𝒔𝑗, 𝑥0)𝑍𝑗 .
This moves the problem to imputation of random effects 𝒁, but
calculating the likelihood of the latter requires O(𝑑3) flops for
each time replication …still unscalable.

Léo Belzile (HECMontréal) Sparse conditional spatial extremeswith left-censoring 21/45



Objectives

We extend previous work on the conditional spatial extremes
model to

� Establish a computationally feasible way for handling
large-scale inference in the presence of censoring

� Use full likelihoodswith data augmentation (Bayesian
paradigm)

� Simultaneously estimate marginal parameters and
dependence structure
� as there is plenty of uncertainty in the margins,
� and the Laplacemargins are not compatible with the model

specification.
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Part 1 of the agenda

For computational feasibility, we need to reduce costs associated
with the spatial random effects.

Ideally, wewould like 𝑍(𝒔) to be a Gaussian Markov random field.

The conditional distribution of 𝑍𝑗 ∣ 𝒁−𝑗 depends only on
neighbours (much lower dimension).

In this case, the precision matrix will be sparse (as zero entries
encode conditional independence).
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SPDE andMatérn random fields

The seminal paper of Lindgren, Rue, and Lindström (2011)
considered the SPDE

(𝜅2 − Δ)𝛼/2𝑥(𝒔) = 𝒲(𝒔) (1)

where𝒲(𝒔) is a Gaussianwhite noise process.

The stationary solution of eq. (1) is, for𝛼 > 𝑑/2, 𝛼 ∈ ℕ, a
Markovian Gaussian random fieldwith Matérn covariance.

The finite dimensional representations of the SPDE solutions,
obtained using “piecewise linear basis functions with local
support on spatial triangulations” yield a Gaussian Markov
random field.
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Delaunay triangulation andweights

Figure 4: Black circles show the set of neighbouring observations
assigning nonzeroweight to the basis function centered at the vertex.
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Sparse residual process

Expanding on thework of Simpson, Opitz, andWadsworth (2023)
(previous talk), we consider the SPDE approximation of the
Matérn field

𝑍(𝒔) = √𝑟𝑍
𝐾
∑
𝑘=1

𝜙𝑘(𝒔)𝑊𝑘 +√(1 − 𝑟𝑍)𝜖𝑍,

or in vector form 𝒁 = √𝑟𝑍𝐀𝑾 +√(1 − 𝑟𝑍)𝝐.

The resulting discrete approximation is a Gaussian Markov
random field.

� 𝑾 ∼ No𝐾(0𝐾, 𝐐−1) are Gaussianweights,
� the sparse precision matrix𝐐 depends on themesh,
� {𝜙𝑘} are (compactly-supported) piecewise linear basis
functions with associated projectormatrix 𝐀,

� 𝜖𝑍 ∼ No(0, 1) are i.i.d. white noise (nugget).
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Mesh and conditioning site

As in Vandeskog, Martino, and Huser (2022), we create amesh
with a node at 𝒔0 , extract the precision matrix and shed it.

Figure 5: Mesh for SPDE approximationwith conditioning site (red cross)
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In sparsity we trust

Leveraging the sparsity leads to efficient data augmentation
building on Zhang, Shaby, andWadsworth (2022)

𝑋0(𝒔𝑗) ∣ 𝑍𝑗 = 𝑧𝑗 ∼ No {𝐚𝑗(𝑥0) + 𝐛𝑗(𝑥0)𝑧𝑗, 𝜏2} ,

𝑍𝑗 ∣ 𝑾 = 𝒘 ∼ No (√𝑟𝑍𝐀𝑗,ne(𝑗)𝒘ne(𝑗), 1 − 𝑟𝑍)

where themean of 𝑍𝑗 depends only on neighbours as a result of
the sparsity of 𝐀.
This means that, observations are conditionally independent
given random effects.
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Benefits of sparsity

The conditional distribution of basis weight𝑊𝑘 given the others is

𝑊𝑘 ∣ {𝑾−𝑘 = 𝒘−𝑘} ∼ No (−𝐐−1
𝑘𝑘𝐐𝑘,−𝑘𝒘−𝑘, 𝐐

−1
𝑘𝑘) , (2)

We use Gibbs sampling to update jointly all weights, but eq. (2)
suggests that random scan Gibbs (one𝑊 at a time) could be
done efficiently leveraging the sparsity of𝐐.
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Hierarchical model formulation

We censor observations𝑋(𝒔𝑗) belowmarginal quantile 𝑞𝑗 , giving

𝑝 (𝑋𝑗 ∣ 𝒁 , 𝜣𝑎, 𝜣𝑏, 𝜏) =
⎧
⎨
⎩

𝜙{𝑥𝑗; 𝐚𝑗(𝑥0) + 𝐛𝑗(𝑥0)𝑧𝑗, 𝜏2} , 𝑥𝑗 > 𝑞𝑗
Φ{𝑞𝑗; 𝐚𝑗(𝑥0) + 𝐛𝑗(𝑥0)𝑧𝑗, 𝜏2} , 𝑥𝑗 ≤ 𝑞𝑗

𝒁 ∣ 𝑾 , 𝑟𝑍 ∼ No𝑑 {√𝑟𝑍𝐀𝑾, (1 − 𝑟𝑍)𝐈𝑑} ;
𝑾 ∣ 𝑟𝑍, 𝜌 ∼ No𝐾(0𝐾, 𝑟𝑍𝐐−1);

𝜣 ∼ 𝜋(𝜣).

We can also marginalize overweights𝑾 and compute the
unconditional precision of 𝒁 efficiently using
Sherman–Morrisson–Woodbury formula (Nychka et al., 2015).
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Parameter estimation

We useMarkov chain Monte Carlo methods to draw posterior
samples from themodel.

� Gibb’s sampling for theweights𝑾
� randomwalk Metropolis–Hastings, MALA and second-order
approximations for𝒁 andmodel parameters𝜣.

For bounded parameters in [𝑎, 𝑏], we use truncated Gaussian
proposals orwork on a transformed scale.

Proposal variance are tuned during burn-in period.
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Second order approximations forMCMC

Let 𝑝(𝜃) denote the conditional log likelihood for a scalar
parameter 𝜃 ∈ [𝑎, 𝑏]. We consider a Taylor series expansion of
𝑝(⋅) around the current parameter value 𝜃(𝑡) ,

𝑝(𝜃) = 𝑝(𝜃(𝑡)) + 𝑝′(𝜃(𝑡))(𝜃 − 𝜃(𝑡)) +
1
2
𝑝′′(𝜃(𝑡))(𝜃 − 𝜃(𝑡))2 + 𝑅(𝜃(𝑡))

and build Gaussian approximation for the proposal with

� mean 𝜇(𝑡) = 𝜃(𝑡) − 𝑓′(𝜃(𝑡))/𝑓′′(𝜃(𝑡)),
� precision𝜎−2 = −𝑓′′(𝜃(𝑡)).

To compute the Metropolis–Hastings ratio, we need to also
compute the reverse approximation starting from the proposal
value 𝜃(prop) .
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Convergence diagnostics

There is strong autocorrelation between some of the parameters
of the normalizing functions, so block updates are advisable.
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Figure 6: Traceplots of fourMarkov chains for selected parameters.
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Goodness-of-fit for simulated data
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Figure 7: Quantile-quantile plots of marginal standardized observations
for holdout data (top) and in-sample sites (bottom) for simulated data.
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Marginal model misspecification

Since the theoretical framework requires data to have
exponential tails, observations are typically mapped to the unit
Laplace scale.

The problem is that this is not compatible with the model given an
exceedance of the conditioning site.
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Marginal distribution of standardized variables

If we integrate out the random effects, the conditional distribution
of the 𝑑-vector of observations is

𝑿 ∣ 𝑋(𝒔0) = 𝑥0 > 𝑢 ∼ No𝑑{𝒂(𝑥0), 𝐕(𝑥0)},
𝑋(𝒔0) ∣ 𝑋(𝒔0) > 𝑢 ∼ Exp(1)

where

𝐕(𝑥0) = diag{𝐛(𝑥0)}{𝑟𝑍𝐀𝐐−1
𝜌 𝐀⊤ + (1 − 𝑟𝑍)𝐈𝑑}diag{𝐛(𝑥0)} + 𝜏2𝐈𝑑

This hierarchical formulation characterizes themarginal
distributions of𝑋0(𝒔) (recall, conditional on𝑋(𝒔0) > 𝑢).
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Incorporatingmarginal transformations

Write𝐺𝑗 and𝐹𝑗 for the distribution functions at site 𝒔𝑗

� 𝑌 (𝒔𝑗) ∣ 𝑌 (𝒔0) > 𝐺 −1
0 (𝑞) (data scale) and

� 𝑋(𝒔𝑗) ∣ 𝑋(𝒔0) > − log(−𝑞) (standardized)

The likelihood contribution on the standardized scale is

𝑝 (𝑦𝑗 ∣ 𝒛, 𝜣)

∝
⎧
⎨
⎩

𝐽𝑗𝜙 [𝐹−1
𝑗 {𝐺𝑗(𝑦𝑗)}; 𝐚𝑗(𝑥0) + 𝐛𝑗(𝑥0)𝑧𝑗, 𝜏2] , 𝑦𝑗 > 𝑞𝑗

Φ[𝐹−1
𝑗 {𝐺𝑗(𝑞𝑗)}; 𝐚𝑗(𝑥0) + 𝐛𝑗(𝑥0)𝑧𝑗, 𝜏2] , 𝑦𝑗 ≤ 𝑞𝑗

,

where 𝐽𝑗 is the Jacobian of the marginal transformation.
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Marginal transformation

We need to evaluate both

� the quantile function𝐹−1
𝑗 and

� the density 𝑓𝑗
of𝑋(𝒔𝑗) ∣ 𝑋(𝒔0) > 𝑢, pointwise at every site 𝒔𝑗(𝑗 = 1,… , 𝑑).
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Approximation of the conditional density and quantile

Interchanging the order of integration,

𝑓𝑗(𝑥) = ∫
∞

𝑢
Φ{

𝑥 − 𝜇(𝑥0)
𝜏

} exp(−𝑥0 + 𝑢)d𝑥0

which suggests the Monte Carlo estimator

𝑓𝑗 ≈
1
𝐵

𝐵
∑
𝑏=1

𝜙{
𝑥 − 𝜇(𝑋0𝑏)

𝜏
} , 𝑋0𝑏 ∼ Exp(1) + 𝑢

For the quantile function, we draw 𝐵 observations from the joint
model and approximate𝐹−1

𝑗 using empirical quantile.
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Laplace approximation to marginal

Approximate the denominator of (3) by a Gaussian distribution
(Laplace approximation)1

𝑝(𝑿0(𝑠) = 𝑥) =
𝑝(𝑿(𝑠) = 𝑥, 𝑋0(𝒔0) = 𝑥0)
𝑝(𝑋0(𝒔0) = 𝑥0 ∣ 𝑿0(𝑠) = 𝑥)

. (3)
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1For given 𝑥, we compute the conditional mode 𝑥∗0 (𝑥) = max𝑥0∈[𝑢,∞) 𝑓(𝑥, 𝑥0)
and replace the denominator by a truncated Gaussian distribution above𝑢.

Léo Belzile (HECMontréal) Sparse conditional spatial extremeswith left-censoring 40/45



Computational bottlenecks

� Using only the dependence part, sampling 500K samples from
the posterior takes about 10 hours

� With 𝑑 = 1000 sites and𝑛 = 100 time points, evaluation of the
marginal quantile and density increase the time per iteration
by about 20 seconds…

� Possible remedies: parallelization and C++ (work in progress)
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Summary and futurework

� Use Gaussian Markov random field residual process with data
augmentation to effectively deal with left-censoring

� Efficient full-likelihood-based inference based on Markov chain
Monte Carlo sampling

Work in progress includes

� efficient proposals when geometric anisotropy is weak
� application to daily precipitation data from British Columbia
� more efficient implementation of the joint estimation scheme.
� comparisonwith the two-stage approach and INLA
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